import gradio as gr import numpy as np from huggingface_hub import hf_hub_url, cached_download import PIL import onnx import onnxruntime config_file_url = hf_hub_url("Jacopo/ToonClip", filename="model.onnx") model_file = cached_download(config_file_url) onnx_model = onnx.load(model_file) onnx.checker.check_model(onnx_model) opts = onnxruntime.SessionOptions() opts.intra_op_num_threads = 16 ort_session = onnxruntime.InferenceSession(model_file, sess_options=opts) input_name = ort_session.get_inputs()[0].name output_name = ort_session.get_outputs()[0].name def normalize(x, mean=(0., 0., 0.), std=(1.0, 1.0, 1.0)): # x = (x - mean) / std x = np.asarray(x, dtype=np.float32) if len(x.shape) == 4: for dim in range(3): x[:, dim, :, :] = (x[:, dim, :, :] - mean[dim]) / std[dim] if len(x.shape) == 3: for dim in range(3): x[dim, :, :] = (x[dim, :, :] - mean[dim]) / std[dim] return x def denormalize(x, mean=(0., 0., 0.), std=(1.0, 1.0, 1.0)): # x = (x * std) + mean x = np.asarray(x, dtype=np.float32) if len(x.shape) == 4: for dim in range(3): x[:, dim, :, :] = (x[:, dim, :, :] * std[dim]) + mean[dim] if len(x.shape) == 3: for dim in range(3): x[dim, :, :] = (x[dim, :, :] * std[dim]) + mean[dim] return x def nogan(input_img): i = np.asarray(input_img) i = i.astype("float32") i = np.transpose(i, (2, 0, 1)) i = np.expand_dims(i, 0) i = i / 255.0 i = normalize(i, (0.485, 0.456, 0.406), (0.229, 0.224, 0.225)) ort_outs = ort_session.run([output_name], {input_name: i}) output = ort_outs output = output[0][0] output = denormalize(output, (0.485, 0.456, 0.406), (0.229, 0.224, 0.225)) output = output * 255.0 output = output.astype('uint8') output = np.transpose(output, (1, 2, 0)) output_image = PIL.Image.fromarray(output, 'RGB') return output_image title = "ToonClip Comics Hero Demo" description = """ Gradio demo for ToonClip, a UNet++ network with MobileNet v3 backbone optimized for mobile frameworks and trained with VGG Perceptual Feature Loss trained with PyTorch Lighting. To use it, simply upload an image with a face or choose an example from the list below. """ article = """
The \"ToonClip\" model was trained by Jacopo Mangiavacchi and available at Github Repo ComicsHeroMobileUNet
The \"Comics Hero dataset\" used to train this model was produced by Doron Adler and available at Github Repo Comics hero U2Net
The \"ToonClip\" iOS mobile app using a CoreML version of this model is available on Apple App Store at ToonClip
Example images from untrained FFHQ validation set: