Spaces:
Sleeping
Sleeping
File size: 2,566 Bytes
dc45fa4 b3558c5 dc45fa4 b3558c5 dc45fa4 b3558c5 dc45fa4 6b9eb42 dc45fa4 b3558c5 dc45fa4 9a01815 dc45fa4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 |
# %%
import gradio as gr
import joblib
loaded_rf_2way = joblib.load("STPI_2WAY_RandomForest.joblib")
loaded_rf_3way = joblib.load("STPI_3WAY_RandomForest.joblib")
def STPI(t_0_5_MaxValue,t_1_0_MaxValue,t_2_0_MaxValue,
# Acc_0_5__1_0_MaxValue,
Abs_Diff_t_0_5_MaxValue,Abs_Diff_t_1_0_MaxValue,Abs_Diff_t_2_0_MaxValue):
print('------------------')
X = [t_0_5_MaxValue,t_1_0_MaxValue,t_2_0_MaxValue,
# Acc_0_5__1_0_MaxValue,
Abs_Diff_t_0_5_MaxValue,Abs_Diff_t_1_0_MaxValue,Abs_Diff_t_2_0_MaxValue]
print(X)
outcome_decoded = ['Normal','Keratoconic','Suspect']
file_object = open('stpi_data.txt', 'a')
file_object.write(str(t_0_5_MaxValue))
file_object.write(';')
file_object.write(str(t_1_0_MaxValue))
file_object.write(';')
file_object.write(str(t_2_0_MaxValue))
file_object.write(';')
# file_object.write(str(Acc_0_5__1_0_MaxValue))
# file_object.write(';')
file_object.write(str(Abs_Diff_t_0_5_MaxValue))
file_object.write(';')
file_object.write(str(Abs_Diff_t_1_0_MaxValue))
file_object.write(';')
file_object.write(str(Abs_Diff_t_2_0_MaxValue))
file_object.write(';')
file_object.write('\n')
file_object.close()
result_2way = loaded_rf_2way.predict([X])
print('The patient is ', outcome_decoded[int(result_2way)], ' through the 2way method')
result_3way = loaded_rf_3way.predict([X])
if result_2way == 0:
print('The patient is ', outcome_decoded[int(result_3way)], 'through the 3way method')
# result = 'The 3-way classification resulted in a ', outcome_decoded[int(result_3way)] + ' patient.'
# further_analysis = 'Futher analysis using the 2-way classification resulted in a ' + outcome_decoded[int(result_2way)] + ' label.'
return 'The patient is ' + outcome_decoded[int(result_3way)] + '.'
# result = 'The 2-way classification resulted in a ', outcome_decoded[int(result_2way)] + ' patient.'
# further_analysis = 'Futher analysis using the 3-way classification resulted in a ' + outcome_decoded[int(result_3way)] + ' label.'
return 'The patient is ' + outcome_decoded[int(result_2way)] + '.'
iface = gr.Interface(
fn=STPI,
title='TSPI Calculator',
description='Calculates the Thickness Speed Progression Index (TSPI) through summarized tomographic parameters. Beta version made for Zeimer by Prof. Shady Awwad and Jad Assaf MD.',
inputs=["number", "number","number",
# "number",
"number", "number","number"],
outputs="text")
iface.launch(
# share=True
)
# %%
|