File size: 5,668 Bytes
cc5b602
6f619d7
d381360
6386510
51a7d9e
057b685
6386510
970d940
 
 
 
 
 
057b685
970d940
 
 
057b685
970d940
51a7d9e
e6367a7
6386510
bd34f0b
2302862
bd34f0b
 
51a7d9e
970d940
 
 
 
 
 
 
 
 
 
67988c0
bad8c99
67988c0
970d940
423ddc8
970d940
 
423ddc8
 
 
 
 
970d940
 
423ddc8
057b685
 
970d940
 
 
 
057b685
d381360
4ed884e
 
057b685
 
1d4c579
057b685
4ed884e
 
 
e59867b
 
b3599a0
 
 
f6667bb
b3599a0
 
 
 
 
f6667bb
423ddc8
3a65db9
 
057b685
a2d1610
057b685
 
 
3a65db9
057b685
 
 
 
 
 
 
 
 
423ddc8
 
e59867b
423ddc8
 
 
057b685
423ddc8
 
 
 
83bee2b
970d940
 
 
83bee2b
3a65db9
057b685
a2d1610
1c1ffc4
 
 
057b685
 
 
 
 
 
 
 
 
 
 
 
 
 
a2d1610
3a65db9
67988c0
3a65db9
83bee2b
df4462a
2302862
df4462a
83bee2b
df4462a
 
83bee2b
 
2302862
 
ca2d13d
83bee2b
 
7ae226e
83bee2b
 
 
 
7ae226e
1c1ffc4
5c72391
83bee2b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
057b685
2302862
 
83bee2b
51a7d9e
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
import os
import time
import spaces
import torch
import gradio as gr
import json

from huggingface_hub import snapshot_download
from pathlib import Path

from mistral_inference.transformer import Transformer
from mistral_inference.generate import generate

from mistral_common.protocol.instruct.tool_calls import Function, Tool
from mistral_common.tokens.tokenizers.mistral import MistralTokenizer
from mistral_common.protocol.instruct.messages import AssistantMessage, UserMessage
from mistral_common.protocol.instruct.request import ChatCompletionRequest
from mistral_common.tokens.tokenizers.tekken import SpecialTokenPolicy

HF_TOKEN = os.environ.get("HF_TOKEN", None)

PLACEHOLDER = """
<center>
<p>Chat with JaeSwift's Enemy AI trained on Mistral</p>
</center>
"""

CSS = """
.duplicate-button {
    margin: auto !important;
    color: white !important;
    background: black !important;
    border-radius: 100vh !important;
}
h3 {
    text-align: center;
}
.examples {
    display: None;
}
"""


# download model
mistral_models_path = Path.home().joinpath('mistral_models', '8B-Instruct')
mistral_models_path.mkdir(parents=True, exist_ok=True)

snapshot_download(repo_id="mistralai/Ministral-8B-Instruct-2410", allow_patterns=["params.json", "consolidated.safetensors", "tekken.json"], local_dir=mistral_models_path)

# tokenizer
device = "cuda" if torch.cuda.is_available() else "cpu" # for GPU usage or "cpu" for CPU usage
tokenizer = MistralTokenizer.from_file(f"{mistral_models_path}/tekken.json")
tekken = tokenizer.instruct_tokenizer.tokenizer
tekken.special_token_policy = SpecialTokenPolicy.IGNORE
model = Transformer.from_folder(
    mistral_models_path,
    device=device,
    dtype=torch.bfloat16)
  
@spaces.GPU()
def stream_chat(
    message: str, 
    history: list,
    tools: str,
    temperature: float = 0.3, 
    max_tokens: int = 1024, 
):
    print(f'message: {message}')
    print(f'history: {history}')

    conversation = []
    for prompt, answer in history:
        conversation.append(UserMessage(content=prompt))
        conversation.append(AssistantMessage(content=answer))
        
    # for item in history:
    #     if item[role] == "user":
    #         conversation.append(UserMessage(content=item[content]))
    #     elif item[role] == "assistant":
    #         conversation.append(AssistantMessage(content=item[content]))
            
    conversation.append(UserMessage(content=message))
    
    print(f'history: {conversation}')

    tools = f'function_params = {{{tools}}}'
    local_namespace = {}
    exec(tools, globals(), local_namespace)
    function_params = local_namespace.get('function_params', {})
    
    completion_request = ChatCompletionRequest(
        tools=[
            Tool(
                function=Function(
                    **function_params
                )
            )
        ] if tools else None,
        messages=conversation)
    
    tokens = tokenizer.encode_chat_completion(completion_request).tokens
    
    out_tokens, _ = generate(
        [tokens], 
        model, 
        max_tokens=max_tokens, 
        temperature=temperature,
        eos_id=tokenizer.instruct_tokenizer.tokenizer.eos_id)
    
    result = tokenizer.instruct_tokenizer.tokenizer.decode(out_tokens[0])
    
    for i in range(len(result)):
        time.sleep(0.05)
        yield result[: i + 1]
   


tools_schema = """
    "name": "get_current_weather",
    "description": "Get the current weather",
    "parameters": {
        "type": "object",
        "properties": {
            "location": {
                "type": "string",
                "description": "The city and state, e.g. San Francisco, CA",
            },
            "format": {
                "type": "string",
                "enum": ["celsius", "fahrenheit"],
                "description": "The temperature unit to use. Infer this from the users location.",
            },
        },
        "required": ["location", "format"],
    },
"""

chatbot = gr.Chatbot(height = 600, placeholder = PLACEHOLDER)
with gr.Blocks(theme="citrus", css=CSS) as demo:
    gr.ChatInterface(
        fn = stream_chat,
        title = "Enemy-AI",
        chatbot = chatbot,
        # type="messages",
        fill_height = True,
        examples = [
            ["Help me study vocabulary: write a sentence for me to fill in the blank, and I'll try to pick the correct option."],
            ["What are 5 creative things I could do with my kids' art? I don't want to throw them away, but it's also so much clutter."],
            ["Tell me 5 cool fun facts about the British."],
            ["Can you help me with writing a code for my website?"],
        
        ],
        cache_examples = False,
        additional_inputs_accordion=gr.Accordion(label="⚙️ Parameters", open=True, render=False),
        additional_inputs=[
            gr.Textbox(
                value = tools_schema,
                label = "Tools schema",
                lines = 10,
                render=False,
            ),
            gr.Slider(
                minimum=0,
                maximum=1,
                step=0.1,
                value=0.3,
                label="Temperature",
                render=False,
            ),
            gr.Slider(
                minimum=128,
                maximum=8192,
                step=1,
                value=1024,
                label="Max new tokens",
                render=False,
            ),
        ],
    )
    # Add a clickable button linking to JaeSwift.com
    gr.HTML('<a href="https://blog.jaeswift.com" target="_blank" class="button">JaeSwift.com</a>')


if __name__ == "__main__":
    demo.launch()