Spaces:
Running
on
T4
Running
on
T4
Upload 62 files
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- mono/configs/HourglassDecoder/convlarge.0.3_150.py +25 -0
- mono/configs/HourglassDecoder/test_kitti_convlarge.0.3_150.py +25 -0
- mono/configs/HourglassDecoder/test_nyu_convlarge.0.3_150.py +25 -0
- mono/configs/HourglassDecoder/vit.raft5.large.py +33 -0
- mono/configs/HourglassDecoder/vit.raft5.small.py +33 -0
- mono/configs/__init__.py +1 -0
- mono/configs/_base_/_data_base_.py +13 -0
- mono/configs/_base_/datasets/_data_base_.py +12 -0
- mono/configs/_base_/default_runtime.py +4 -0
- mono/configs/_base_/models/backbones/convnext_large.py +16 -0
- mono/configs/_base_/models/backbones/dino_vit_large.py +7 -0
- mono/configs/_base_/models/backbones/dino_vit_large_reg.py +7 -0
- mono/configs/_base_/models/backbones/dino_vit_small_reg.py +7 -0
- mono/configs/_base_/models/encoder_decoder/convnext_large.hourglassdecoder.py +10 -0
- mono/configs/_base_/models/encoder_decoder/dino_vit_large.dpt_raft.py +20 -0
- mono/configs/_base_/models/encoder_decoder/dino_vit_large_reg.dpt_raft.py +19 -0
- mono/configs/_base_/models/encoder_decoder/dino_vit_small_reg.dpt_raft.py +19 -0
- mono/model/__init__.py +5 -0
- mono/model/__pycache__/__init__.cpython-39.pyc +0 -0
- mono/model/__pycache__/monodepth_model.cpython-39.pyc +0 -0
- mono/model/backbones/ConvNeXt.py +271 -0
- mono/model/backbones/ViT_DINO.py +1504 -0
- mono/model/backbones/ViT_DINO_reg.py +1293 -0
- mono/model/backbones/__init__.py +11 -0
- mono/model/backbones/__pycache__/ConvNeXt.cpython-39.pyc +0 -0
- mono/model/backbones/__pycache__/__init__.cpython-39.pyc +0 -0
- mono/model/decode_heads/HourGlassDecoder.py +274 -0
- mono/model/decode_heads/RAFTDepthNormalDPTDecoder5.py +1033 -0
- mono/model/decode_heads/__init__.py +4 -0
- mono/model/decode_heads/__pycache__/HourGlassDecoder.cpython-39.pyc +0 -0
- mono/model/decode_heads/__pycache__/__init__.cpython-39.pyc +0 -0
- mono/model/model_pipelines/__base_model__.py +20 -0
- mono/model/model_pipelines/__init__.py +6 -0
- mono/model/model_pipelines/__pycache__/__base_model__.cpython-39.pyc +0 -0
- mono/model/model_pipelines/__pycache__/__init__.cpython-39.pyc +0 -0
- mono/model/model_pipelines/__pycache__/dense_pipeline.cpython-39.pyc +0 -0
- mono/model/model_pipelines/dense_pipeline.py +16 -0
- mono/model/monodepth_model.py +37 -0
- mono/tools/test_scale_cano.py +158 -0
- mono/utils/__init__.py +1 -0
- mono/utils/__pycache__/__init__.cpython-39.pyc +0 -0
- mono/utils/__pycache__/avg_meter.cpython-39.pyc +0 -0
- mono/utils/__pycache__/comm.cpython-39.pyc +0 -0
- mono/utils/__pycache__/custom_data.cpython-39.pyc +0 -0
- mono/utils/__pycache__/do_test.cpython-39.pyc +0 -0
- mono/utils/__pycache__/logger.cpython-39.pyc +0 -0
- mono/utils/__pycache__/mldb.cpython-39.pyc +0 -0
- mono/utils/__pycache__/running.cpython-39.pyc +0 -0
- mono/utils/__pycache__/transform.cpython-39.pyc +0 -0
- mono/utils/__pycache__/unproj_pcd.cpython-39.pyc +0 -0
mono/configs/HourglassDecoder/convlarge.0.3_150.py
ADDED
@@ -0,0 +1,25 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
_base_=[
|
2 |
+
'../_base_/models/encoder_decoder/convnext_large.hourglassdecoder.py',
|
3 |
+
'../_base_/datasets/_data_base_.py',
|
4 |
+
'../_base_/default_runtime.py',
|
5 |
+
]
|
6 |
+
|
7 |
+
model = dict(
|
8 |
+
backbone=dict(
|
9 |
+
pretrained=False,
|
10 |
+
)
|
11 |
+
)
|
12 |
+
|
13 |
+
# configs of the canonical space
|
14 |
+
data_basic=dict(
|
15 |
+
canonical_space = dict(
|
16 |
+
img_size=(512, 960),
|
17 |
+
focal_length=1000.0,
|
18 |
+
),
|
19 |
+
depth_range=(0, 1),
|
20 |
+
depth_normalize=(0.3, 150),
|
21 |
+
crop_size = (544, 1216),
|
22 |
+
)
|
23 |
+
|
24 |
+
batchsize_per_gpu = 2
|
25 |
+
thread_per_gpu = 4
|
mono/configs/HourglassDecoder/test_kitti_convlarge.0.3_150.py
ADDED
@@ -0,0 +1,25 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
_base_=[
|
2 |
+
'../_base_/models/encoder_decoder/convnext_large.hourglassdecoder.py',
|
3 |
+
'../_base_/datasets/_data_base_.py',
|
4 |
+
'../_base_/default_runtime.py',
|
5 |
+
]
|
6 |
+
|
7 |
+
model = dict(
|
8 |
+
backbone=dict(
|
9 |
+
pretrained=False,
|
10 |
+
)
|
11 |
+
)
|
12 |
+
|
13 |
+
# configs of the canonical space
|
14 |
+
data_basic=dict(
|
15 |
+
canonical_space = dict(
|
16 |
+
img_size=(512, 960),
|
17 |
+
focal_length=1000.0,
|
18 |
+
),
|
19 |
+
depth_range=(0, 1),
|
20 |
+
depth_normalize=(0.3, 150),
|
21 |
+
crop_size = (512, 1088),
|
22 |
+
)
|
23 |
+
|
24 |
+
batchsize_per_gpu = 2
|
25 |
+
thread_per_gpu = 4
|
mono/configs/HourglassDecoder/test_nyu_convlarge.0.3_150.py
ADDED
@@ -0,0 +1,25 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
_base_=[
|
2 |
+
'../_base_/models/encoder_decoder/convnext_large.hourglassdecoder.py',
|
3 |
+
'../_base_/datasets/_data_base_.py',
|
4 |
+
'../_base_/default_runtime.py',
|
5 |
+
]
|
6 |
+
|
7 |
+
model = dict(
|
8 |
+
backbone=dict(
|
9 |
+
pretrained=False,
|
10 |
+
)
|
11 |
+
)
|
12 |
+
|
13 |
+
# configs of the canonical space
|
14 |
+
data_basic=dict(
|
15 |
+
canonical_space = dict(
|
16 |
+
img_size=(512, 960),
|
17 |
+
focal_length=1000.0,
|
18 |
+
),
|
19 |
+
depth_range=(0, 1),
|
20 |
+
depth_normalize=(0.3, 150),
|
21 |
+
crop_size = (480, 1216),
|
22 |
+
)
|
23 |
+
|
24 |
+
batchsize_per_gpu = 2
|
25 |
+
thread_per_gpu = 4
|
mono/configs/HourglassDecoder/vit.raft5.large.py
ADDED
@@ -0,0 +1,33 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
_base_=[
|
2 |
+
'../_base_/models/encoder_decoder/dino_vit_large_reg.dpt_raft.py',
|
3 |
+
'../_base_/datasets/_data_base_.py',
|
4 |
+
'../_base_/default_runtime.py',
|
5 |
+
]
|
6 |
+
|
7 |
+
import numpy as np
|
8 |
+
model=dict(
|
9 |
+
decode_head=dict(
|
10 |
+
type='RAFTDepthNormalDPT5',
|
11 |
+
iters=8,
|
12 |
+
n_downsample=2,
|
13 |
+
detach=False,
|
14 |
+
)
|
15 |
+
)
|
16 |
+
|
17 |
+
|
18 |
+
max_value = 200
|
19 |
+
# configs of the canonical space
|
20 |
+
data_basic=dict(
|
21 |
+
canonical_space = dict(
|
22 |
+
# img_size=(540, 960),
|
23 |
+
focal_length=1000.0,
|
24 |
+
),
|
25 |
+
depth_range=(0, 1),
|
26 |
+
depth_normalize=(0.1, max_value),
|
27 |
+
crop_size = (616, 1064), # %28 = 0
|
28 |
+
clip_depth_range=(0.1, 200),
|
29 |
+
vit_size=(616,1064)
|
30 |
+
)
|
31 |
+
|
32 |
+
batchsize_per_gpu = 1
|
33 |
+
thread_per_gpu = 1
|
mono/configs/HourglassDecoder/vit.raft5.small.py
ADDED
@@ -0,0 +1,33 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
_base_=[
|
2 |
+
'../_base_/models/encoder_decoder/dino_vit_small_reg.dpt_raft.py',
|
3 |
+
'../_base_/datasets/_data_base_.py',
|
4 |
+
'../_base_/default_runtime.py',
|
5 |
+
]
|
6 |
+
|
7 |
+
import numpy as np
|
8 |
+
model=dict(
|
9 |
+
decode_head=dict(
|
10 |
+
type='RAFTDepthNormalDPT5',
|
11 |
+
iters=4,
|
12 |
+
n_downsample=2,
|
13 |
+
detach=False,
|
14 |
+
)
|
15 |
+
)
|
16 |
+
|
17 |
+
|
18 |
+
max_value = 200
|
19 |
+
# configs of the canonical space
|
20 |
+
data_basic=dict(
|
21 |
+
canonical_space = dict(
|
22 |
+
# img_size=(540, 960),
|
23 |
+
focal_length=1000.0,
|
24 |
+
),
|
25 |
+
depth_range=(0, 1),
|
26 |
+
depth_normalize=(0.1, max_value),
|
27 |
+
crop_size = (616, 1064), # %28 = 0
|
28 |
+
clip_depth_range=(0.1, 200),
|
29 |
+
vit_size=(616,1064)
|
30 |
+
)
|
31 |
+
|
32 |
+
batchsize_per_gpu = 1
|
33 |
+
thread_per_gpu = 1
|
mono/configs/__init__.py
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
|
mono/configs/_base_/_data_base_.py
ADDED
@@ -0,0 +1,13 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# canonical camera setting and basic data setting
|
2 |
+
# we set it same as the E300 camera (crop version)
|
3 |
+
#
|
4 |
+
data_basic=dict(
|
5 |
+
canonical_space = dict(
|
6 |
+
img_size=(540, 960),
|
7 |
+
focal_length=1196.0,
|
8 |
+
),
|
9 |
+
depth_range=(0.9, 150),
|
10 |
+
depth_normalize=(0.006, 1.001),
|
11 |
+
crop_size = (512, 960),
|
12 |
+
clip_depth_range=(0.9, 150),
|
13 |
+
)
|
mono/configs/_base_/datasets/_data_base_.py
ADDED
@@ -0,0 +1,12 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# canonical camera setting and basic data setting
|
2 |
+
#
|
3 |
+
data_basic=dict(
|
4 |
+
canonical_space = dict(
|
5 |
+
img_size=(540, 960),
|
6 |
+
focal_length=1196.0,
|
7 |
+
),
|
8 |
+
depth_range=(0.9, 150),
|
9 |
+
depth_normalize=(0.006, 1.001),
|
10 |
+
crop_size = (512, 960),
|
11 |
+
clip_depth_range=(0.9, 150),
|
12 |
+
)
|
mono/configs/_base_/default_runtime.py
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
load_from = None
|
3 |
+
cudnn_benchmark = True
|
4 |
+
test_metrics = ['abs_rel', 'rmse', 'silog', 'delta1', 'delta2', 'delta3','rmse_log', 'log10', 'sq_rel']
|
mono/configs/_base_/models/backbones/convnext_large.py
ADDED
@@ -0,0 +1,16 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#_base_ = ['./_model_base_.py',]
|
2 |
+
|
3 |
+
#'https://download.openmmlab.com/mmclassification/v0/convnext/downstream/convnext-large_3rdparty_in21k_20220301-e6e0ea0a.pth'
|
4 |
+
model = dict(
|
5 |
+
#type='EncoderDecoderAuxi',
|
6 |
+
backbone=dict(
|
7 |
+
type='convnext_large',
|
8 |
+
pretrained=True,
|
9 |
+
in_22k=True,
|
10 |
+
out_indices=[0, 1, 2, 3],
|
11 |
+
drop_path_rate=0.4,
|
12 |
+
layer_scale_init_value=1.0,
|
13 |
+
checkpoint='data/pretrained_weight_repo/convnext/convnext_large_22k_1k_384.pth',
|
14 |
+
prefix='backbones.',
|
15 |
+
out_channels=[192, 384, 768, 1536]),
|
16 |
+
)
|
mono/configs/_base_/models/backbones/dino_vit_large.py
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
model = dict(
|
2 |
+
backbone=dict(
|
3 |
+
type='vit_large',
|
4 |
+
prefix='backbones.',
|
5 |
+
out_channels=[1024, 1024, 1024, 1024],
|
6 |
+
drop_path_rate = 0.0),
|
7 |
+
)
|
mono/configs/_base_/models/backbones/dino_vit_large_reg.py
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
model = dict(
|
2 |
+
backbone=dict(
|
3 |
+
type='vit_large_reg',
|
4 |
+
prefix='backbones.',
|
5 |
+
out_channels=[1024, 1024, 1024, 1024],
|
6 |
+
drop_path_rate = 0.0),
|
7 |
+
)
|
mono/configs/_base_/models/backbones/dino_vit_small_reg.py
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
model = dict(
|
2 |
+
backbone=dict(
|
3 |
+
type='vit_small_reg',
|
4 |
+
prefix='backbones.',
|
5 |
+
out_channels=[384, 384, 384, 384],
|
6 |
+
drop_path_rate = 0.0),
|
7 |
+
)
|
mono/configs/_base_/models/encoder_decoder/convnext_large.hourglassdecoder.py
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# model settings
|
2 |
+
_base_ = ['../backbones/convnext_large.py',]
|
3 |
+
model = dict(
|
4 |
+
type='DensePredModel',
|
5 |
+
decode_head=dict(
|
6 |
+
type='HourglassDecoder',
|
7 |
+
in_channels=[192, 384, 768, 1536],
|
8 |
+
decoder_channel=[128, 128, 256, 512],
|
9 |
+
prefix='decode_heads.'),
|
10 |
+
)
|
mono/configs/_base_/models/encoder_decoder/dino_vit_large.dpt_raft.py
ADDED
@@ -0,0 +1,20 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# model settings
|
2 |
+
_base_ = ['../backbones/dino_vit_large.py']
|
3 |
+
model = dict(
|
4 |
+
type='DensePredModel',
|
5 |
+
decode_head=dict(
|
6 |
+
type='RAFTDepthDPT',
|
7 |
+
in_channels=[1024, 1024, 1024, 1024],
|
8 |
+
use_cls_token=True,
|
9 |
+
feature_channels = [256, 512, 1024, 1024], # [2/7, 1/7, 1/14, 1/14]
|
10 |
+
decoder_channels = [128, 256, 512, 1024, 1024], # [4/7, 2/7, 1/7, 1/14, 1/14]
|
11 |
+
up_scale = 7,
|
12 |
+
hidden_channels=[128, 128, 128, 128], # [x_4, x_8, x_16, x_32] [192, 384, 768, 1536]
|
13 |
+
n_gru_layers=3,
|
14 |
+
n_downsample=2,
|
15 |
+
iters=12,
|
16 |
+
slow_fast_gru=True,
|
17 |
+
corr_radius=4,
|
18 |
+
corr_levels=4,
|
19 |
+
prefix='decode_heads.'),
|
20 |
+
)
|
mono/configs/_base_/models/encoder_decoder/dino_vit_large_reg.dpt_raft.py
ADDED
@@ -0,0 +1,19 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# model settings
|
2 |
+
_base_ = ['../backbones/dino_vit_large_reg.py']
|
3 |
+
model = dict(
|
4 |
+
type='DensePredModel',
|
5 |
+
decode_head=dict(
|
6 |
+
type='RAFTDepthDPT',
|
7 |
+
in_channels=[1024, 1024, 1024, 1024],
|
8 |
+
use_cls_token=True,
|
9 |
+
feature_channels = [256, 512, 1024, 1024], # [2/7, 1/7, 1/14, 1/14]
|
10 |
+
decoder_channels = [128, 256, 512, 1024, 1024], # [4/7, 2/7, 1/7, 1/14, 1/14]
|
11 |
+
up_scale = 7,
|
12 |
+
hidden_channels=[128, 128, 128, 128], # [x_4, x_8, x_16, x_32] [192, 384, 768, 1536]
|
13 |
+
n_gru_layers=3,
|
14 |
+
n_downsample=2,
|
15 |
+
iters=3,
|
16 |
+
slow_fast_gru=True,
|
17 |
+
num_register_tokens=4,
|
18 |
+
prefix='decode_heads.'),
|
19 |
+
)
|
mono/configs/_base_/models/encoder_decoder/dino_vit_small_reg.dpt_raft.py
ADDED
@@ -0,0 +1,19 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# model settings
|
2 |
+
_base_ = ['../backbones/dino_vit_small_reg.py']
|
3 |
+
model = dict(
|
4 |
+
type='DensePredModel',
|
5 |
+
decode_head=dict(
|
6 |
+
type='RAFTDepthDPT',
|
7 |
+
in_channels=[384, 384, 384, 384],
|
8 |
+
use_cls_token=True,
|
9 |
+
feature_channels = [96, 192, 384, 768], # [2/7, 1/7, 1/14, 1/14]
|
10 |
+
decoder_channels = [48, 96, 192, 384, 384], # [-, 1/4, 1/7, 1/14, 1/14]
|
11 |
+
up_scale = 7,
|
12 |
+
hidden_channels=[48, 48, 48, 48], # [x_4, x_8, x_16, x_32] [1/4, 1/7, 1/14, -]
|
13 |
+
n_gru_layers=3,
|
14 |
+
n_downsample=2,
|
15 |
+
iters=3,
|
16 |
+
slow_fast_gru=True,
|
17 |
+
num_register_tokens=4,
|
18 |
+
prefix='decode_heads.'),
|
19 |
+
)
|
mono/model/__init__.py
ADDED
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from .monodepth_model import DepthModel
|
2 |
+
# from .__base_model__ import BaseDepthModel
|
3 |
+
|
4 |
+
|
5 |
+
__all__ = ['DepthModel', 'BaseDepthModel']
|
mono/model/__pycache__/__init__.cpython-39.pyc
ADDED
Binary file (250 Bytes). View file
|
|
mono/model/__pycache__/monodepth_model.cpython-39.pyc
ADDED
Binary file (1.62 kB). View file
|
|
mono/model/backbones/ConvNeXt.py
ADDED
@@ -0,0 +1,271 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torch.nn as nn
|
3 |
+
import torch.nn.functional as F
|
4 |
+
from timm.models.layers import trunc_normal_, DropPath
|
5 |
+
from timm.models.registry import register_model
|
6 |
+
|
7 |
+
class Block(nn.Module):
|
8 |
+
r""" ConvNeXt Block. There are two equivalent implementations:
|
9 |
+
(1) DwConv -> LayerNorm (channels_first) -> 1x1 Conv -> GELU -> 1x1 Conv; all in (N, C, H, W)
|
10 |
+
(2) DwConv -> Permute to (N, H, W, C); LayerNorm (channels_last) -> Linear -> GELU -> Linear; Permute back
|
11 |
+
We use (2) as we find it slightly faster in PyTorch
|
12 |
+
|
13 |
+
Args:
|
14 |
+
dim (int): Number of input channels.
|
15 |
+
drop_path (float): Stochastic depth rate. Default: 0.0
|
16 |
+
layer_scale_init_value (float): Init value for Layer Scale. Default: 1e-6.
|
17 |
+
"""
|
18 |
+
def __init__(self, dim, drop_path=0., layer_scale_init_value=1e-6):
|
19 |
+
super().__init__()
|
20 |
+
self.dwconv = nn.Conv2d(dim, dim, kernel_size=7, padding=3, groups=dim) # depthwise conv
|
21 |
+
self.norm = LayerNorm(dim, eps=1e-6)
|
22 |
+
self.pwconv1 = nn.Linear(dim, 4 * dim) # pointwise/1x1 convs, implemented with linear layers
|
23 |
+
self.act = nn.GELU()
|
24 |
+
self.pwconv2 = nn.Linear(4 * dim, dim)
|
25 |
+
self.gamma = nn.Parameter(layer_scale_init_value * torch.ones((dim)),
|
26 |
+
requires_grad=True) if layer_scale_init_value > 0 else None
|
27 |
+
self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()
|
28 |
+
|
29 |
+
def forward(self, x):
|
30 |
+
input = x
|
31 |
+
x = self.dwconv(x)
|
32 |
+
x = x.permute(0, 2, 3, 1) # (N, C, H, W) -> (N, H, W, C)
|
33 |
+
x = self.norm(x)
|
34 |
+
x = self.pwconv1(x)
|
35 |
+
x = self.act(x)
|
36 |
+
x = self.pwconv2(x)
|
37 |
+
if self.gamma is not None:
|
38 |
+
x = self.gamma * x
|
39 |
+
x = x.permute(0, 3, 1, 2) # (N, H, W, C) -> (N, C, H, W)
|
40 |
+
|
41 |
+
x = input + self.drop_path(x)
|
42 |
+
return x
|
43 |
+
|
44 |
+
class ConvNeXt(nn.Module):
|
45 |
+
r""" ConvNeXt
|
46 |
+
A PyTorch impl of : `A ConvNet for the 2020s` -
|
47 |
+
https://arxiv.org/pdf/2201.03545.pdf
|
48 |
+
Args:
|
49 |
+
in_chans (int): Number of input image channels. Default: 3
|
50 |
+
num_classes (int): Number of classes for classification head. Default: 1000
|
51 |
+
depths (tuple(int)): Number of blocks at each stage. Default: [3, 3, 9, 3]
|
52 |
+
dims (int): Feature dimension at each stage. Default: [96, 192, 384, 768]
|
53 |
+
drop_path_rate (float): Stochastic depth rate. Default: 0.
|
54 |
+
layer_scale_init_value (float): Init value for Layer Scale. Default: 1e-6.
|
55 |
+
head_init_scale (float): Init scaling value for classifier weights and biases. Default: 1.
|
56 |
+
"""
|
57 |
+
def __init__(self, in_chans=3, num_classes=1000,
|
58 |
+
depths=[3, 3, 9, 3], dims=[96, 192, 384, 768], drop_path_rate=0.,
|
59 |
+
layer_scale_init_value=1e-6, head_init_scale=1.,
|
60 |
+
**kwargs,):
|
61 |
+
super().__init__()
|
62 |
+
|
63 |
+
self.downsample_layers = nn.ModuleList() # stem and 3 intermediate downsampling conv layers
|
64 |
+
stem = nn.Sequential(
|
65 |
+
nn.Conv2d(in_chans, dims[0], kernel_size=4, stride=4),
|
66 |
+
LayerNorm(dims[0], eps=1e-6, data_format="channels_first")
|
67 |
+
)
|
68 |
+
self.downsample_layers.append(stem)
|
69 |
+
for i in range(3):
|
70 |
+
downsample_layer = nn.Sequential(
|
71 |
+
LayerNorm(dims[i], eps=1e-6, data_format="channels_first"),
|
72 |
+
nn.Conv2d(dims[i], dims[i+1], kernel_size=2, stride=2),
|
73 |
+
)
|
74 |
+
self.downsample_layers.append(downsample_layer)
|
75 |
+
|
76 |
+
self.stages = nn.ModuleList() # 4 feature resolution stages, each consisting of multiple residual blocks
|
77 |
+
dp_rates=[x.item() for x in torch.linspace(0, drop_path_rate, sum(depths))]
|
78 |
+
cur = 0
|
79 |
+
for i in range(4):
|
80 |
+
stage = nn.Sequential(
|
81 |
+
*[Block(dim=dims[i], drop_path=dp_rates[cur + j],
|
82 |
+
layer_scale_init_value=layer_scale_init_value) for j in range(depths[i])]
|
83 |
+
)
|
84 |
+
self.stages.append(stage)
|
85 |
+
cur += depths[i]
|
86 |
+
|
87 |
+
#self.norm = nn.LayerNorm(dims[-1], eps=1e-6) # final norm layer
|
88 |
+
#self.head = nn.Linear(dims[-1], num_classes)
|
89 |
+
|
90 |
+
self.apply(self._init_weights)
|
91 |
+
#self.head.weight.data.mul_(head_init_scale)
|
92 |
+
#self.head.bias.data.mul_(head_init_scale)
|
93 |
+
|
94 |
+
def _init_weights(self, m):
|
95 |
+
if isinstance(m, (nn.Conv2d, nn.Linear)):
|
96 |
+
trunc_normal_(m.weight, std=.02)
|
97 |
+
nn.init.constant_(m.bias, 0)
|
98 |
+
|
99 |
+
def forward_features(self, x):
|
100 |
+
features = []
|
101 |
+
for i in range(4):
|
102 |
+
x = self.downsample_layers[i](x)
|
103 |
+
x = self.stages[i](x)
|
104 |
+
features.append(x)
|
105 |
+
return features # global average pooling, (N, C, H, W) -> (N, C)
|
106 |
+
|
107 |
+
def forward(self, x):
|
108 |
+
#x = self.forward_features(x)
|
109 |
+
#x = self.head(x)
|
110 |
+
features = self.forward_features(x)
|
111 |
+
return features
|
112 |
+
|
113 |
+
class LayerNorm(nn.Module):
|
114 |
+
r""" LayerNorm that supports two data formats: channels_last (default) or channels_first.
