Spaces:
Sleeping
Sleeping
Commit
·
bd35af6
1
Parent(s):
a5be200
feat: more scoring model
Browse files- .gitignore +2 -0
- README.md +2 -0
- app.py +21 -29
- model/Engessay_grading_ML.py +37 -0
- model/IELTS_essay_scoring.py +39 -0
.gitignore
ADDED
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
1 |
+
|
2 |
+
*.pyc
|
README.md
CHANGED
@@ -10,6 +10,8 @@ pinned: false
|
|
10 |
license: mit
|
11 |
preload_from_hub:
|
12 |
- JacobLinCool/IELTS_essay_scoring_safetensors
|
|
|
|
|
13 |
---
|
14 |
|
15 |
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
|
|
10 |
license: mit
|
11 |
preload_from_hub:
|
12 |
- JacobLinCool/IELTS_essay_scoring_safetensors
|
13 |
+
- KevSun/Engessay_grading_ML
|
14 |
+
- chillies/mistral-7b-ielts-evaluator-q4
|
15 |
---
|
16 |
|
17 |
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
app.py
CHANGED
@@ -1,34 +1,24 @@
|
|
1 |
from typing import *
|
2 |
import gradio as gr
|
3 |
-
|
4 |
-
import
|
5 |
-
import torch
|
6 |
-
from transformers import AutoModelForSequenceClassification, AutoTokenizer
|
7 |
|
8 |
-
|
9 |
-
|
10 |
-
|
|
|
11 |
|
12 |
|
13 |
-
@spaces.GPU
|
14 |
-
def grade(question: str, answer: str) -> Tuple[float,
|
15 |
if len(question) < 30 or len(answer) < 30:
|
16 |
raise gr.Error("Please enter more than 30 characters")
|
17 |
|
18 |
-
|
|
|
19 |
|
20 |
-
|
21 |
-
|
22 |
-
)
|
23 |
-
with torch.no_grad():
|
24 |
-
outputs = model(**inputs)
|
25 |
-
predictions = outputs.logits.squeeze()
|
26 |
-
|
27 |
-
predicted_scores = predictions.numpy()
|
28 |
-
normalized_scores = (predicted_scores / predicted_scores.max()) * 9
|
29 |
-
rounded_scores = np.round(normalized_scores * 2) / 2
|
30 |
-
|
31 |
-
return tuple(rounded_scores)
|
32 |
|
33 |
|
34 |
with gr.Blocks() as app:
|
@@ -46,18 +36,20 @@ with gr.Blocks() as app:
|
|
46 |
placeholder="Write your essay here",
|
47 |
lines=10,
|
48 |
)
|
|
|
|
|
|
|
|
|
|
|
49 |
btn = gr.Button("Grade Essay", variant="primary")
|
50 |
with gr.Column():
|
51 |
-
|
52 |
-
|
53 |
-
vocabulary = gr.Number(label="Vocabulary")
|
54 |
-
grammar = gr.Number(label="Grammar")
|
55 |
-
overall = gr.Number(label="Overall")
|
56 |
|
57 |
btn.click(
|
58 |
fn=grade,
|
59 |
-
inputs=[question, essay],
|
60 |
-
outputs=[
|
61 |
)
|
62 |
|
63 |
gr.Examples(
|
|
|
1 |
from typing import *
|
2 |
import gradio as gr
|
3 |
+
from model.IELTS_essay_scoring import grade_IELTS_essay_scoring
|
4 |
+
from model.Engessay_grading_ML import grade_Engessay_grading_ML
|
|
|
|
|
5 |
|
6 |
+
models = {
|
7 |
+
"IELTS_essay_scoring": grade_IELTS_essay_scoring,
|
8 |
+
"Engessay_grading_ML": grade_Engessay_grading_ML,
|
9 |
+
}
|
10 |
|
11 |
|
12 |
+
# we don't apply @spaces.GPU to here because some models work fast on CPU
|
13 |
+
def grade(question: str, answer: str, model: str) -> Tuple[float, str]:
|
14 |
if len(question) < 30 or len(answer) < 30:
|
15 |
raise gr.Error("Please enter more than 30 characters")
|
16 |
|
17 |
+
if model not in models:
|
18 |
+
raise gr.Error(f"Model {model} not found")
|
19 |
|
20 |
+
grader = models[model]
|
21 |
+
return grader(question, answer)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
22 |
|
23 |
|
24 |
with gr.Blocks() as app:
|
|
|
36 |
placeholder="Write your essay here",
|
37 |
lines=10,
|
38 |
)
|
39 |
+
model = gr.Radio(
