File size: 16,600 Bytes
0153d5f
 
 
 
 
4a3ecd0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0153d5f
 
4a3ecd0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
66b8a61
4a3ecd0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0153d5f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4a3ecd0
0153d5f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4a3ecd0
0153d5f
 
 
4a3ecd0
0153d5f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4a3ecd0
0153d5f
4a3ecd0
 
0153d5f
4a3ecd0
 
0153d5f
4a3ecd0
 
 
 
0153d5f
 
 
 
 
 
 
 
 
4a3ecd0
0153d5f
 
 
4a3ecd0
 
 
0153d5f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
import gradio as gr

import torch
from torch import autocast

import gc
import io
import math
import sys

from PIL import Image, ImageOps
import requests
from torch import nn
from torch.nn import functional as F
from torchvision import transforms
from torchvision.transforms import functional as TF
from tqdm.notebook import tqdm

import numpy as np

from guided_diffusion.script_util import create_model_and_diffusion, model_and_diffusion_defaults, classifier_defaults, create_classifier

from omegaconf import OmegaConf
from ldm.util import instantiate_from_config

from einops import rearrange
from math import log2, sqrt

import argparse
import pickle

import os

from transformers import CLIPTokenizer, CLIPTextModel

def fetch(url_or_path):
    if str(url_or_path).startswith('http://') or str(url_or_path).startswith('https://'):
        r = requests.get(url_or_path)
        r.raise_for_status()
        fd = io.BytesIO()
        fd.write(r.content)
        fd.seek(0)
        return fd
    return open(url_or_path, 'rb')

device = "cuda"

#model_state_dict = torch.load('diffusion.pt', map_location='cpu')
model_state_dict = torch.load(fetch('https://huggingface.co./Jack000/glid-3-xl-stable/resolve/main/default/diffusion-1.4.pt'), map_location='cpu')

model_params = {
    'attention_resolutions': '32,16,8',
    'class_cond': False,
    'diffusion_steps': 1000,
    'rescale_timesteps': True,
    'timestep_respacing': 'ddim100',
    'image_size': 32,
    'learn_sigma': False,
    'noise_schedule': 'linear',
    'num_channels': 320,
    'num_heads': 8,
    'num_res_blocks': 2,
    'resblock_updown': False,
    'use_fp16': True,
    'use_scale_shift_norm': False,
    'clip_embed_dim': None,
    'image_condition': False,
    'super_res_condition': False,
}

model_config = model_and_diffusion_defaults()
model_config.update(model_params)

# Load models
model, diffusion = create_model_and_diffusion(**model_config)
model.load_state_dict(model_state_dict, strict=True)
model.requires_grad_(False).eval().to(device)

if model_config['use_fp16']:
    model.convert_to_fp16()
else:
    model.convert_to_fp32()

def set_requires_grad(model, value):
    for param in model.parameters():
        param.requires_grad = value

# vae
kl_config = OmegaConf.load('kl.yaml')
kl_sd = torch.load(fetch('https://huggingface.co./Jack000/glid-3-xl-stable/resolve/main/default/kl-1.4.pt'), map_location="cpu")

ldm = instantiate_from_config(kl_config.model)
ldm.load_state_dict(kl_sd, strict=True)

ldm.to(device)
ldm.eval()
ldm.requires_grad_(False)
set_requires_grad(ldm, False)

# clip
clip_version = 'openai/clip-vit-large-patch14'
clip_tokenizer = CLIPTokenizer.from_pretrained(clip_version)
clip_transformer = CLIPTextModel.from_pretrained(clip_version)
clip_transformer.eval().requires_grad_(False).to(device)

# classifier
# load classifier
classifier_config = classifier_defaults()
classifier_config['classifier_width'] = 128
classifier_config['classifier_depth'] = 4
classifier_config['classifier_attention_resolutions'] = '64,32,16,8'

classifier_photo = create_classifier(**classifier_config)
classifier_photo.load_state_dict(
    torch.load(fetch('https://huggingface.co./Jack000/glid-3-xl-stable/resolve/main/classifier_photo/model060000.pt'), map_location="cpu")
)
classifier_photo.to(device)
classifier_photo.convert_to_fp16()
classifier_photo.eval()

classifier_art = create_classifier(**classifier_config)
classifier_art.load_state_dict(
    torch.load(fetch('https://huggingface.co./Jack000/glid-3-xl-stable/resolve/main/classifier_art/model110000.pt'), map_location="cpu")
)
classifier_art.to(device)
classifier_art.convert_to_fp16()
classifier_art.eval()

def infer(prompt, style, scale, classifier_scale, seed):
    torch.manual_seed(seed)

