import gradio as gr import torch from torch import autocast import gc import io import math import sys from PIL import Image, ImageOps import requests from torch import nn from torch.nn import functional as F from torchvision import transforms from torchvision.transforms import functional as TF from tqdm.notebook import tqdm import numpy as np from guided_diffusion.script_util import create_model_and_diffusion, model_and_diffusion_defaults, classifier_defaults, create_classifier from omegaconf import OmegaConf from ldm.util import instantiate_from_config from einops import rearrange from math import log2, sqrt import argparse import pickle import os from transformers import CLIPTokenizer, CLIPTextModel def fetch(url_or_path): if str(url_or_path).startswith('http://') or str(url_or_path).startswith('https://'): r = requests.get(url_or_path) r.raise_for_status() fd = io.BytesIO() fd.write(r.content) fd.seek(0) return fd return open(url_or_path, 'rb') device = "cuda" #model_state_dict = torch.load('diffusion.pt', map_location='cpu') model_state_dict = torch.load(fetch('https://huggingface.co./Jack000/glid-3-xl-stable/resolve/main/default/diffusion-1.4.pt'), map_location='cpu') model_params = { 'attention_resolutions': '32,16,8', 'class_cond': False, 'diffusion_steps': 1000, 'rescale_timesteps': True, 'timestep_respacing': 'ddim100', 'image_size': 32, 'learn_sigma': False, 'noise_schedule': 'linear', 'num_channels': 320, 'num_heads': 8, 'num_res_blocks': 2, 'resblock_updown': False, 'use_fp16': True, 'use_scale_shift_norm': False, 'clip_embed_dim': None, 'image_condition': False, 'super_res_condition': False, } model_config = model_and_diffusion_defaults() model_config.update(model_params) # Load models model, diffusion = create_model_and_diffusion(**model_config) model.load_state_dict(model_state_dict, strict=True) model.requires_grad_(False).eval().to(device) if model_config['use_fp16']: model.convert_to_fp16() else: model.convert_to_fp32() def set_requires_grad(model, value): for param in model.parameters(): param.requires_grad = value # vae kl_config = OmegaConf.load('kl.yaml') kl_sd = torch.load(fetch('https://huggingface.co./Jack000/glid-3-xl-stable/resolve/main/default/kl-1.4.pt'), map_location="cpu") ldm = instantiate_from_config(kl_config.model) ldm.load_state_dict(kl_sd, strict=True) ldm.to(device) ldm.eval() ldm.requires_grad_(False) set_requires_grad(ldm, False) # clip clip_version = 'openai/clip-vit-large-patch14' clip_tokenizer = CLIPTokenizer.from_pretrained(clip_version) clip_transformer = CLIPTextModel.from_pretrained(clip_version) clip_transformer.eval().requires_grad_(False).to(device) # classifier # load classifier classifier_config = classifier_defaults() classifier_config['classifier_width'] = 128 classifier_config['classifier_depth'] = 4 classifier_config['classifier_attention_resolutions'] = '64,32,16,8' classifier_photo = create_classifier(**classifier_config) classifier_photo.load_state_dict( torch.load(fetch('https://huggingface.co./Jack000/glid-3-xl-stable/resolve/main/classifier_photo/model060000.pt'), map_location="cpu") ) classifier_photo.to(device) classifier_photo.convert_to_fp16() classifier_photo.eval() classifier_art = create_classifier(**classifier_config) classifier_art.load_state_dict( torch.load(fetch('https://huggingface.co./Jack000/glid-3-xl-stable/resolve/main/classifier_art/model110000.pt'), map_location="cpu") ) classifier_art.to(device) classifier_art.convert_to_fp16() classifier_art.eval() def infer(prompt, style, scale, classifier_scale, seed): torch.manual_seed(seed) # clip context text = clip_tokenizer([prompt], truncation=True, max_length=77, return_length=True, return_overflowing_tokens=False, padding="max_length", return_tensors="pt") text_blank = clip_tokenizer([''], truncation=True, max_length=77, return_length=True, return_overflowing_tokens=False, padding="max_length", return_tensors="pt") text_tokens = text["input_ids"].to(device) text_blank_tokens = text_blank["input_ids"].to(device) text_emb = clip_transformer(input_ids=text_tokens).last_hidden_state text_emb_blank = clip_transformer(input_ids=text_blank_tokens).last_hidden_state kwargs = { "context": torch.cat([text_emb, text_emb_blank], dim=0).half(), "clip_embed": None, "image_embed": None, } def model_fn(x_t, ts, **kwargs): half = x_t[: len(x_t) // 2] combined = torch.cat([half, half], dim=0) model_out = model(combined, ts, **kwargs) eps, rest = model_out[:, :3], model_out[:, 3:] cond_eps, uncond_eps = torch.split(eps, len(eps) // 2, dim=0) half_eps = uncond_eps + scale * (cond_eps - uncond_eps) eps = torch.cat([half_eps, half_eps], dim=0) return torch.cat([eps, rest], dim=1) def cond_fn(x, t, context=None, clip_embed=None, image_embed=None): with torch.enable_grad(): x_in = x[:x.shape[0]//2].detach().requires_grad_(True) if style == 'photo': logits = classifier_photo(x_in, t) elif style == 'digital art': logits = classifier_art(x_in, t) else: return 0 log_probs = F.log_softmax(logits, dim=-1) selected = log_probs[range(len(logits)), torch.ones(x_in.shape[0], dtype=torch.long)] return torch.autograd.grad(selected.sum(), x_in)[0] * classifier_scale samples = diffusion.ddim_sample_loop_progressive( model_fn, (2, 4, 64, 64), clip_denoised=False, model_kwargs=kwargs, cond_fn=cond_fn, device=device, progress=True, init_image=None, skip_timesteps=0, ) for j, sample in enumerate(samples): pass emb = sample['pred_xstart'][0] emb /= 0.18215 im = emb.unsqueeze(0) im = ldm.decode(im) im = TF.to_pil_image(im.squeeze(0).add(1).div(2).clamp(0, 1)) return [im] css = """ .gradio-container { font-family: 'IBM Plex Sans', sans-serif; } .gr-button { color: white; border-color: black; background: black; } input[type='range'] { accent-color: black; } .dark input[type='range'] { accent-color: #dfdfdf; } .container { max-width: 730px; margin: auto; padding-top: 1.5rem; } #gallery { min-height: 22rem; margin-bottom: 15px; margin-left: auto; margin-right: auto; border-bottom-right-radius: .5rem !important; border-bottom-left-radius: .5rem !important; } #gallery>div>.h-full { min-height: 20rem; } .details:hover { text-decoration: underline; } .gr-button { white-space: nowrap; } .gr-button:focus { border-color: rgb(147 197 253 / var(--tw-border-opacity)); outline: none; box-shadow: var(--tw-ring-offset-shadow), var(--tw-ring-shadow), var(--tw-shadow, 0 0 #0000); --tw-border-opacity: 1; --tw-ring-offset-shadow: var(--tw-ring-inset) 0 0 0 var(--tw-ring-offset-width) var(--tw-ring-offset-color); --tw-ring-shadow: var(--tw-ring-inset) 0 0 0 calc(3px var(--tw-ring-offset-width)) var(--tw-ring-color); --tw-ring-color: rgb(191 219 254 / var(--tw-ring-opacity)); --tw-ring-opacity: .5; } #advanced-btn { font-size: .7rem !important; line-height: 19px; margin-top: 12px; margin-bottom: 12px; padding: 2px 8px; border-radius: 14px !important; } #advanced-options, #style-options { margin-bottom: 20px; } .footer { margin-bottom: 45px; margin-top: 35px; text-align: center; border-bottom: 1px solid #e5e5e5; } .footer>p { font-size: .8rem; display: inline-block; padding: 0 10px; transform: translateY(10px); background: white; } .dark .footer { border-color: #303030; } .dark .footer>p { background: #0b0f19; } .acknowledgments h4{ margin: 1.25em 0 .25em 0; font-weight: bold; font-size: 115%; } """ block = gr.Blocks(css=css) examples = [ [ 'A high tech solarpunk utopia in the Amazon rainforest', 4, 45, 7.5, 1024, ], [ 'A pikachu fine dining with a view to the Eiffel Tower', 4, 45, 7, 1024, ], [ 'A mecha robot in a favela in expressionist style', 4, 45, 7, 1024, ], [ 'an insect robot preparing a delicious meal', 4, 45, 7, 1024, ], [ "A small cabin on top of a snowy mountain in the style of Disney, artstation", 4, 45, 7, 1024, ], ] with block: gr.HTML( """

