import gradio as gr import torch from torch import autocast import gc import io import math import sys from PIL import Image, ImageOps import requests from torch import nn from torch.nn import functional as F from torchvision import transforms from torchvision.transforms import functional as TF from tqdm.notebook import tqdm import numpy as np from guided_diffusion.script_util import create_model_and_diffusion, model_and_diffusion_defaults, classifier_defaults, create_classifier from omegaconf import OmegaConf from ldm.util import instantiate_from_config from einops import rearrange from math import log2, sqrt import argparse import pickle import os from transformers import CLIPTokenizer, CLIPTextModel def fetch(url_or_path): if str(url_or_path).startswith('http://') or str(url_or_path).startswith('https://'): r = requests.get(url_or_path) r.raise_for_status() fd = io.BytesIO() fd.write(r.content) fd.seek(0) return fd return open(url_or_path, 'rb') device = "cuda" #model_state_dict = torch.load('diffusion.pt', map_location='cpu') model_state_dict = torch.load(fetch('https://huggingface.co./Jack000/glid-3-xl-stable/resolve/main/default/diffusion-1.4.pt'), map_location='cpu') model_params = { 'attention_resolutions': '32,16,8', 'class_cond': False, 'diffusion_steps': 1000, 'rescale_timesteps': True, 'timestep_respacing': 'ddim100', 'image_size': 32, 'learn_sigma': False, 'noise_schedule': 'linear', 'num_channels': 320, 'num_heads': 8, 'num_res_blocks': 2, 'resblock_updown': False, 'use_fp16': True, 'use_scale_shift_norm': False, 'clip_embed_dim': None, 'image_condition': False, 'super_res_condition': False, } model_config = model_and_diffusion_defaults() model_config.update(model_params) # Load models model, diffusion = create_model_and_diffusion(**model_config) model.load_state_dict(model_state_dict, strict=True) model.requires_grad_(False).eval().to(device) if model_config['use_fp16']: model.convert_to_fp16() else: model.convert_to_fp32() def set_requires_grad(model, value): for param in model.parameters(): param.requires_grad = value # vae kl_config = OmegaConf.load('kl.yaml') kl_sd = torch.load(fetch('https://huggingface.co./Jack000/glid-3-xl-stable/resolve/main/default/kl-1.4.pt'), map_location="cpu") ldm = instantiate_from_config(kl_config.model) ldm.load_state_dict(kl_sd, strict=True) ldm.to(device) ldm.eval() ldm.requires_grad_(False) set_requires_grad(ldm, False) # clip clip_version = 'openai/clip-vit-large-patch14' clip_tokenizer = CLIPTokenizer.from_pretrained(clip_version) clip_transformer = CLIPTextModel.from_pretrained(clip_version) clip_transformer.eval().requires_grad_(False).to(device) # classifier # load classifier classifier_config = classifier_defaults() classifier_config['classifier_width'] = 128 classifier_config['classifier_depth'] = 4 classifier_config['classifier_attention_resolutions'] = '64,32,16,8' classifier_photo = create_classifier(**classifier_config) classifier_photo.load_state_dict( torch.load(fetch('https://huggingface.co./Jack000/glid-3-xl-stable/resolve/main/classifier_photo/model060000.pt'), map_location="cpu") ) classifier_photo.to(device) classifier_photo.convert_to_fp16() classifier_photo.eval() classifier_art = create_classifier(**classifier_config) classifier_art.load_state_dict( torch.load(fetch('https://huggingface.co./Jack000/glid-3-xl-stable/resolve/main/classifier_art/model110000.pt'), map_location="cpu") ) classifier_art.to(device) classifier_art.convert_to_fp16() classifier_art.eval() def infer(prompt, style, scale, classifier_scale, seed): torch.manual_seed(seed) # clip context text = clip_tokenizer([prompt], truncation=True, max_length=77, return_length=True, return_overflowing_tokens=False, padding="max_length", return_tensors="pt") text_blank = clip_tokenizer([''], truncation=True, max_length=77, return_length=True, return_overflowing_tokens=False, padding="max_length", return_tensors="pt") text_tokens = text["input_ids"].to(device) text_blank_tokens = text_blank["input_ids"].to(device) text_emb = clip_transformer(input_ids=text_tokens).last_hidden_state text_emb_blank = clip_transformer(input_ids=text_blank_tokens).last_hidden_state kwargs = { "context": torch.cat([text_emb, text_emb_blank], dim=0).half(), "clip_embed": None, "image_embed": None, } def model_fn(x_t, ts, **kwargs): half = x_t[: len(x_t) // 2] combined = torch.cat([half, half], dim=0) model_out = model(combined, ts, **kwargs) eps, rest = model_out[:, :3], model_out[:, 3:] cond_eps, uncond_eps = torch.split(eps, len(eps) // 2, dim=0) half_eps = uncond_eps + scale * (cond_eps - uncond_eps) eps = torch.cat([half_eps, half_eps], dim=0) return torch.cat([eps, rest], dim=1) def cond_fn(x, t, context=None, clip_embed=None, image_embed=None): with torch.enable_grad(): x_in = x[:x.shape[0]//2].detach().requires_grad_(True) if style == 'photo': logits = classifier_photo(x_in, t) elif style == 'digital art': logits = classifier_art(x_in, t) else: return 0 log_probs = F.log_softmax(logits, dim=-1) selected = log_probs[range(len(logits)), torch.ones(x_in.shape[0], dtype=torch.long)] return torch.autograd.grad(selected.sum(), x_in)[0] * classifier_scale samples = diffusion.ddim_sample_loop_progressive( model_fn, (2, 4, 64, 64), clip_denoised=False, model_kwargs=kwargs, cond_fn=cond_fn, device=device, progress=True, init_image=None, skip_timesteps=0, ) for j, sample in enumerate(samples): pass emb = sample['pred_xstart'][0] emb /= 0.18215 im = emb.unsqueeze(0) im = ldm.decode(im) im = TF.to_pil_image(im.squeeze(0).add(1).div(2).clamp(0, 1)) return [im] css = """ .gradio-container { font-family: 'IBM Plex Sans', sans-serif; } .gr-button { color: white; border-color: black; background: black; } input[type='range'] { accent-color: black; } .dark input[type='range'] { accent-color: #dfdfdf; } .container { max-width: 730px; margin: auto; padding-top: 1.5rem; } #gallery { min-height: 22rem; margin-bottom: 15px; margin-left: auto; margin-right: auto; border-bottom-right-radius: .5rem !important; border-bottom-left-radius: .5rem !important; } #gallery>div>.h-full { min-height: 20rem; } .details:hover { text-decoration: underline; } .gr-button { white-space: nowrap; } .gr-button:focus { border-color: rgb(147 197 253 / var(--tw-border-opacity)); outline: none; box-shadow: var(--tw-ring-offset-shadow), var(--tw-ring-shadow), var(--tw-shadow, 0 0 #0000); --tw-border-opacity: 1; --tw-ring-offset-shadow: var(--tw-ring-inset) 0 0 0 var(--tw-ring-offset-width) var(--tw-ring-offset-color); --tw-ring-shadow: var(--tw-ring-inset) 0 0 0 calc(3px var(--tw-ring-offset-width)) var(--tw-ring-color); --tw-ring-color: rgb(191 219 254 / var(--tw-ring-opacity)); --tw-ring-opacity: .5; } #advanced-btn { font-size: .7rem !important; line-height: 19px; margin-top: 12px; margin-bottom: 12px; padding: 2px 8px; border-radius: 14px !important; } #advanced-options, #style-options { margin-bottom: 20px; } .footer { margin-bottom: 45px; margin-top: 35px; text-align: center; border-bottom: 1px solid #e5e5e5; } .footer>p { font-size: .8rem; display: inline-block; padding: 0 10px; transform: translateY(10px); background: white; } .dark .footer { border-color: #303030; } .dark .footer>p { background: #0b0f19; } .acknowledgments h4{ margin: 1.25em 0 .25em 0; font-weight: bold; font-size: 115%; } """ block = gr.Blocks(css=css) examples = [ [ 'A high tech solarpunk utopia in the Amazon rainforest', 4, 45, 7.5, 1024, ], [ 'A pikachu fine dining with a view to the Eiffel Tower', 4, 45, 7, 1024, ], [ 'A mecha robot in a favela in expressionist style', 4, 45, 7, 1024, ], [ 'an insect robot preparing a delicious meal', 4, 45, 7, 1024, ], [ "A small cabin on top of a snowy mountain in the style of Disney, artstation", 4, 45, 7, 1024, ], ] with block: gr.HTML( """
a custom version of stable diffusion with classifier guidance