|
115 |
+
The ordering of the dimensions in the inputs. channels_last corresponds to inputs with
|
116 |
+
shape (batch_size, height, width, channels) while channels_first corresponds to inputs
|
117 |
+
with shape (batch_size, channels, height, width).
|
118 |
+
"""
|
119 |
+
def __init__(self, normalized_shape, eps=1e-6, data_format="channels_last"):
|
120 |
+
super().__init__()
|
121 |
+
self.weight = nn.Parameter(torch.ones(normalized_shape))
|
122 |
+
self.bias = nn.Parameter(torch.zeros(normalized_shape))
|
123 |
+
self.eps = eps
|
124 |
+
self.data_format = data_format
|
125 |
+
if self.data_format not in ["channels_last", "channels_first"]:
|
126 |
+
raise NotImplementedError
|
127 |
+
self.normalized_shape = (normalized_shape, )
|
128 |
+
|
129 |
+
def forward(self, x):
|
130 |
+
if self.data_format == "channels_last":
|
131 |
+
return F.layer_norm(x, self.normalized_shape, self.weight, self.bias, self.eps)
|
132 |
+
elif self.data_format == "channels_first":
|
133 |
+
u = x.mean(1, keepdim=True)
|
134 |
+
s = (x - u).pow(2).mean(1, keepdim=True)
|
135 |
+
x = (x - u) / torch.sqrt(s + self.eps)
|
136 |
+
x = self.weight[:, None, None] * x + self.bias[:, None, None]
|
137 |
+
return x
|
138 |
+
|
139 |
+
|
140 |
+
model_urls = {
|
141 |
+
"convnext_tiny_1k": "https://dl.fbaipublicfiles.com/convnext/convnext_tiny_1k_224_ema.pth",
|
142 |
+
"convnext_small_1k": "https://dl.fbaipublicfiles.com/convnext/convnext_small_1k_224_ema.pth",
|
143 |
+
"convnext_base_1k": "https://dl.fbaipublicfiles.com/convnext/convnext_base_1k_224_ema.pth",
|
144 |
+
"convnext_large_1k": "https://dl.fbaipublicfiles.com/convnext/convnext_large_1k_224_ema.pth",
|
145 |
+
"convnext_tiny_22k": "https://dl.fbaipublicfiles.com/convnext/convnext_tiny_22k_224.pth",
|
146 |
+
"convnext_small_22k": "https://dl.fbaipublicfiles.com/convnext/convnext_small_22k_224.pth",
|
147 |
+
"convnext_base_22k": "https://dl.fbaipublicfiles.com/convnext/convnext_base_22k_224.pth",
|
148 |
+
"convnext_large_22k": "https://dl.fbaipublicfiles.com/convnext/convnext_large_22k_224.pth",
|
149 |
+
"convnext_xlarge_22k": "https://dl.fbaipublicfiles.com/convnext/convnext_xlarge_22k_224.pth",
|
150 |
+
}
|
151 |
+
|
152 |
+
def convnext_tiny(pretrained=True,in_22k=False, **kwargs):
|
153 |
+
model = ConvNeXt(depths=[3, 3, 9, 3], dims=[96, 192, 384, 768], **kwargs)
|
154 |
+
if pretrained:
|
155 |
+
checkpoint = torch.load(kwargs['checkpoint'], map_location="cpu")
|
156 |
+
#url = model_urls['convnext_tiny_22k'] if in_22k else model_urls['convnext_tiny_1k']
|
157 |
+
#checkpoint = torch.hub.load_state_dict_from_url(url=url, map_location="cpu", check_hash=True)
|
158 |
+
model_dict = model.state_dict()
|
159 |
+
pretrained_dict = {}
|
160 |
+
unmatched_pretrained_dict = {}
|
161 |
+
for k, v in checkpoint['model'].items():
|
162 |
+
if k in model_dict:
|
163 |
+
pretrained_dict[k] = v
|
164 |
+
else:
|
165 |
+
unmatched_pretrained_dict[k] = v
|
166 |
+
model_dict.update(pretrained_dict)
|
167 |
+
model.load_state_dict(model_dict)
|
168 |
+
print(
|
169 |
+
'Successfully loaded pretrained %d params, and %d paras are unmatched.'
|
170 |
+
%(len(pretrained_dict.keys()), len(unmatched_pretrained_dict.keys())))
|
171 |
+
print('Unmatched pretrained paras are :', unmatched_pretrained_dict.keys())
|
172 |
+
return model
|
173 |
+
|
174 |
+
def convnext_small(pretrained=True,in_22k=False, **kwargs):
|
175 |
+
model = ConvNeXt(depths=[3, 3, 27, 3], dims=[96, 192, 384, 768], **kwargs)
|
176 |
+
if pretrained:
|
177 |
+
checkpoint = torch.load(kwargs['checkpoint'], map_location="cpu")
|
178 |
+
#url = model_urls['convnext_small_22k'] if in_22k else model_urls['convnext_small_1k']
|
179 |
+
#checkpoint = torch.hub.load_state_dict_from_url(url=url, map_location="cpu")
|
180 |
+
model_dict = model.state_dict()
|
181 |
+
pretrained_dict = {}
|
182 |
+
unmatched_pretrained_dict = {}
|
183 |
+
for k, v in checkpoint['model'].items():
|
184 |
+
if k in model_dict:
|
185 |
+
pretrained_dict[k] = v
|
186 |
+
else:
|
187 |
+
unmatched_pretrained_dict[k] = v
|
188 |
+
model_dict.update(pretrained_dict)
|
189 |
+
model.load_state_dict(model_dict)
|
190 |
+
print(
|
191 |
+
'Successfully loaded pretrained %d params, and %d paras are unmatched.'
|
192 |
+
%(len(pretrained_dict.keys()), len(unmatched_pretrained_dict.keys())))
|
193 |
+
print('Unmatched pretrained paras are :', unmatched_pretrained_dict.keys())
|
194 |
+
return model
|
195 |
+
|
196 |
+
def convnext_base(pretrained=True, in_22k=False, **kwargs):
|
197 |
+
model = ConvNeXt(depths=[3, 3, 27, 3], dims=[128, 256, 512, 1024], **kwargs)
|
198 |
+
if pretrained:
|
199 |
+
checkpoint = torch.load(kwargs['checkpoint'], map_location="cpu")
|
200 |
+
#url = model_urls['convnext_base_22k'] if in_22k else model_urls['convnext_base_1k']
|
201 |
+
#checkpoint = torch.hub.load_state_dict_from_url(url=url, map_location="cpu")
|
202 |
+
model_dict = model.state_dict()
|
203 |
+
pretrained_dict = {}
|
204 |
+
unmatched_pretrained_dict = {}
|
205 |
+
for k, v in checkpoint['model'].items():
|
206 |
+
if k in model_dict:
|
207 |
+
pretrained_dict[k] = v
|
208 |
+
else:
|
209 |
+
unmatched_pretrained_dict[k] = v
|
210 |
+
model_dict.update(pretrained_dict)
|
211 |
+
model.load_state_dict(model_dict)
|
212 |
+
print(
|
213 |
+
'Successfully loaded pretrained %d params, and %d paras are unmatched.'
|
214 |
+
%(len(pretrained_dict.keys()), len(unmatched_pretrained_dict.keys())))
|
215 |
+
print('Unmatched pretrained paras are :', unmatched_pretrained_dict.keys())
|
216 |
+
return model
|
217 |
+
|
218 |
+
def convnext_large(pretrained=True, in_22k=False, **kwargs):
|
219 |
+
model = ConvNeXt(depths=[3, 3, 27, 3], dims=[192, 384, 768, 1536], **kwargs)
|
220 |
+
if pretrained:
|
221 |
+
checkpoint = torch.load(kwargs['checkpoint'], map_location="cpu")
|
222 |
+
#url = model_urls['convnext_large_22k'] if in_22k else model_urls['convnext_large_1k']
|
223 |
+
#checkpoint = torch.hub.load_state_dict_from_url(url=url, map_location="cpu")
|
224 |
+
model_dict = model.state_dict()
|
225 |
+
pretrained_dict = {}
|
226 |
+
unmatched_pretrained_dict = {}
|
227 |
+
for k, v in checkpoint['model'].items():
|
228 |
+
if k in model_dict:
|
229 |
+
pretrained_dict[k] = v
|
230 |
+
else:
|
231 |
+
unmatched_pretrained_dict[k] = v
|
232 |
+
model_dict.update(pretrained_dict)
|
233 |
+
model.load_state_dict(model_dict)
|
234 |
+
print(
|
235 |
+
'Successfully loaded pretrained %d params, and %d paras are unmatched.'
|
236 |
+
%(len(pretrained_dict.keys()), len(unmatched_pretrained_dict.keys())))
|
237 |
+
print('Unmatched pretrained paras are :', unmatched_pretrained_dict.keys())
|
238 |
+
return model
|
239 |
+
|
240 |
+
def convnext_xlarge(pretrained=True, in_22k=False, **kwargs):
|
241 |
+
model = ConvNeXt(depths=[3, 3, 27, 3], dims=[256, 512, 1024, 2048], **kwargs)
|
242 |
+
if pretrained:
|
243 |
+
assert in_22k, "only ImageNet-22K pre-trained ConvNeXt-XL is available; please set in_22k=True"
|
244 |
+
checkpoint = torch.load(kwargs['checkpoint'], map_location="cpu")
|
245 |
+
#url = model_urls['convnext_xlarge_22k']
|
246 |
+
#checkpoint = torch.hub.load_state_dict_from_url(url=url, map_location="cpu")
|
247 |
+
model_dict = model.state_dict()
|
248 |
+
pretrained_dict = {}
|
249 |
+
unmatched_pretrained_dict = {}
|
250 |
+
for k, v in checkpoint['model'].items():
|
251 |
+
if k in model_dict:
|
252 |
+
pretrained_dict[k] = v
|
253 |
+
else:
|
254 |
+
unmatched_pretrained_dict[k] = v
|
255 |
+
model_dict.update(pretrained_dict)
|
256 |
+
model.load_state_dict(model_dict)
|
257 |
+
print(
|
258 |
+
'Successfully loaded pretrained %d params, and %d paras are unmatched.'
|
259 |
+
%(len(pretrained_dict.keys()), len(unmatched_pretrained_dict.keys())))
|
260 |
+
print('Unmatched pretrained paras are :', unmatched_pretrained_dict.keys())
|
261 |
+
return model
|
262 |
+
|
263 |
+
if __name__ == '__main__':
|
264 |
+
import torch
|
265 |
+
model = convnext_base(True, in_22k=False).cuda()
|
266 |
+
|
267 |
+
rgb = torch.rand((2, 3, 256, 256)).cuda()
|
268 |
+
out = model(rgb)
|
269 |
+
print(len(out))
|
270 |
+
for i, ft in enumerate(out):
|
271 |
+
print(i, ft.shape)
|
mono/model/backbones/ViT_DINO.py
ADDED
@@ -0,0 +1,1504 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
2 |
+
# All rights reserved.
|
3 |
+
#
|
4 |
+
# This source code is licensed under the license found in the
|
5 |
+
# LICENSE file in the root directory of this source tree.
|
6 |
+
|
7 |
+
# References:
|
8 |
+
# https://github.com/facebookresearch/dino/blob/main/vision_transformer.py
|
9 |
+
# https://github.com/rwightman/pytorch-image-models/tree/master/timm/models/vision_transformer.py
|
10 |
+
|
11 |
+
from functools import partial
|
12 |
+
import math
|
13 |
+
import logging
|
14 |
+
from typing import Sequence, Tuple, Union, Callable, Optional, Dict, Any, List
|
15 |
+
|
16 |
+
import torch
|
17 |
+
import torch.nn as nn
|
18 |
+
from torch import Tensor
|
19 |
+
import torch.utils.checkpoint
|
20 |
+
from torch.nn.init import trunc_normal_
|
21 |
+
|
22 |
+
#from dinov2.layers import Mlp, PatchEmbed, SwiGLUFFNFused, MemEffAttention, NestedTensorBlock as Block
|
23 |
+
|
24 |
+
logger = logging.getLogger("dinov2")
|
25 |
+
|
26 |
+
class ConvBlock(nn.Module):
|
27 |
+
def __init__(self, channels):
|
28 |
+
super(ConvBlock, self).__init__()
|
29 |
+
|
30 |
+
self.act = nn.ReLU(inplace=True)
|
31 |
+
self.conv1 = nn.Conv2d(
|
32 |
+
channels,
|
33 |
+
channels,
|
34 |
+
kernel_size=3,
|
35 |
+
stride=1,
|
36 |
+
padding=1
|
37 |
+
)
|
38 |
+
self.norm1 = nn.BatchNorm2d(channels)
|
39 |
+
self.conv2 = nn.Conv2d(
|
40 |
+
channels,
|
41 |
+
channels,
|
42 |
+
kernel_size=3,
|
43 |
+
stride=1,
|
44 |
+
padding=1
|
45 |
+
)
|
46 |
+
self.norm2 = nn.BatchNorm2d(channels)
|
47 |
+
|
48 |
+
def forward(self, x):
|
49 |
+
|
50 |
+
out = self.norm1(x)
|
51 |
+
out = self.act(out)
|
52 |
+
out = self.conv1(out)
|
53 |
+
out = self.norm2(out)
|
54 |
+
out = self.act(out)
|
55 |
+
out = self.conv2(out)
|
56 |
+
return x + out
|
57 |
+
|
58 |
+
def make_2tuple(x):
|
59 |
+
if isinstance(x, tuple):
|
60 |
+
assert len(x) == 2
|
61 |
+
return x
|
62 |
+
|
63 |
+
assert isinstance(x, int)
|
64 |
+
return (x, x)
|
65 |
+
|
66 |
+
def drop_path(x, drop_prob: float = 0.0, training: bool = False):
|
67 |
+
if drop_prob == 0.0 or not training:
|
68 |
+
return x
|
69 |
+
keep_prob = 1 - drop_prob
|
70 |
+
shape = (x.shape[0],) + (1,) * (x.ndim - 1) # work with diff dim tensors, not just 2D ConvNets
|
71 |
+
random_tensor = x.new_empty(shape).bernoulli_(keep_prob)
|
72 |
+
if keep_prob > 0.0:
|
73 |
+
random_tensor.div_(keep_prob)
|
74 |
+
output = x * random_tensor
|
75 |
+
return output
|
76 |
+
|
77 |
+
class DropPath(nn.Module):
|
78 |
+
"""Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks)."""