Classifier Guided Stable Diffusion

a custom version of stable diffusion with classifier guidance

""" ) with gr.Group(): with gr.Box(): with gr.Row().style(mobile_collapse=False, equal_height=True): text = gr.Textbox( label="Enter your prompt", show_label=False, max_lines=1, placeholder="Enter your prompt", ).style( border=(True, False, True, True), rounded=(True, False, False, True), container=False, ) btn = gr.Button("Generate image").style( margin=False, rounded=(False, True, True, False), ) gallery = gr.Gallery( label="Generated images", show_label=False, elem_id="gallery" ).style(grid=[2], height="auto") #advanced_button = gr.Button("Advanced options", elem_id="advanced-btn") with gr.Row(elem_id="style-options"): style = gr.Radio(["none","photo","digital art","anime"], label="Image style") with gr.Row(elem_id="advanced-options"): #samples = gr.Slider(label="Images", minimum=1, maximum=4, value=4, step=1) #steps = gr.Slider(label="Steps", minimum=1, maximum=50, value=45, step=1) scale = gr.Slider( label="CFG Scale", minimum=0, maximum=50, value=7.5, step=0.1 ) classifier_scale = gr.Slider( label="Classifier Scale", minimum=0, maximum=1000, value=100, step=1 ) seed = gr.Slider( label="Seed", minimum=0, maximum=2147483647, step=1, randomize=True, ) ex = gr.Examples(examples=examples, fn=infer, inputs=[text, style, scale, classifier_scale, seed], outputs=gallery, cache_examples=True) ex.dataset.headers = [""] text.submit(infer, inputs=[text, style, scale, classifier_scale, seed], outputs=gallery) btn.click(infer, inputs=[text, style, scale, classifier_scale, seed], outputs=gallery) gr.HTML( """

LICENSE

The model is licensed with a CreativeML Open RAIL-M license. The authors claim no rights on the outputs you generate, you are free to use them and are accountable for their use which must not go against the provisions set in this license. The license forbids you from sharing any content that violates any laws, produce any harm to a person, disseminate any personal information that would be meant for harm, spread misinformation and target vulnerable groups. For the full list of restrictions please read the license

Biases and content acknowledgment

Despite how impressive being able to turn text into image is, beware to the fact that this model may output content that reinforces or exacerbates societal biases, as well as realistic faces, pornography and violence. The model was trained on the LAION-5B dataset, which scraped non-curated image-text-pairs from the internet (the exception being the removal of illegal content) and is meant for research purposes. You can read more in the model card

""" ) block.queue(max_size=25).launch()