File size: 2,566 Bytes
dc45fa4
 
 
 
 
 
 
 
 
b3558c5
dc45fa4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b3558c5
dc45fa4
 
 
 
b3558c5
dc45fa4
 
 
6b9eb42
 
dc45fa4
 
b3558c5
dc45fa4
9a01815
 
 
dc45fa4
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
# %%
import gradio as gr
import joblib
loaded_rf_2way = joblib.load("STPI_2WAY_RandomForest.joblib")
loaded_rf_3way = joblib.load("STPI_3WAY_RandomForest.joblib")


def STPI(t_0_5_MaxValue,t_1_0_MaxValue,t_2_0_MaxValue,
# Acc_0_5__1_0_MaxValue,
Abs_Diff_t_0_5_MaxValue,Abs_Diff_t_1_0_MaxValue,Abs_Diff_t_2_0_MaxValue):
    print('------------------')
    
    X = [t_0_5_MaxValue,t_1_0_MaxValue,t_2_0_MaxValue,
    # Acc_0_5__1_0_MaxValue,
    Abs_Diff_t_0_5_MaxValue,Abs_Diff_t_1_0_MaxValue,Abs_Diff_t_2_0_MaxValue]
    print(X)
    outcome_decoded = ['Normal','Keratoconic','Suspect']
    file_object = open('stpi_data.txt', 'a')
    file_object.write(str(t_0_5_MaxValue))
    file_object.write(';')
    file_object.write(str(t_1_0_MaxValue))
    file_object.write(';')
    file_object.write(str(t_2_0_MaxValue))
    file_object.write(';')
    # file_object.write(str(Acc_0_5__1_0_MaxValue))
    # file_object.write(';')
    file_object.write(str(Abs_Diff_t_0_5_MaxValue))
    file_object.write(';')
    file_object.write(str(Abs_Diff_t_1_0_MaxValue))
    file_object.write(';')
    file_object.write(str(Abs_Diff_t_2_0_MaxValue))
    file_object.write(';')
    file_object.write('\n')
    file_object.close()

    result_2way = loaded_rf_2way.predict([X])
    print('The patient is ', outcome_decoded[int(result_2way)], ' through the 2way method')

    result_3way = loaded_rf_3way.predict([X])
    if result_2way == 0:
        print('The patient is ', outcome_decoded[int(result_3way)], 'through the 3way method')
        # result = 'The 3-way classification resulted in a ', outcome_decoded[int(result_3way)] + ' patient.'
        # further_analysis = 'Futher analysis using the 2-way classification resulted in a ' + outcome_decoded[int(result_2way)] + ' label.'
        return 'The patient is ' + outcome_decoded[int(result_3way)] + '.'

    # result = 'The 2-way classification resulted in a ', outcome_decoded[int(result_2way)] + ' patient.'
    # further_analysis = 'Futher analysis using the 3-way classification resulted in a ' + outcome_decoded[int(result_3way)] + ' label.'

    return 'The patient is ' + outcome_decoded[int(result_2way)] + '.'

iface = gr.Interface(
    fn=STPI, 
    title='TSPI Calculator',
    description='Calculates the Thickness Speed Progression Index (TSPI) through summarized tomographic parameters. Beta version made for Zeimer by Prof. Shady Awwad and Jad Assaf MD.',
    inputs=["number", "number","number", 
    # "number",
    "number", "number","number"],
    outputs="text")
iface.launch(
    # share=True
    )
# %%