|
79 |
+
|
80 |
+
def __init__(self, drop_prob=None):
|
81 |
+
super(DropPath, self).__init__()
|
82 |
+
self.drop_prob = drop_prob
|
83 |
+
|
84 |
+
def forward(self, x):
|
85 |
+
return drop_path(x, self.drop_prob, self.training)
|
86 |
+
|
87 |
+
class LayerScale(nn.Module):
|
88 |
+
def __init__(
|
89 |
+
self,
|
90 |
+
dim: int,
|
91 |
+
init_values: Union[float, Tensor] = 1e-5,
|
92 |
+
inplace: bool = False,
|
93 |
+
) -> None:
|
94 |
+
super().__init__()
|
95 |
+
self.inplace = inplace
|
96 |
+
self.gamma = nn.Parameter(init_values * torch.ones(dim))
|
97 |
+
|
98 |
+
def forward(self, x: Tensor) -> Tensor:
|
99 |
+
return x.mul_(self.gamma) if self.inplace else x * self.gamma
|
100 |
+
|
101 |
+
|
102 |
+
class PatchEmbed(nn.Module):
|
103 |
+
"""
|
104 |
+
2D image to patch embedding: (B,C,H,W) -> (B,N,D)
|
105 |
+
|
106 |
+
Args:
|
107 |
+
img_size: Image size.
|
108 |
+
patch_size: Patch token size.
|
109 |
+
in_chans: Number of input image channels.
|
110 |
+
embed_dim: Number of linear projection output channels.
|
111 |
+
norm_layer: Normalization layer.
|
112 |
+
"""
|
113 |
+
|
114 |
+
def __init__(
|
115 |
+
self,
|
116 |
+
img_size: Union[int, Tuple[int, int]] = 224,
|
117 |
+
patch_size: Union[int, Tuple[int, int]] = 16,
|
118 |
+
in_chans: int = 3,
|
119 |
+
embed_dim: int = 768,
|
120 |
+
norm_layer: Optional[Callable] = None,
|
121 |
+
flatten_embedding: bool = True,
|
122 |
+
) -> None:
|
123 |
+
super().__init__()
|
124 |
+
|
125 |
+
image_HW = make_2tuple(img_size)
|
126 |
+
patch_HW = make_2tuple(patch_size)
|
127 |
+
patch_grid_size = (
|
128 |
+
image_HW[0] // patch_HW[0],
|
129 |
+
image_HW[1] // patch_HW[1],
|
130 |
+
)
|
131 |
+
|
132 |
+
self.img_size = image_HW
|
133 |
+
self.patch_size = patch_HW
|
134 |
+
self.patches_resolution = patch_grid_size
|
135 |
+
self.num_patches = patch_grid_size[0] * patch_grid_size[1]
|
136 |
+
|
137 |
+
self.in_chans = in_chans
|
138 |
+
self.embed_dim = embed_dim
|
139 |
+
|
140 |
+
self.flatten_embedding = flatten_embedding
|
141 |
+
|
142 |
+
self.proj = nn.Conv2d(in_chans, embed_dim, kernel_size=patch_HW, stride=patch_HW)
|
143 |
+
self.norm = norm_layer(embed_dim) if norm_layer else nn.Identity()
|
144 |
+
|
145 |
+
def forward(self, x: Tensor) -> Tensor:
|
146 |
+
_, _, H, W = x.shape
|
147 |
+
patch_H, patch_W = self.patch_size
|
148 |
+
|
149 |
+
assert H % patch_H == 0, f"Input image height {H} is not a multiple of patch height {patch_H}"
|
150 |
+
assert W % patch_W == 0, f"Input image width {W} is not a multiple of patch width: {patch_W}"
|
151 |
+
|
152 |
+
x = self.proj(x) # B C H W
|
153 |
+
H, W = x.size(2), x.size(3)
|
154 |
+
x = x.flatten(2).transpose(1, 2) # B HW C
|
155 |
+
x = self.norm(x)
|
156 |
+
if not self.flatten_embedding:
|
157 |
+
x = x.reshape(-1, H, W, self.embed_dim) # B H W C
|
158 |
+
return x
|
159 |
+
|
160 |
+
def flops(self) -> float:
|
161 |
+
Ho, Wo = self.patches_resolution
|
162 |
+
flops = Ho * Wo * self.embed_dim * self.in_chans * (self.patch_size[0] * self.patch_size[1])
|
163 |
+
if self.norm is not None:
|
164 |
+
flops += Ho * Wo * self.embed_dim
|
165 |
+
return flops
|
166 |
+
|
167 |
+
class Mlp(nn.Module):
|
168 |
+
def __init__(
|
169 |
+
self,
|
170 |
+
in_features: int,
|
171 |
+
hidden_features: Optional[int] = None,
|
172 |
+
out_features: Optional[int] = None,
|
173 |
+
act_layer: Callable[..., nn.Module] = nn.GELU,
|
174 |
+
drop: float = 0.0,
|
175 |
+
bias: bool = True,
|
176 |
+
) -> None:
|
177 |
+
super().__init__()
|
178 |
+
out_features = out_features or in_features
|
179 |
+
hidden_features = hidden_features or in_features
|
180 |
+
self.fc1 = nn.Linear(in_features, hidden_features, bias=bias)
|
181 |
+
self.act = act_layer()
|
182 |
+
self.fc2 = nn.Linear(hidden_features, out_features, bias=bias)
|
183 |
+
self.drop = nn.Dropout(drop)
|
184 |
+
|
185 |
+
def forward(self, x: Tensor) -> Tensor:
|
186 |
+
x = self.fc1(x)
|
187 |
+
x = self.act(x)
|
188 |
+
x = self.drop(x)
|
189 |
+
x = self.fc2(x)
|
190 |
+
x = self.drop(x)
|
191 |
+
return x
|
192 |
+
|
193 |
+
|
194 |
+
class SwiGLUFFN(nn.Module):
|
195 |
+
def __init__(
|
196 |
+
self,
|
197 |
+
in_features: int,
|
198 |
+
hidden_features: Optional[int] = None,
|
199 |
+
out_features: Optional[int] = None,
|
200 |
+
act_layer: Callable[..., nn.Module] = None,
|
201 |
+
drop: float = 0.0,
|
202 |
+
bias: bool = True,
|
203 |
+
) -> None:
|
204 |
+
super().__init__()
|
205 |
+
out_features = out_features or in_features
|
206 |
+
hidden_features = hidden_features or in_features
|
207 |
+
self.w12 = nn.Linear(in_features, 2 * hidden_features, bias=bias)
|
208 |
+
self.w3 = nn.Linear(hidden_features, out_features, bias=bias)
|
209 |
+
|
210 |
+
def forward(self, x: Tensor) -> Tensor:
|
211 |
+
x12 = self.w12(x)
|
212 |
+
x1, x2 = x12.chunk(2, dim=-1)
|
213 |
+
hidden = F.silu(x1) * x2
|
214 |
+
return self.w3(hidden)
|
215 |
+
|
216 |
+
|
217 |
+
try:
|
218 |
+
from xformers.ops import SwiGLU
|
219 |
+
#import numpy.bool
|
220 |
+
XFORMERS_AVAILABLE = True
|
221 |
+
except ImportError:
|
222 |
+
SwiGLU = SwiGLUFFN
|
223 |
+
XFORMERS_AVAILABLE = False
|
224 |
+
|
225 |
+
class SwiGLUFFNFused(SwiGLU):
|
226 |
+
def __init__(
|
227 |
+
self,
|
228 |
+
in_features: int,
|
229 |
+
hidden_features: Optional[int] = None,
|
230 |
+
out_features: Optional[int] = None,
|
231 |
+
act_layer: Callable[..., nn.Module] = None,
|
232 |
+
drop: float = 0.0,
|
233 |
+
bias: bool = True,
|
234 |
+
) -> None:
|
235 |
+
out_features = out_features or in_features
|
236 |
+
hidden_features = hidden_features or in_features
|
237 |
+
hidden_features = (int(hidden_features * 2 / 3) + 7) // 8 * 8
|
238 |
+
super().__init__(
|
239 |
+
in_features=in_features,
|
240 |
+
hidden_features=hidden_features,
|
241 |
+
out_features=out_features,
|
242 |
+
bias=bias,
|
243 |
+
)
|
244 |
+
|
245 |
+
|
246 |
+
try:
|
247 |
+
from xformers.ops import memory_efficient_attention, unbind, fmha
|
248 |
+
from xformers.components.attention import ScaledDotProduct
|
249 |
+
from xformers.components import MultiHeadDispatch
|
250 |
+
#import numpy.bool
|
251 |
+
XFORMERS_AVAILABLE = True
|
252 |
+
except ImportError:
|
253 |
+
logger.warning("xFormers not available")
|
254 |
+
XFORMERS_AVAILABLE = False
|
255 |
+
|
256 |
+
|
257 |
+
class Attention(nn.Module):
|
258 |
+
def __init__(
|
259 |
+
self,
|
260 |
+
dim: int,
|
261 |
+
num_heads: int = 8,
|
262 |
+
qkv_bias: bool = False,
|
263 |
+
proj_bias: bool = True,
|
264 |
+
attn_drop: float = 0.0,
|
265 |
+
proj_drop: float = 0.0,
|
266 |
+
window_size: int = 0,
|
267 |
+
) -> None:
|
268 |
+
super().__init__()
|
269 |
+
self.num_heads = num_heads
|
270 |
+
head_dim = dim // num_heads
|
271 |
+
self.scale = head_dim**-0.5
|
272 |
+
|
273 |
+
self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
|
274 |
+
self.attn_drop = nn.Dropout(attn_drop)
|
275 |
+
self.proj = nn.Linear(dim, dim, bias=proj_bias)
|
276 |
+
self.proj_drop = nn.Dropout(proj_drop)
|
277 |
+
|
278 |
+
#if not self.training:
|
279 |
+
#
|
280 |
+
# self.attn = ScaledDotProduct()
|
281 |
+
#self.attn = MultiHeadDispatch(dim_model=EMB, residual_dropout=DROPOUT, num_heads=HEADS, attention=attn)
|
282 |
+
|
283 |
+
def forward(self, x: Tensor, attn_bias=None) -> Tensor:
|
284 |
+
B, N, C = x.shape
|
285 |
+
qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4)
|
286 |
+
|
287 |
+
q, k, v = qkv[0] * self.scale, qkv[1], qkv[2]
|
288 |
+
attn = q @ k.transpose(-2, -1)
|
289 |
+
|
290 |
+
if attn_bias is not None:
|
291 |
+
attn = attn + attn_bias[:, :, :N]
|
292 |
+
|
293 |
+
attn = attn.softmax(dim=-1)
|
294 |
+
attn = self.attn_drop(attn)
|
295 |
+
|
296 |
+
x = (attn @ v).transpose(1, 2).reshape(B, N, C)
|
297 |
+
x = self.proj(x)
|
298 |
+
x = self.proj_drop(x)
|
299 |
+
return x
|
300 |
+
|
301 |
+
|
302 |
+
class MemEffAttention(Attention):
|
303 |
+
def forward(self, x: Tensor, attn_bias=None) -> Tensor:
|
304 |
+
if not XFORMERS_AVAILABLE:
|
305 |
+
#if True:
|
306 |
+
assert attn_bias is None, "xFormers is required for nested tensors usage"
|
307 |
+
return super().forward(x, attn_bias)
|
308 |
+
|
309 |
+
B, N, C = x.shape
|
310 |
+
qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, C // self.num_heads)
|
311 |
+
|
312 |
+
q, k, v = unbind(qkv, 2)
|
313 |
+
if attn_bias is not None:
|
314 |
+
x = memory_efficient_attention(q, k, v, attn_bias=attn_bias[:, :, :N])
|
315 |
+
else:
|
316 |
+
x = memory_efficient_attention(q, k, v)
|
317 |
+
x = x.reshape([B, N, C])
|
318 |
+
|
319 |
+
x = self.proj(x)
|
320 |
+
x = self.proj_drop(x)
|
321 |
+
return x
|
322 |
+
|
323 |
+
try:
|
324 |
+
from xformers.ops import fmha
|
325 |
+
from xformers.ops import scaled_index_add, index_select_cat
|
326 |
+
#import numpy.bool
|
327 |
+
XFORMERS_AVAILABLE = True
|
328 |
+
except ImportError:
|
329 |
+
logger.warning("xFormers not available")
|
330 |
+
XFORMERS_AVAILABLE = False
|
331 |
+
|
332 |
+
class Block(nn.Module):
|
333 |
+
def __init__(
|
334 |
+
self,
|
335 |
+
dim: int,
|
336 |
+
num_heads: int,
|
337 |
+
mlp_ratio: float = 4.0,
|
338 |
+
qkv_bias: bool = False,
|
339 |
+
proj_bias: bool = True,
|
340 |
+
ffn_bias: bool = True,
|
341 |
+
drop: float = 0.0,
|
342 |
+
attn_drop: float = 0.0,
|
343 |
+
init_values = None,
|
344 |
+
drop_path: float = 0.0,
|
345 |
+
act_layer: Callable[..., nn.Module] = nn.GELU,
|
346 |
+
norm_layer: Callable[..., nn.Module] = nn.LayerNorm,
|
347 |
+
attn_class: Callable[..., nn.Module] = Attention,
|
348 |
+
ffn_layer: Callable[..., nn.Module] = Mlp,
|
349 |
+
) -> None:
|
350 |
+
super().__init__()
|
351 |
+
# print(f"biases: qkv: {qkv_bias}, proj: {proj_bias}, ffn: {ffn_bias}")
|
352 |
+
self.norm1 = norm_layer(dim)
|
353 |
+
self.attn = attn_class(
|
354 |
+
dim,
|
355 |
+
num_heads=num_heads,
|
356 |
+
qkv_bias=qkv_bias,
|
357 |
+
proj_bias=proj_bias,
|
358 |
+
attn_drop=attn_drop,
|
359 |
+
proj_drop=drop,
|
360 |
+
)
|
361 |
+
self.ls1 = LayerScale(dim, init_values=init_values) if init_values else nn.Identity()
|
362 |
+
self.drop_path1 = DropPath(drop_path) if drop_path > 0.0 else nn.Identity()
|
363 |
+
|
364 |
+
self.norm2 = norm_layer(dim)
|
365 |
+
mlp_hidden_dim = int(dim * mlp_ratio)
|
366 |
+
self.mlp = ffn_layer(
|
367 |
+
in_features=dim,
|
368 |
+
hidden_features=mlp_hidden_dim,
|
369 |
+
act_layer=act_layer,
|
370 |
+
drop=drop,
|
371 |
+
bias=ffn_bias,
|
372 |
+
)
|
373 |
+
self.ls2 = LayerScale(dim, init_values=init_values) if init_values else nn.Identity()
|
374 |
+
self.drop_path2 = DropPath(drop_path) if drop_path > 0.0 else nn.Identity()
|
375 |
+
|
376 |
+
self.sample_drop_ratio = drop_path
|
377 |
+
|
378 |
+
def forward(self, x: Tensor, attn_bias=None) -> Tensor:
|
379 |
+
def attn_residual_func(x: Tensor, attn_bias) -> Tensor:
|
380 |
+
return self.ls1(self.attn(self.norm1(x), attn_bias))
|
381 |
+
|
382 |
+
def ffn_residual_func(x: Tensor) -> Tensor:
|
383 |
+
return self.ls2(self.mlp(self.norm2(x)))
|
384 |
+
|
385 |
+
if self.training and self.sample_drop_ratio > 0.1:
|
386 |
+
# the overhead is compensated only for a drop path rate larger than 0.1
|
387 |
+
x = drop_add_residual_stochastic_depth(
|
388 |
+
x,
|
389 |
+
residual_func=attn_residual_func,
|
390 |
+
sample_drop_ratio=self.sample_drop_ratio,
|
391 |
+
attn_bias=attn_bias
|
392 |
+
)
|
393 |
+
x = drop_add_residual_stochastic_depth(
|
394 |
+
x,
|
395 |
+
residual_func=ffn_residual_func,
|
396 |
+
sample_drop_ratio=self.sample_drop_ratio,
|
397 |
+
)
|
398 |
+
elif self.training and self.sample_drop_ratio > 0.0:
|
399 |
+
x = x + self.drop_path1(attn_residual_func(x, attn_bias))
|
400 |
+
x = x + self.drop_path1(ffn_residual_func(x)) # FIXME: drop_path2
|
401 |
+
else:
|
402 |
+
x = x + attn_residual_func(x, attn_bias)
|
403 |
+
x = x + ffn_residual_func(x)
|
404 |
+
return x
|
405 |
+
|
406 |
+
|
407 |
+
def drop_add_residual_stochastic_depth(
|
408 |
+
x: Tensor,
|
409 |
+
residual_func: Callable[[Tensor], Tensor],
|
410 |
+
sample_drop_ratio: float = 0.0, attn_bias=None
|
411 |
+
) -> Tensor:
|
412 |
+
# 1) extract subset using permutation
|
413 |
+
b, n, d = x.shape
|
414 |
+
sample_subset_size = max(int(b * (1 - sample_drop_ratio)), 1)
|
415 |
+
brange = (torch.randperm(b, device=x.device))[:sample_subset_size]
|
416 |
+
x_subset = x[brange]
|
417 |
+
|
418 |
+
# 2) apply residual_func to get residual
|
419 |
+
residual = residual_func(x_subset, attn_bias)
|
420 |
+
|
421 |
+
x_flat = x.flatten(1)
|
422 |
+
residual = residual.flatten(1)
|
423 |
+
|
424 |
+
residual_scale_factor = b / sample_subset_size
|
425 |
+
|
426 |
+
# 3) add the residual
|
427 |
+
x_plus_residual = torch.index_add(x_flat, 0, brange, residual.to(dtype=x.dtype), alpha=residual_scale_factor)
|
428 |
+
return x_plus_residual.view_as(x)
|
429 |
+
|
430 |
+
|
431 |
+
def get_branges_scales(x, sample_drop_ratio=0.0):
|
432 |
+
b, n, d = x.shape
|
433 |
+
sample_subset_size = max(int(b * (1 - sample_drop_ratio)), 1)
|
434 |
+
brange = (torch.randperm(b, device=x.device))[:sample_subset_size]
|
435 |
+
residual_scale_factor = b / sample_subset_size
|
436 |
+
return brange, residual_scale_factor
|
437 |
+
|
438 |
+
|
439 |
+
def add_residual(x, brange, residual, residual_scale_factor, scaling_vector=None):
|
440 |
+
if scaling_vector is None:
|
441 |
+
x_flat = x.flatten(1)
|
442 |
+
residual = residual.flatten(1)
|
443 |
+
x_plus_residual = torch.index_add(x_flat, 0, brange, residual.to(dtype=x.dtype), alpha=residual_scale_factor)
|
444 |
+
else:
|
445 |
+
x_plus_residual = scaled_index_add(
|
446 |
+
x, brange, residual.to(dtype=x.dtype), scaling=scaling_vector, alpha=residual_scale_factor
|
447 |
+
)
|
448 |
+
return x_plus_residual
|
449 |
+
|
450 |
+
|
451 |
+
attn_bias_cache: Dict[Tuple, Any] = {}
|
452 |
+
|
453 |
+
|
454 |
+
def get_attn_bias_and_cat(x_list, branges=None):
|
455 |
+
"""
|
456 |
+
this will perform the index select, cat the tensors, and provide the attn_bias from cache
|
457 |
+
"""
|
458 |
+
batch_sizes = [b.shape[0] for b in branges] if branges is not None else [x.shape[0] for x in x_list]
|
459 |
+
all_shapes = tuple((b, x.shape[1]) for b, x in zip(batch_sizes, x_list))
|
460 |
+
if all_shapes not in attn_bias_cache.keys():
|
461 |
+
seqlens = []
|
462 |
+
for b, x in zip(batch_sizes, x_list):
|
463 |
+
for _ in range(b):
|
464 |
+
seqlens.append(x.shape[1])
|
465 |
+
attn_bias = fmha.BlockDiagonalMask.from_seqlens(seqlens)
|
466 |
+
attn_bias._batch_sizes = batch_sizes
|
467 |
+
attn_bias_cache[all_shapes] = attn_bias
|
468 |
+
|
469 |
+
if branges is not None:
|
470 |
+
cat_tensors = index_select_cat([x.flatten(1) for x in x_list], branges).view(1, -1, x_list[0].shape[-1])
|
471 |
+
else:
|
472 |
+
tensors_bs1 = tuple(x.reshape([1, -1, *x.shape[2:]]) for x in x_list)
|
473 |
+
cat_tensors = torch.cat(tensors_bs1, dim=1)
|
474 |
+
|
475 |
+
return attn_bias_cache[all_shapes], cat_tensors
|
476 |
+
|
477 |
+
|
478 |
+
def drop_add_residual_stochastic_depth_list(
|
479 |
+
x_list: List[Tensor],
|
480 |
+
residual_func: Callable[[Tensor, Any], Tensor],
|
481 |
+
sample_drop_ratio: float = 0.0,
|
482 |
+
scaling_vector=None,
|
483 |
+
) -> Tensor:
|
484 |
+
# 1) generate random set of indices for dropping samples in the batch
|
485 |
+
branges_scales = [get_branges_scales(x, sample_drop_ratio=sample_drop_ratio) for x in x_list]
|
486 |
+
branges = [s[0] for s in branges_scales]
|
487 |
+
residual_scale_factors = [s[1] for s in branges_scales]
|
488 |
+
|
489 |
+
# 2) get attention bias and index+concat the tensors
|
490 |
+
attn_bias, x_cat = get_attn_bias_and_cat(x_list, branges)
|
491 |
+
|
492 |
+
# 3) apply residual_func to get residual, and split the result
|
493 |
+
residual_list = attn_bias.split(residual_func(x_cat, attn_bias=attn_bias)) # type: ignore
|
494 |
+
|
495 |
+
outputs = []
|
496 |
+
for x, brange, residual, residual_scale_factor in zip(x_list, branges, residual_list, residual_scale_factors):
|
497 |
+
outputs.append(add_residual(x, brange, residual, residual_scale_factor, scaling_vector).view_as(x))
|
498 |
+
return outputs
|
499 |
+
|
500 |
+
|
501 |
+
class NestedTensorBlock(Block):
|
502 |
+
def forward_nested(self, x_list: List[Tensor]) -> List[Tensor]:
|
503 |
+
"""
|
504 |
+
x_list contains a list of tensors to nest together and run
|
505 |
+
"""
|
506 |
+
assert isinstance(self.attn, MemEffAttention)
|
507 |
+
|
508 |
+
if self.training and self.sample_drop_ratio > 0.0:
|
509 |
+
|
510 |
+
def attn_residual_func(x: Tensor, attn_bias=None) -> Tensor:
|
511 |
+
return self.attn(self.norm1(x), attn_bias=attn_bias)
|
512 |
+
|
513 |
+
def ffn_residual_func(x: Tensor, attn_bias=None) -> Tensor:
|
514 |
+
return self.mlp(self.norm2(x))
|
515 |
+
|
516 |
+
x_list = drop_add_residual_stochastic_depth_list(
|
517 |
+
x_list,
|
518 |
+
residual_func=attn_residual_func,
|
519 |
+
sample_drop_ratio=self.sample_drop_ratio,
|
520 |
+
scaling_vector=self.ls1.gamma if isinstance(self.ls1, LayerScale) else None,
|
521 |
+
)
|
522 |
+
x_list = drop_add_residual_stochastic_depth_list(
|
523 |
+
x_list,
|
524 |
+
residual_func=ffn_residual_func,
|
525 |
+
sample_drop_ratio=self.sample_drop_ratio,
|
526 |
+
scaling_vector=self.ls2.gamma if isinstance(self.ls1, LayerScale) else None,
|
527 |
+
)
|
528 |
+
return x_list
|
529 |
+
else:
|
530 |
+
|
531 |
+
def attn_residual_func(x: Tensor, attn_bias=None) -> Tensor:
|
532 |
+
return self.ls1(self.attn(self.norm1(x), attn_bias=attn_bias))
|
533 |
+
|
534 |
+
def ffn_residual_func(x: Tensor, attn_bias=None) -> Tensor:
|
535 |
+
return self.ls2(self.mlp(self.norm2(x)))
|
536 |
+
|
537 |
+
attn_bias, x = get_attn_bias_and_cat(x_list)
|
538 |
+
x = x + attn_residual_func(x, attn_bias=attn_bias)
|
539 |
+
x = x + ffn_residual_func(x)
|
540 |
+
return attn_bias.split(x)
|
541 |
+
|
542 |
+
def forward(self, x_or_x_list, attn_bias=None):
|
543 |
+
if isinstance(x_or_x_list, Tensor):
|
544 |
+
return super().forward(x_or_x_list, attn_bias)
|
545 |
+
elif isinstance(x_or_x_list, list):
|
546 |
+
assert XFORMERS_AVAILABLE, "Please install xFormers for nested tensors usage"
|
547 |
+
return self.forward_nested(x_or_x_list)
|
548 |
+
else:
|
549 |
+
raise AssertionError
|
550 |
+
|
551 |
+
|
552 |
+
def named_apply(fn: Callable, module: nn.Module, name="", depth_first=True, include_root=False) -> nn.Module:
|
553 |
+
if not depth_first and include_root:
|
554 |
+
fn(module=module, name=name)
|
555 |
+
for child_name, child_module in module.named_children():
|
556 |
+
child_name = ".".join((name, child_name)) if name else child_name
|
557 |
+
named_apply(fn=fn, module=child_module, name=child_name, depth_first=depth_first, include_root=True)
|
558 |
+
if depth_first and include_root:
|
559 |
+
fn(module=module, name=name)
|
560 |
+
return module
|
561 |
+
|
562 |
+
|
563 |
+
class BlockChunk(nn.ModuleList):
|
564 |
+
def forward(self, x, others=None):
|
565 |
+
for b in self:
|
566 |
+
if others == None:
|
567 |
+
x = b(x)
|
568 |
+
else:
|
569 |
+
x = b(x, others)
|
570 |
+
return x
|
571 |
+
|
572 |
+
|
573 |
+
class DinoVisionTransformer(nn.Module):
|
574 |
+
def __init__(
|
575 |
+
self,
|
576 |
+
img_size=224,
|
577 |
+
patch_size=16,
|
578 |
+
in_chans=3,
|
579 |
+
embed_dim=768,
|
580 |
+
depth=12,
|
581 |
+
num_heads=12,
|
582 |
+
mlp_ratio=4.0,
|
583 |
+
qkv_bias=True,
|
584 |
+
ffn_bias=True,
|
585 |
+
proj_bias=True,
|
586 |
+
drop_path_rate=0.0,