    # clip context
    text = clip_tokenizer([prompt], truncation=True, max_length=77, return_length=True, return_overflowing_tokens=False, padding="max_length", return_tensors="pt")
    text_blank = clip_tokenizer([''], truncation=True, max_length=77, return_length=True, return_overflowing_tokens=False, padding="max_length", return_tensors="pt")
    text_tokens = text["input_ids"].to(device)
    text_blank_tokens = text_blank["input_ids"].to(device)

    text_emb = clip_transformer(input_ids=text_tokens).last_hidden_state
    text_emb_blank = clip_transformer(input_ids=text_blank_tokens).last_hidden_state

    kwargs = {
        "context": torch.cat([text_emb, text_emb_blank], dim=0).half(),
        "clip_embed": None,
        "image_embed": None,
    }

    def model_fn(x_t, ts, **kwargs):
        half = x_t[: len(x_t) // 2]
        combined = torch.cat([half, half], dim=0)
        model_out = model(combined, ts, **kwargs)
        eps, rest = model_out[:, :3], model_out[:, 3:]
        cond_eps, uncond_eps = torch.split(eps, len(eps) // 2, dim=0)
        half_eps = uncond_eps + scale * (cond_eps - uncond_eps)
        eps = torch.cat([half_eps, half_eps], dim=0)
        return torch.cat([eps, rest], dim=1)

    def cond_fn(x, t, context=None, clip_embed=None, image_embed=None):
        with torch.enable_grad():
            x_in = x[:x.shape[0]//2].detach().requires_grad_(True)
            if style == 'photo':
                logits = classifier_photo(x_in, t)
            elif style == 'digital art':
                logits = classifier_art(x_in, t)
            else:
                return 0

            log_probs = F.log_softmax(logits, dim=-1)
            selected = log_probs[range(len(logits)), torch.ones(x_in.shape[0], dtype=torch.long)]
            return torch.autograd.grad(selected.sum(), x_in)[0] * classifier_scale

    samples = diffusion.ddim_sample_loop_progressive(
        model_fn,
        (2, 4, 64, 64),
        clip_denoised=False,
        model_kwargs=kwargs,
        cond_fn=cond_fn,
        device=device,
        progress=True,
        init_image=None,
        skip_timesteps=0,
    )

    for j, sample in enumerate(samples):
        pass

    emb = sample['pred_xstart'][0]
    emb /= 0.18215
    im = emb.unsqueeze(0)
    im = ldm.decode(im)

    im = TF.to_pil_image(im.squeeze(0).add(1).div(2).clamp(0, 1))

    return [im]
    