|
40 |
+
label="Select the grading model",
|
41 |
+
choices=list(models.keys()),
|
42 |
+
value=list(models.keys())[0],
|
43 |
+
)
|
44 |
btn = gr.Button("Grade Essay", variant="primary")
|
45 |
with gr.Column():
|
46 |
+
overall = gr.Number(label="Overall Score")
|
47 |
+
comment = gr.Textbox(label="Comment", lines=10)
|
|
|
|
|
|
|
48 |
|
49 |
btn.click(
|
50 |
fn=grade,
|
51 |
+
inputs=[question, essay, model],
|
52 |
+
outputs=[overall, comment],
|
53 |
)
|
54 |
|
55 |
gr.Examples(
|
model/Engessay_grading_ML.py
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import *
|
2 |
+
import torch
|
3 |
+
from transformers import AutoModelForSequenceClassification, AutoTokenizer
|
4 |
+
|
5 |
+
model_name = "KevSun/Engessay_grading_ML"
|
6 |
+
model = AutoModelForSequenceClassification.from_pretrained(model_name)
|
7 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
8 |
+
|
9 |
+
|
10 |
+
@torch.no_grad()
|
11 |
+
def grade_Engessay_grading_ML(question: str, answer: str) -> Tuple[float, str]:
|
12 |
+
text = f"{question} {answer}"
|
13 |
+
|
14 |
+
inputs = tokenizer(text, return_tensors="pt")
|
15 |
+
|
16 |
+
outputs = model(**inputs)
|
17 |
+
predictions = outputs.logits.squeeze()
|
18 |
+
|
19 |
+
predicted_scores = predictions.numpy()
|
20 |
+
scaled_scores = 2.25 * predicted_scores - 1.25
|
21 |
+
rounded_scores = [round(score * 2) / 2 for score in scaled_scores]
|
22 |
+
|
23 |
+
labels = [
|
24 |
+
"cohesion",
|
25 |
+
"syntax",
|
26 |
+
"vocabulary",
|
27 |
+
"phraseology",
|
28 |
+
"grammar",
|
29 |
+
"conventions",
|
30 |
+
]
|
31 |
+
overall_score = round(sum(rounded_scores) / len(rounded_scores) * 2) / 2
|
32 |
+
|
33 |
+
comment = ""
|
34 |
+
for label, score in zip(labels, rounded_scores):
|
35 |
+
comment += f"{label}: {score}\n"
|
36 |
+
|
37 |
+
return overall_score, comment
|
model/IELTS_essay_scoring.py
ADDED
@@ -0,0 +1,39 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import *
|
2 |
+
import torch
|
3 |
+
import numpy as np
|
4 |
+
from transformers import AutoModelForSequenceClassification, AutoTokenizer
|
5 |
+
|
6 |
+
model_name = "JacobLinCool/IELTS_essay_scoring_safetensors"
|
7 |
+
model = AutoModelForSequenceClassification.from_pretrained(model_name)
|
8 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
9 |
+
|
10 |
+
|
11 |
+
@torch.no_grad()
|
12 |
+
def grade_IELTS_essay_scoring(question: str, answer: str) -> Tuple[float, str]:
|
13 |
+
text = f"{question} {answer}"
|
14 |
+
|
15 |
+
inputs = tokenizer(
|
16 |
+
text, return_tensors="pt", padding=True, truncation=True, max_length=512
|
17 |
+
)
|
18 |
+
|
19 |
+
outputs = model(**inputs)
|
20 |
+
predictions = outputs.logits.squeeze()
|
21 |
+
|
22 |
+
predicted_scores = predictions.numpy()
|
23 |
+
normalized_scores = (predicted_scores / predicted_scores.max()) * 9
|
24 |
+
rounded_scores = np.round(normalized_scores * 2) / 2
|
25 |
+
|
26 |
+
labels = [
|
27 |
+
"Task Achievement",
|
28 |
+
"Coherence and Cohesion",
|
29 |
+
"Vocabulary",
|
30 |
+
"Grammar",
|
31 |
+
"Overall",
|
32 |
+
]
|
33 |
+
overall_score = float(rounded_scores[-1])
|
34 |
+
|
35 |
+
comment = ""
|
36 |
+
for label, score in zip(labels, rounded_scores):
|
37 |
+
comment += f"{label}: {score}\n"
|
38 |
+
|
39 |
+
return overall_score, comment
|