|
587 |
+
drop_path_uniform=False,
|
588 |
+
#init_values=None, # for layerscale: None or 0 => no layerscale
|
589 |
+
init_values=1e-5, # for layerscale: None or 0 => no layerscale
|
590 |
+
embed_layer=PatchEmbed,
|
591 |
+
act_layer=nn.GELU,
|
592 |
+
block_fn=NestedTensorBlock,
|
593 |
+
ffn_layer="mlp",
|
594 |
+
block_chunks=1,
|
595 |
+
window_size=37,
|
596 |
+
**kwargs
|
597 |
+
):
|
598 |
+
"""
|
599 |
+
Args:
|
600 |
+
img_size (int, tuple): input image size
|
601 |
+
patch_size (int, tuple): patch size
|
602 |
+
in_chans (int): number of input channels
|
603 |
+
embed_dim (int): embedding dimension
|
604 |
+
depth (int): depth of transformer
|
605 |
+
num_heads (int): number of attention heads
|
606 |
+
mlp_ratio (int): ratio of mlp hidden dim to embedding dim
|
607 |
+
qkv_bias (bool): enable bias for qkv if True
|
608 |
+
proj_bias (bool): enable bias for proj in attn if True
|
609 |
+
ffn_bias (bool): enable bias for ffn if True
|
610 |
+
drop_path_rate (float): stochastic depth rate
|
611 |
+
drop_path_uniform (bool): apply uniform drop rate across blocks
|
612 |
+
weight_init (str): weight init scheme
|
613 |
+
init_values (float): layer-scale init values
|
614 |
+
embed_layer (nn.Module): patch embedding layer
|
615 |
+
act_layer (nn.Module): MLP activation layer
|
616 |
+
block_fn (nn.Module): transformer block class
|
617 |
+
ffn_layer (str): "mlp", "swiglu", "swiglufused" or "identity"
|
618 |
+
block_chunks: (int) split block sequence into block_chunks units for FSDP wrap
|
619 |
+
"""
|
620 |
+
super().__init__()
|
621 |
+
norm_layer = partial(nn.LayerNorm, eps=1e-6)
|
622 |
+
|
623 |
+
self.num_features = self.embed_dim = embed_dim # num_features for consistency with other models
|
624 |
+
self.num_tokens = 1
|
625 |
+
self.n_blocks = depth
|
626 |
+
self.num_heads = num_heads
|
627 |
+
self.patch_size = patch_size
|
628 |
+
self.window_size = window_size
|
629 |
+
|
630 |
+
self.patch_embed = embed_layer(img_size=img_size, patch_size=patch_size, in_chans=in_chans, embed_dim=embed_dim)
|
631 |
+
num_patches = self.patch_embed.num_patches
|
632 |
+
|
633 |
+
self.cls_token = nn.Parameter(torch.zeros(1, 1, embed_dim))
|
634 |
+
self.pos_embed = nn.Parameter(torch.zeros(1, num_patches + self.num_tokens, embed_dim))
|
635 |
+
|
636 |
+
if drop_path_uniform is True:
|
637 |
+
dpr = [drop_path_rate] * depth
|
638 |
+
else:
|
639 |
+
dpr = [x.item() for x in torch.linspace(0, drop_path_rate, depth)] # stochastic depth decay rule
|
640 |
+
|
641 |
+
if ffn_layer == "mlp":
|
642 |
+
logger.info("using MLP layer as FFN")
|
643 |
+
ffn_layer = Mlp
|
644 |
+
elif ffn_layer == "swiglufused" or ffn_layer == "swiglu":
|
645 |
+
logger.info("using SwiGLU layer as FFN")
|
646 |
+
ffn_layer = SwiGLUFFNFused
|
647 |
+
elif ffn_layer == "identity":
|
648 |
+
logger.info("using Identity layer as FFN")
|
649 |
+
|
650 |
+
def f(*args, **kwargs):
|
651 |
+
return nn.Identity()
|
652 |
+
|
653 |
+
ffn_layer = f
|
654 |
+
else:
|
655 |
+
raise NotImplementedError
|
656 |
+
|
657 |
+
blocks_list = [
|
658 |
+
block_fn(
|
659 |
+
dim=embed_dim,
|
660 |
+
num_heads=num_heads,
|
661 |
+
mlp_ratio=mlp_ratio,
|
662 |
+
qkv_bias=qkv_bias,
|
663 |
+
proj_bias=proj_bias,
|
664 |
+
ffn_bias=ffn_bias,
|
665 |
+
drop_path=dpr[i],
|
666 |
+
norm_layer=norm_layer,
|
667 |
+
act_layer=act_layer,
|
668 |
+
ffn_layer=ffn_layer,
|
669 |
+
init_values=init_values,
|
670 |
+
)
|
671 |
+
for i in range(depth)
|
672 |
+
]
|
673 |
+
if block_chunks > 0:
|
674 |
+
self.chunked_blocks = True
|
675 |
+
chunked_blocks = []
|
676 |
+
chunksize = depth // block_chunks
|
677 |
+
for i in range(0, depth, chunksize):
|
678 |
+
# this is to keep the block index consistent if we chunk the block list
|
679 |
+
chunked_blocks.append([nn.Identity()] * i + blocks_list[i : i + chunksize])
|
680 |
+
self.blocks = nn.ModuleList([BlockChunk(p) for p in chunked_blocks])
|
681 |
+
else:
|
682 |
+
self.chunked_blocks = False
|
683 |
+
self.blocks = nn.ModuleList(blocks_list)
|
684 |
+
|
685 |
+
self.norm = norm_layer(embed_dim)
|
686 |
+
self.head = nn.Identity()
|
687 |
+
|
688 |
+
self.mask_token = nn.Parameter(torch.zeros(1, embed_dim))
|
689 |
+
|
690 |
+
self.init_weights()
|
691 |
+
|
692 |
+
def init_weights(self):
|
693 |
+
trunc_normal_(self.pos_embed, std=0.02)
|
694 |
+
nn.init.normal_(self.cls_token, std=1e-6)
|
695 |
+
named_apply(init_weights_vit_timm, self)
|
696 |
+
|
697 |
+
def interpolate_pos_encoding(self, x, w, h):
|
698 |
+
previous_dtype = x.dtype
|
699 |
+
npatch = x.shape[1] - 1
|
700 |
+
N = self.pos_embed.shape[1] - 1
|
701 |
+
if npatch == N and w == h:
|
702 |
+
return self.pos_embed
|
703 |
+
pos_embed = self.pos_embed.float()
|
704 |
+
class_pos_embed = pos_embed[:, 0]
|
705 |
+
patch_pos_embed = pos_embed[:, 1:]
|
706 |
+
dim = x.shape[-1]
|
707 |
+
w0 = w // self.patch_size
|
708 |
+
h0 = h // self.patch_size
|
709 |
+
# we add a small number to avoid floating point error in the interpolation
|
710 |
+
# see discussion at https://github.com/facebookresearch/dino/issues/8
|
711 |
+
w0, h0 = w0 + 0.1, h0 + 0.1
|
712 |
+
|
713 |
+
patch_pos_embed = nn.functional.interpolate(
|
714 |
+
patch_pos_embed.reshape(1, int(math.sqrt(N)), int(math.sqrt(N)), dim).permute(0, 3, 1, 2),
|
715 |
+
scale_factor=(w0 / math.sqrt(N), h0 / math.sqrt(N)),
|
716 |
+
mode="bicubic",
|
717 |
+
)
|
718 |
+
|
719 |
+
assert int(w0) == patch_pos_embed.shape[-2] and int(h0) == patch_pos_embed.shape[-1]
|
720 |
+
patch_pos_embed = patch_pos_embed.permute(0, 2, 3, 1).view(1, -1, dim)
|
721 |
+
return torch.cat((class_pos_embed.unsqueeze(0), patch_pos_embed), dim=1).to(previous_dtype)
|
722 |
+
|
723 |
+
def prepare_tokens_with_masks(self, x, masks=None):
|
724 |
+
B, nc, w, h = x.shape
|
725 |
+
x = self.patch_embed(x)
|
726 |
+
if masks is not None:
|
727 |
+
x = torch.where(masks.unsqueeze(-1), self.mask_token.to(x.dtype).unsqueeze(0), x)
|
728 |
+
|
729 |
+
x = torch.cat((self.cls_token.expand(x.shape[0], -1, -1), x), dim=1)
|
730 |
+
x = x + self.interpolate_pos_encoding(x, w, h)
|
731 |
+
|
732 |
+
return x
|
733 |
+
|
734 |
+
def forward_features_list(self, x_list, masks_list):
|
735 |
+
x = [self.prepare_tokens_with_masks(x, masks) for x, masks in zip(x_list, masks_list)]
|
736 |
+
for blk in self.blocks:
|
737 |
+
x = blk(x)
|
738 |
+
|
739 |
+
all_x = x
|
740 |
+
output = []
|
741 |
+
for x, masks in zip(all_x, masks_list):
|
742 |
+
x_norm = self.norm(x)
|
743 |
+
output.append(
|
744 |
+
{
|
745 |
+
"x_norm_clstoken": x_norm[:, 0],
|
746 |
+
"x_norm_patchtokens": x_norm[:, 1:],
|
747 |
+
"x_prenorm": x,
|
748 |
+
"masks": masks,
|
749 |
+
}
|
750 |
+
)
|
751 |
+
return output
|
752 |
+
|
753 |
+
def forward_features(self, x, masks=None):
|
754 |
+
if isinstance(x, list):
|
755 |
+
return self.forward_features_list(x, masks)
|
756 |
+
|
757 |
+
B, C, H, W = x.size()
|
758 |
+
pad_h = (self.patch_size - H % self.patch_size)
|
759 |
+
pad_w = (self.patch_size - W % self.patch_size)
|
760 |
+
if pad_h == self.patch_size:
|
761 |
+
pad_h = 0
|
762 |
+
if pad_w == self.patch_size:
|
763 |
+
pad_w = 0
|
764 |
+
#x = nn.functional.pad(x, (pad_h//2, pad_h-pad_h//2, pad_w//2, pad_w-pad_w//2))
|
765 |
+
if pad_h + pad_w > 0:
|
766 |
+
x = torch.nn.functional.interpolate(x, (H+pad_h, W+pad_w), mode='bilinear')
|
767 |
+
|
768 |
+
x = self.prepare_tokens_with_masks(x, masks)
|
769 |
+
|
770 |
+
features = []
|
771 |
+
for blk in self.blocks:
|
772 |
+
x = blk(x)
|
773 |
+
# for idx in range(len(self.blocks[0])):
|
774 |
+
# x = self.blocks[0][idx](x)
|
775 |
+
# if (idx + 1) % (len(self.blocks[0]) // 4) == 0:
|
776 |
+
# features.append(x)
|
777 |
+
|
778 |
+
#return [features, (B, (H+pad_h)//self.patch_size, (W+pad_w)//self.patch_size, H, W)]
|
779 |
+
|
780 |
+
x_norm = self.norm(x)
|
781 |
+
# return {
|
782 |
+
# "x_norm_clstoken": x_norm[:, 0],
|
783 |
+
# "x_norm_patchtokens": x_norm[:, 1:],
|
784 |
+
# "x_prenorm": x,
|
785 |
+
# "masks": masks,
|
786 |
+
# }
|
787 |
+
features = []
|
788 |
+
features.append(x_norm)
|
789 |
+
features.append(x_norm)
|
790 |
+
features.append(x_norm)
|
791 |
+
features.append(x_norm)
|
792 |
+
return [features, (B, (H+pad_h)//self.patch_size, (W+pad_w)//self.patch_size, H, W)]
|
793 |
+
|
794 |
+
def _get_intermediate_layers_not_chunked(self, x, n=1):
|
795 |
+
x = self.prepare_tokens_with_masks(x)
|
796 |
+
# If n is an int, take the n last blocks. If it's a list, take them
|
797 |
+
output, total_block_len = [], len(self.blocks)
|
798 |
+
blocks_to_take = range(total_block_len - n, total_block_len) if isinstance(n, int) else n
|
799 |
+
for i, blk in enumerate(self.blocks):
|
800 |
+
x = blk(x)
|
801 |
+
if i in blocks_to_take:
|
802 |
+
output.append(x)
|
803 |
+
assert len(output) == len(blocks_to_take), f"only {len(output)} / {len(blocks_to_take)} blocks found"
|
804 |
+
return output
|
805 |
+
|
806 |
+
def _get_intermediate_layers_chunked(self, x, n=1):
|
807 |
+
x = self.prepare_tokens_with_masks(x)
|
808 |
+
output, i, total_block_len = [], 0, len(self.blocks[-1])
|
809 |
+
# If n is an int, take the n last blocks. If it's a list, take them
|
810 |
+
blocks_to_take = range(total_block_len - n, total_block_len) if isinstance(n, int) else n
|
811 |
+
for block_chunk in self.blocks:
|
812 |
+
for blk in block_chunk[i:]: # Passing the nn.Identity()
|
813 |
+
x = blk(x)
|
814 |
+
if i in blocks_to_take:
|
815 |
+
output.append(x)
|
816 |
+
i += 1
|
817 |
+
assert len(output) == len(blocks_to_take), f"only {len(output)} / {len(blocks_to_take)} blocks found"
|
818 |
+
return output
|
819 |
+
|
820 |
+
def get_intermediate_layers(
|
821 |
+
self,
|
822 |
+
x: torch.Tensor,
|
823 |
+