css = """
        .gradio-container {
            font-family: 'IBM Plex Sans', sans-serif;
        }
        .gr-button {
            color: white;
            border-color: black;
            background: black;
        }
        input[type='range'] {
            accent-color: black;
        }
        .dark input[type='range'] {
            accent-color: #dfdfdf;
        }
        .container {
            max-width: 730px;
            margin: auto;
            padding-top: 1.5rem;
        }
        #gallery {
            min-height: 22rem;
            margin-bottom: 15px;
            margin-left: auto;
            margin-right: auto;
            border-bottom-right-radius: .5rem !important;
            border-bottom-left-radius: .5rem !important;
        }
        #gallery>div>.h-full {
            min-height: 20rem;
        }
        .details:hover {
            text-decoration: underline;
        }
        .gr-button {
            white-space: nowrap;
        }
        .gr-button:focus {
            border-color: rgb(147 197 253 / var(--tw-border-opacity));
            outline: none;
            box-shadow: var(--tw-ring-offset-shadow), var(--tw-ring-shadow), var(--tw-shadow, 0 0 #0000);
            --tw-border-opacity: 1;
            --tw-ring-offset-shadow: var(--tw-ring-inset) 0 0 0 var(--tw-ring-offset-width) var(--tw-ring-offset-color);
            --tw-ring-shadow: var(--tw-ring-inset) 0 0 0 calc(3px var(--tw-ring-offset-width)) var(--tw-ring-color);
            --tw-ring-color: rgb(191 219 254 / var(--tw-ring-opacity));
            --tw-ring-opacity: .5;
        }
        #advanced-btn {
            font-size: .7rem !important;
            line-height: 19px;
            margin-top: 12px;
            margin-bottom: 12px;
            padding: 2px 8px;
            border-radius: 14px !important;
        }
        #advanced-options, #style-options {
            margin-bottom: 20px;
        }
        .footer {
            margin-bottom: 45px;
            margin-top: 35px;
            text-align: center;
            border-bottom: 1px solid #e5e5e5;
        }
        .footer>p {
            font-size: .8rem;
            display: inline-block;
            padding: 0 10px;
            transform: translateY(10px);
            background: white;
        }
        .dark .footer {
            border-color: #303030;
        }
        .dark .footer>p {
            background: #0b0f19;
        }
        .acknowledgments h4{
            margin: 1.25em 0 .25em 0;
            font-weight: bold;
            font-size: 115%;
        }
"""

block = gr.Blocks(css=css)

examples = [
    [
        'A high tech solarpunk utopia in the Amazon rainforest',
        4,
        45,
        7.5,
        1024,
    ],
    [
        'A pikachu fine dining with a view to the Eiffel Tower',
        4,
        45,
        7,
        1024,
    ],
    [
        'A mecha robot in a favela in expressionist style',
        4,
        45,
        7,
        1024,
    ],
    [
        'an insect robot preparing a delicious meal',
        4,
        45,
        7,
        1024,
    ],
    [
        "A small cabin on top of a snowy mountain in the style of Disney, artstation",
        4,
        45,
        7,
        1024,
    ],
]

with block:
    gr.HTML(
        """
            <div style="text-align: center; max-width: 650px; margin: 0 auto;">
              <div
                style="
                  display: inline-flex;
                  align-items: center;
                  gap: 0.8rem;
                  font-size: 1.75rem;
                "
              >
                <svg
                  width="0.65em"
                  height="0.65em"
                  viewBox="0 0 115 115"
                  fill="none"
                  xmlns="http://www.w3.org/2000/svg"
                >
                  <rect width="23" height="23" fill="white"></rect>
                  <rect y="69" width="23" height="23" fill="white"></rect>
                  <rect x="23" width="23" height="23" fill="#AEAEAE"></rect>
                  <rect x="23" y="69" width="23" height="23" fill="#AEAEAE"></rect>
                  <rect x="46" width="23" height="23" fill="white"></rect>
                  <rect x="46" y="69" width="23" height="23" fill="white"></rect>
                  <rect x="69" width="23" height="23" fill="black"></rect>
                  <rect x="69" y="69" width="23" height="23" fill="black"></rect>
                  <rect x="92" width="23" height="23" fill="#D9D9D9"></rect>
                  <rect x="92" y="69" width="23" height="23" fill="#AEAEAE"></rect>
                  <rect x="115" y="46" width="23" height="23" fill="white"></rect>
                  <rect x="115" y="115" width="23" height="23" fill="white"></rect>
                  <rect x="115" y="69" width="23" height="23" fill="#D9D9D9"></rect>
                  <rect x="92" y="46" width="23" height="23" fill="#AEAEAE"></rect>
                  <rect x="92" y="115" width="23" height="23" fill="#AEAEAE"></rect>
                  <rect x="92" y="69" width="23" height="23" fill="white"></rect>
                  <rect x="69" y="46" width="23" height="23" fill="white"></rect>
                  <rect x="69" y="115" width="23" height="23" fill="white"></rect>
                  <rect x="69" y="69" width="23" height="23" fill="#D9D9D9"></rect>
                  <rect x="46" y="46" width="23" height="23" fill="black"></rect>
                  <rect x="46" y="115" width="23" height="23" fill="black"></rect>
                  <rect x="46" y="69" width="23" height="23" fill="black"></rect>
                  <rect x="23" y="46" width="23" height="23" fill="#D9D9D9"></rect>
                  <rect x="23" y="115" width="23" height="23" fill="#AEAEAE"></rect>
                  <rect x="23" y="69" width="23" height="23" fill="black"></rect>
                </svg>
                <h1 style="font-weight: 900; margin-bottom: 7px;">
                  Classifier Guided Stable Diffusion
                </h1>
              </div>
              <p style="margin-bottom: 10px; font-size: 94%">
                a custom version of stable diffusion with classifier guidance
              </p>
            </div>
        """
    )
    with gr.Group():
        with gr.Box():
            with gr.Row().style(mobile_collapse=False, equal_height=True):
                text = gr.Textbox(
                    label="Enter your prompt",
                    show_label=False,
                    max_lines=1,
                    placeholder="Enter your prompt",
                ).style(
                    border=(True, False, True, True),
                    rounded=(True, False, False, True),
                    container=False,
                )
                btn = gr.Button("Generate image").style(
                    margin=False,
                    rounded=(False, True, True, False),
                )

        gallery = gr.Gallery(
            label="Generated images", show_label=False, elem_id="gallery"
        ).style(grid=[2], height="auto")

        #advanced_button = gr.Button("Advanced options", elem_id="advanced-btn")

        with gr.Row(elem_id="style-options"):
            style = gr.Radio(["none","photo","digital art","anime"], label="Image style")
        with gr.Row(elem_id="advanced-options"):
            #samples = gr.Slider(label="Images", minimum=1, maximum=4, value=4, step=1)
            #steps = gr.Slider(label="Steps", minimum=1, maximum=50, value=45, step=1)
            scale = gr.Slider(
                label="CFG Scale", minimum=0, maximum=50, value=7.5, step=0.1
            )
            classifier_scale = gr.Slider(
                label="Classifier Scale", minimum=0, maximum=1000, value=100, step=1
            )
            seed = gr.Slider(
                label="Seed",
                minimum=0,
                maximum=2147483647,
                step=1,
                randomize=True,
            )

        ex = gr.Examples(examples=examples, fn=infer, inputs=[text, style, scale, classifier_scale, seed], outputs=gallery, cache_examples=True)
        ex.dataset.headers = [""]

        
        text.submit(infer, inputs=[text, style, scale, classifier_scale, seed], outputs=gallery)
        btn.click(infer, inputs=[text, style, scale, classifier_scale, seed], outputs=gallery)

        gr.HTML(
            """
                <div class="footer">
                    <p>Model by <a href="https://huggingface.co./CompVis" style="text-decoration: underline;" target="_blank">CompVis</a> and <a href="https://huggingface.co./stabilityai" style="text-decoration: underline;" target="_blank">Stability AI</a> - Gradio Demo by 🤗 Hugging Face
                    </p>
                </div>
                <div class="acknowledgments">
                    <p><h4>LICENSE</h4>
The model is licensed with a <a href="https://huggingface.co./spaces/CompVis/stable-diffusion-license" style="text-decoration: underline;" target="_blank">CreativeML Open RAIL-M</a> license. The authors claim no rights on the outputs you generate, you are free to use them and are accountable for their use which must not go against the provisions set in this license. The license forbids you from sharing any content that violates any laws, produce any harm to a person, disseminate any personal information that would be meant for harm, spread misinformation and target vulnerable groups. For the full list of restrictions please <a href="https://huggingface.co./spaces/CompVis/stable-diffusion-license" target="_blank" style="text-decoration: underline;" target="_blank">read the license</a></p>
                    <p><h4>Biases and content acknowledgment</h4>
Despite how impressive being able to turn text into image is, beware to the fact that this model may output content that reinforces or exacerbates societal biases, as well as realistic faces, pornography and violence. The model was trained on the <a href="https://laion.ai/blog/laion-5b/" style="text-decoration: underline;" target="_blank">LAION-5B dataset</a>, which scraped non-curated image-text-pairs from the internet (the exception being the removal of illegal content) and is meant for research purposes. You can read more in the <a href="https://huggingface.co./CompVis/stable-diffusion-v1-4" style="text-decoration: underline;" target="_blank">model card</a></p>
               </div>
           """
        )

block.queue(max_size=25).launch()