n: Union[int, Sequence] = 1, # Layers or n last layers to take
|
824 |
+
reshape: bool = False,
|
825 |
+
return_class_token: bool = False,
|
826 |
+
norm=True,
|
827 |
+
) -> Tuple[Union[torch.Tensor, Tuple[torch.Tensor]]]:
|
828 |
+
if self.chunked_blocks:
|
829 |
+
outputs = self._get_intermediate_layers_chunked(x, n)
|
830 |
+
else:
|
831 |
+
outputs = self._get_intermediate_layers_not_chunked(x, n)
|
832 |
+
if norm:
|
833 |
+
outputs = [self.norm(out) for out in outputs]
|
834 |
+
class_tokens = [out[:, 0] for out in outputs]
|
835 |
+
outputs = [out[:, 1:] for out in outputs]
|
836 |
+
if reshape:
|
837 |
+
B, _, w, h = x.shape
|
838 |
+
outputs = [
|
839 |
+
out.reshape(B, w // self.patch_size, h // self.patch_size, -1).permute(0, 3, 1, 2).contiguous()
|
840 |
+
for out in outputs
|
841 |
+
]
|
842 |
+
if return_class_token:
|
843 |
+
return tuple(zip(outputs, class_tokens))
|
844 |
+
return tuple(outputs)
|
845 |
+
|
846 |
+
def forward(self, *args, is_training=False, **kwargs):
|
847 |
+
ret = self.forward_features(*args, **kwargs)
|
848 |
+
return ret
|
849 |
+
# if is_training:
|
850 |
+
# return ret
|
851 |
+
# else:
|
852 |
+
# return self.head(ret["x_norm_clstoken"])
|
853 |
+
|
854 |
+
|
855 |
+
class PosConv(nn.Module):
|
856 |
+
# PEG from https://arxiv.org/abs/2102.10882
|
857 |
+
def __init__(self, in_chans, embed_dim=768, stride=1):
|
858 |
+
super(PosConv, self).__init__()
|
859 |
+
self.proj = nn.Sequential(
|
860 |
+
nn.Conv2d(in_chans, embed_dim, 37, stride, 18, bias=True, groups=embed_dim),
|
861 |
+
)
|
862 |
+
self.stride = stride
|
863 |
+
|
864 |
+
def forward(self, x, size):
|
865 |
+
B, N, C = x.shape
|
866 |
+
cnn_feat_token = x.transpose(1, 2).view(B, C, *size)
|
867 |
+
x = self.proj(cnn_feat_token)
|
868 |
+
if self.stride == 1:
|
869 |
+
x += cnn_feat_token
|
870 |
+
x = x.flatten(2).transpose(1, 2)
|
871 |
+
return x
|
872 |
+
|
873 |
+
#def no_weight_decay(self):
|
874 |
+
#return ['proj.%d.weight' % i for i in range(4)]
|
875 |
+
|
876 |
+
class DinoWindowVisionTransformer(nn.Module):
|
877 |
+
def __init__(
|
878 |
+
self,
|
879 |
+
img_size=224,
|
880 |
+
patch_size=16,
|
881 |
+
in_chans=3,
|
882 |
+
embed_dim=768,
|
883 |
+
depth=12,
|
884 |
+
num_heads=12,
|
885 |
+
mlp_ratio=4.0,
|
886 |
+
qkv_bias=True,
|
887 |
+
ffn_bias=True,
|
888 |
+
proj_bias=True,
|
889 |
+
drop_path_rate=0.0,
|
890 |
+
drop_path_uniform=False,
|
891 |
+
#init_values=None, # for layerscale: None or 0 => no layerscale
|
892 |
+
init_values=1e-5, # for layerscale: None or 0 => no layerscale
|
893 |
+
embed_layer=PatchEmbed,
|
894 |
+
act_layer=nn.GELU,
|
895 |
+
block_fn=NestedTensorBlock,
|
896 |
+
ffn_layer="mlp",
|
897 |
+
block_chunks=1,
|
898 |
+
window_size=7,
|
899 |
+
**kwargs
|
900 |
+
):
|
901 |
+
"""
|
902 |
+
Args:
|
903 |
+
img_size (int, tuple): input image size
|
904 |
+
patch_size (int, tuple): patch size
|
905 |
+
in_chans (int): number of input channels
|
906 |
+
embed_dim (int): embedding dimension
|
907 |
+
depth (int): depth of transformer
|
908 |
+
num_heads (int): number of attention heads
|
909 |
+
mlp_ratio (int): ratio of mlp hidden dim to embedding dim
|
910 |
+
qkv_bias (bool): enable bias for qkv if True
|
911 |
+
proj_bias (bool): enable bias for proj in attn if True
|
912 |
+
ffn_bias (bool): enable bias for ffn if True
|
913 |
+
drop_path_rate (float): stochastic depth rate
|
914 |
+
drop_path_uniform (bool): apply uniform drop rate across blocks
|
915 |
+
weight_init (str): weight init scheme
|
916 |
+
init_values (float): layer-scale init values
|
917 |
+
embed_layer (nn.Module): patch embedding layer
|
918 |
+
act_layer (nn.Module): MLP activation layer
|
919 |
+
block_fn (nn.Module): transformer block class
|
920 |
+
ffn_layer (str): "mlp", "swiglu", "swiglufused" or "identity"
|
921 |
+
block_chunks: (int) split block sequence into block_chunks units for FSDP wrap
|
922 |
+
"""
|
923 |
+
super().__init__()
|
924 |
+
norm_layer = partial(nn.LayerNorm, eps=1e-6)
|
925 |
+
|
926 |
+
self.num_features = self.embed_dim = embed_dim # num_features for consistency with other models
|
927 |
+
self.num_tokens = 1
|
928 |
+
self.n_blocks = depth
|
929 |
+
self.num_heads = num_heads
|
930 |
+
self.patch_size = patch_size
|
931 |
+
|
932 |
+
self.patch_embed = embed_layer(img_size=img_size, patch_size=patch_size, in_chans=in_chans, embed_dim=embed_dim)
|
933 |
+
num_patches = self.patch_embed.num_patches
|
934 |
+
|
935 |
+
#self.cls_token = nn.Parameter(torch.zeros(1, 1, embed_dim))
|
936 |
+
#self.pos_embed = nn.Parameter(torch.zeros(1, num_patches + self.num_tokens, embed_dim))
|
937 |
+
self.pos_embed = nn.Parameter(torch.zeros(1, num_patches, embed_dim))
|
938 |
+
|
939 |
+
self.pos_conv = PosConv(self.embed_dim, self.embed_dim)
|
940 |
+
|
941 |
+
self.window_size = window_size
|
942 |
+
#self.conv_block = nn.ModuleList([ConvBlock(embed_dim) for i in range(4)])
|
943 |
+
#self.conv_block = nn.ModuleList([nn.Identity() for i in range(4)])
|
944 |
+
|
945 |
+
if drop_path_uniform is True:
|
946 |
+
dpr = [drop_path_rate] * depth
|
947 |
+
else:
|
948 |
+
dpr = [x.item() for x in torch.linspace(0, drop_path_rate, depth)] # stochastic depth decay rule
|
949 |
+
|
950 |
+
if ffn_layer == "mlp":
|
951 |
+
logger.info("using MLP layer as FFN")
|
952 |
+
ffn_layer = Mlp
|
953 |
+
elif ffn_layer == "swiglufused" or ffn_layer == "swiglu":
|
954 |
+
logger.info("using SwiGLU layer as FFN")
|
955 |
+
ffn_layer = SwiGLUFFNFused
|
956 |
+
elif ffn_layer == "identity":
|
957 |
+
logger.info("using Identity layer as FFN")
|
958 |
+
|
959 |
+
def f(*args, **kwargs):
|
960 |
+
return nn.Identity()
|
961 |
+
|
962 |
+
ffn_layer = f
|
963 |
+
else:
|
964 |
+
raise NotImplementedError
|
965 |
+
|
966 |
+
blocks_list = [
|
967 |
+
block_fn(
|
968 |
+
dim=embed_dim,
|
969 |
+
num_heads=num_heads,
|
970 |
+
mlp_ratio=mlp_ratio,
|
971 |
+
qkv_bias=qkv_bias,
|
972 |
+
proj_bias=proj_bias,
|
973 |
+
ffn_bias=ffn_bias,
|
974 |
+
drop_path=dpr[i],
|
975 |
+
norm_layer=norm_layer,
|
976 |
+
act_layer=act_layer,
|
977 |
+
ffn_layer=ffn_layer,
|
978 |
+
init_values=init_values,
|
979 |
+
)
|
980 |
+
for i in range(depth)
|
981 |
+
]
|
982 |
+
if block_chunks > 0:
|
983 |
+
self.chunked_blocks = True
|
984 |
+
chunked_blocks = []
|
985 |
+
chunksize = depth // block_chunks
|
986 |
+
for i in range(0, depth, chunksize):
|
987 |
+
# this is to keep the block index consistent if we chunk the block list
|
988 |
+
chunked_blocks.append([nn.Identity()] * i + blocks_list[i : i + chunksize])
|
989 |
+
self.blocks = nn.ModuleList([BlockChunk(p) for p in chunked_blocks])
|
990 |
+
else:
|
991 |
+
self.chunked_blocks = False
|
992 |
+
self.blocks = nn.ModuleList(blocks_list)
|
993 |
+
|
994 |
+
self.norm = norm_layer(embed_dim)
|
995 |
+
self.head = nn.Identity()
|
996 |
+
|
997 |
+
self.mask_token = nn.Parameter(torch.zeros(1, embed_dim))
|
998 |
+
|
999 |
+
self.nh = -1
|
1000 |
+
self.nw = -1
|
1001 |
+
try:
|
1002 |
+
H = cfg.data_basic['crop_size'][0]
|
1003 |
+
W = cfg.data_basic['crop_size'][1]
|
1004 |
+
pad_h = (self.patch_size - H % self.patch_size)
|
1005 |
+
pad_w = (self.patch_size - W % self.patch_size)
|
1006 |
+
if pad_h == self.patch_size:
|
1007 |
+
pad_h = 0
|
1008 |
+
if pad_w == self.patch_size:
|
1009 |
+
pad_w = 0
|
1010 |
+
self.nh = (H + pad_h) // self.patch_size
|
1011 |
+
self.nw = (W + pad_w) // self.patch_size
|
1012 |
+
self.prepare_attn_bias((self.nh, self.nw))
|
1013 |
+
except:
|
1014 |
+
pass
|
1015 |
+
self.init_weights()
|
1016 |
+
|
1017 |
+
self.total_step = 10000 # For PE -> GPE transfer
|
1018 |
+
self.start_step = 2000
|
1019 |
+
self.current_step = 20000
|
1020 |
+
|
1021 |
+
def init_weights(self):
|
1022 |
+
#trunc_normal_(self.pos_embed, std=0.02)
|
1023 |
+
#nn.init.normal_(self.cls_token, std=1e-6)
|
1024 |
+
named_apply(init_weights_vit_timm, self)
|
1025 |
+
for i in range(4):
|
1026 |
+
try:
|
1027 |
+
nn.init.constant_(self.conv_block[i].conv2.weight, 0.0)
|
1028 |
+
except:
|
1029 |
+
pass
|
1030 |
+
|
1031 |
+
def interpolate_pos_encoding(self, x, w, h):
|
1032 |
+
previous_dtype = x.dtype
|
1033 |
+
#npatch = x.shape[1] - 1
|
1034 |
+
#N = self.pos_embed.shape[1] - 1
|
1035 |
+
npatch = x.shape[1]
|
1036 |
+
N = self.pos_embed.shape[1]
|
1037 |
+
if npatch == N and w == h:
|
1038 |
+
return self.pos_embed
|
1039 |
+
pos_embed = self.pos_embed.float()
|
1040 |
+
#class_pos_embed = pos_embed[:, 0]
|
1041 |
+
#patch_pos_embed = pos_embed[:, 1:]
|
1042 |
+
patch_pos_embed = pos_embed
|
1043 |
+
dim = x.shape[-1]
|
1044 |
+
w0 = w // self.patch_size
|
1045 |
+
h0 = h // self.patch_size
|
1046 |
+
# we add a small number to avoid floating point error in the interpolation
|
1047 |
+
# see discussion at https://github.com/facebookresearch/dino/issues/8
|
1048 |
+
w0, h0 = w0 + 0.1, h0 + 0.1
|
1049 |
+
|
1050 |
+
patch_pos_embed = nn.functional.interpolate(
|
1051 |
+
patch_pos_embed.reshape(1, int(math.sqrt(N)), int(math.sqrt(N)), dim).permute(0, 3, 1, 2),
|
1052 |
+
scale_factor=(w0 / math.sqrt(N), h0 / math.sqrt(N)),
|
1053 |
+
mode="bicubic",
|
1054 |
+
)
|
1055 |
+
|
1056 |
+
assert int(w0) == patch_pos_embed.shape[-2] and int(h0) == patch_pos_embed.shape[-1]
|
1057 |
+
patch_pos_embed = patch_pos_embed.permute(0, 2, 3, 1).view(1, -1, dim)
|
1058 |
+
return patch_pos_embed.to(previous_dtype)
|
1059 |
+
#return torch.cat((class_pos_embed.unsqueeze(0), patch_pos_embed), dim=1).to(previous_dtype)
|
1060 |
+
|
1061 |
+
def window_partition(self, x: torch.Tensor, window_size: int, hw: Tuple[int, int], conv_feature=False) -> Tuple[torch.Tensor, Tuple[int, int]]:
|
1062 |
+
"""
|
1063 |
+
Partition into non-overlapping windows with padding if needed.
|
1064 |
+
Args:
|
1065 |
+
x (tensor): input tokens with [B, H, W, C].
|
1066 |
+
window_size (int): window size.
|
1067 |
+
|
1068 |
+
Returns:
|
1069 |
+
windows: windows after partition with [B * num_windows, window_size, window_size, C].
|
1070 |
+
(Hp, Wp): padded height and width before partition
|
1071 |
+
"""
|
1072 |
+
if conv_feature == False:
|
1073 |
+
B, N, C = x.shape
|
1074 |
+
H, W = hw[0], hw[1]
|
1075 |
+
|
1076 |
+
x = x.view(B, H // window_size, window_size, W // window_size, window_size, C)
|
1077 |
+
|
1078 |
+
windows = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(-1, window_size * window_size, C)
|
1079 |
+
else:
|
1080 |
+
B, C, H, W = x.shape
|
1081 |
+
|
1082 |
+
x = x.view(B, C, H // window_size, window_size, W // window_size, window_size)
|
1083 |
+
|
1084 |
+
windows = x.permute(0, 2, 4, 3, 5, 1).contiguous().view(-1, window_size * window_size, C)
|
1085 |
+
|
1086 |
+
#y = torch.cat((x_cls, windows), dim=1)
|
1087 |
+
return windows #, (Hp, Wp)
|
1088 |
+
|
1089 |
+
|
1090 |
+
def window_unpartition(self,
|
1091 |
+
windows: torch.Tensor, window_size: int, hw: Tuple[int, int], conv_feature=False
|
1092 |
+
) -> torch.Tensor:
|
1093 |
+
"""
|
1094 |
+
Window unpartition into original sequences and removing padding.
|
1095 |
+
Args:
|
1096 |
+
windows (tensor): input tokens with [B * num_windows, window_size, window_size, C].
|
1097 |
+
window_size (int): window size.
|
1098 |
+
pad_hw (Tuple): padded height and width (Hp, Wp).
|
1099 |
+
hw (Tuple): original height and width (H, W) before padding.
|
1100 |
+
|
1101 |
+
Returns:
|
1102 |
+
x: unpartitioned sequences with [B, H, W, C].
|
1103 |
+
"""
|
1104 |
+
H, W = hw
|
1105 |
+
|
1106 |
+
B = windows.shape[0] // (H * W // window_size // window_size)
|
1107 |
+
x = windows.view(B, H // window_size, W // window_size, window_size, window_size, -1)
|
1108 |
+
|
1109 |
+
if conv_feature == False:
|
1110 |
+
x = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(B, Hp * Wp, -1)
|
1111 |
+
else:
|
1112 |
+
C = windows.shape[-1]
|
1113 |
+
x = x.permute(0, 5, 1, 3, 2, 4).contiguous().view(B, C, H, W)
|
1114 |
+
|
1115 |
+
# if Hp > H or Wp > W:
|
1116 |
+
# x = x[:, :H, :W, :].contiguous()
|
1117 |
+
return x
|
1118 |
+
|
1119 |
+
def prepare_tokens_with_masks(self, x, masks=None, step=-1):
|
1120 |
+
B, nc, w, h = x.shape
|
1121 |
+
x = self.patch_embed(x)
|
1122 |
+
if masks is not None:
|
1123 |
+
x = torch.where(masks.unsqueeze(-1), self.mask_token.to(x.dtype).unsqueeze(0), x)
|
1124 |
+
|
1125 |
+
#x = torch.cat((self.cls_token.expand(x.shape[0], -1, -1), x), dim=1)
|
1126 |
+
if step == -1:
|
1127 |
+
step = self.current_step
|
1128 |
+
else:
|
1129 |
+
self.current_step = step
|
1130 |
+
|
1131 |
+
if step < self.start_step:
|
1132 |
+
coef = 0.0
|
1133 |
+
elif step < self.total_step:
|
1134 |
+
coef = (step - self.start_step) / (self.total_step - self.start_step)
|
1135 |
+
else:
|
1136 |
+
coef = 1.0
|
1137 |
+
|
1138 |
+
x = x + (1 - coef) * self.interpolate_pos_encoding(x, w, h) + coef * self.pos_conv(x, (self.nh, self.nw))
|
1139 |
+
|
1140 |
+
return x
|
1141 |
+
|
1142 |
+
def prepare_attn_bias(self, shape):
|
1143 |
+
window_size = self.window_size
|
1144 |
+
if window_size <= 0:
|
1145 |
+
return
|
1146 |
+
|
1147 |
+
import xformers.components.attention.attention_patterns as AP
|
1148 |
+
|
1149 |
+
nh, nw = shape
|
1150 |
+
radius = (window_size-1)//2
|
1151 |
+
mask_ori = AP.local_2d_pattern(nh, nw, distance = radius + 0.1, p=torch.inf).cuda()
|
1152 |
+
|
1153 |
+
pad = (8 - (nh * nw) % 8)
|
1154 |
+
if pad == 8:
|
1155 |
+
pad = 0
|
1156 |
+
mask_pad = nn.functional.pad(mask_ori, (0, pad)).contiguous()
|
1157 |
+
if pad > 0:
|
1158 |
+
mask = mask_pad[:, :-pad].view(nh, nw, nh, nw)
|
1159 |
+
else:
|
1160 |
+
mask = mask_pad[:, :].view(nh, nw, nh, nw)
|
1161 |
+
|
1162 |
+
# angle
|
1163 |
+
mask[:radius+1, :radius+1, :window_size, :window_size] = True
|
1164 |
+
mask[:radius+1, -radius-1:, :window_size, -window_size:] = True
|
1165 |
+
mask[-radius-1:, :radius+1, -window_size:, :window_size] = True
|
1166 |
+
mask[-radius-1:, -radius-1:, -window_size:, -window_size:] = True
|
1167 |
+
|
1168 |
+
# edge
|
1169 |
+
mask[radius+1:-radius-1, :radius+1, :, :] = mask[radius+1:-radius-1, radius:radius+1, :, :]
|
1170 |
+
mask[radius+1:-radius-1, -radius-1:, :, :] = mask[radius+1:-radius-1, -radius-1:-radius, :, :]
|
1171 |
+
mask[:radius+1, radius+1:-radius-1, :, :] = mask[radius:radius+1, radius+1:-radius-1, :, :]
|
1172 |
+
mask[-radius-1:, radius+1:-radius-1, :, :] = mask[-radius-1:-radius, radius+1:-radius-1, :, :]
|
1173 |
+
|
1174 |
+
mask = mask.view(nh*nw, nh*nw)
|
1175 |
+
bias_pad = torch.log(mask_pad)
|
1176 |
+
#bias = bias_pad[:, :-pad]
|
1177 |
+
self.register_buffer('attn_bias', bias_pad)
|
1178 |
+
|
1179 |
+
return bias_pad
|
1180 |
+
|
1181 |
+
def forward_features_list(self, x_list, masks_list):
|
1182 |
+
x = [self.prepare_tokens_with_masks(x, masks) for x, masks in zip(x_list, masks_list)]
|
1183 |
+
for blk in self.blocks:
|
1184 |
+
x = blk(x)
|
1185 |
+
|
1186 |
+
all_x = x
|
1187 |
+
output = []
|
1188 |
+
for x, masks in zip(all_x, masks_list):
|
1189 |
+
x_norm = self.norm(x)
|
1190 |
+
output.append(
|
1191 |
+
{
|
1192 |
+
"x_norm_clstoken": x_norm[:, 0],
|
1193 |
+
"x_norm_patchtokens": x_norm[:, 1:],
|
1194 |
+
"x_prenorm": x,
|
1195 |
+
"masks": masks,
|
1196 |
+
}
|
1197 |
+
)
|
1198 |
+
return output
|
1199 |
+
|
1200 |
+
def forward_features(self, x, masks=None, **kwargs):
|
1201 |
+
if isinstance(x, list):
|
1202 |
+
return self.forward_features_list(x, masks)
|
1203 |
+
|
1204 |
+
B, C, H, W = x.size()
|
1205 |
+
pad_h = (self.patch_size - H % self.patch_size)
|
1206 |
+
pad_w = (self.patch_size - W % self.patch_size)
|
1207 |
+
if pad_h == self.patch_size:
|
1208 |
+
pad_h = 0
|
1209 |
+
if pad_w == self.patch_size:
|
1210 |
+
pad_w = 0
|
1211 |
+
#x = nn.functional.pad(x, (pad_h//2, pad_h-pad_h//2, pad_w//2, pad_w-pad_w//2))
|
1212 |
+
if pad_h + pad_w > 0:
|
1213 |
+
x = torch.nn.functional.interpolate(x, (H+pad_h, W+pad_w), mode='bilinear')
|
1214 |
+
|
1215 |
+
nh = (H+pad_h)//self.patch_size
|
1216 |
+
nw = (W+pad_w)//self.patch_size
|
1217 |
+
|
1218 |
+
if self.window_size > 0:
|
1219 |
+
if nh == self.nh and nw == self.nw:
|
1220 |
+
attn_bias = self.attn_bias
|
1221 |
+
else:
|
1222 |
+
attn_bias = self.prepare_attn_bias(((H+pad_h)//self.patch_size, (W+pad_w)//self.patch_size))
|
1223 |
+
self.nh = nh
|
1224 |
+
self.nw = nw
|
1225 |
+
attn_bias = attn_bias.unsqueeze(0).repeat(B * self.num_heads, 1, 1)
|
1226 |
+
else:
|
1227 |
+
attn_bias = None
|
1228 |
+
|
1229 |
+
x = self.prepare_tokens_with_masks(x, masks)
|
1230 |
+
#x = self.patch_embed(x)
|
1231 |
+
|
1232 |
+
features = []
|
1233 |
+
#x = self.window_partition(x, self.window_size, (H // self.patch_size, W // self.patch_size))
|
1234 |
+
for blk in self.blocks:
|
1235 |
+
x = blk(x, attn_bias)
|
1236 |
+
#x = self.window_unpartition(x, self.window_size, (H // self.patch_size, W // self.patch_size))
|
1237 |
+
|
1238 |
+
# for idx in range(len(self.blocks[0])):
|
1239 |
+
# x = self.blocks[0][idx](x, attn_bias)
|
1240 |
+
|
1241 |
+
# if (idx + 1) % (len(self.blocks[0]) // 4) == 0:
|
1242 |
+
# x = self.window_unpartition(x, self.window_size, (H // self.patch_size, W // self.patch_size), conv_feature=True)
|
1243 |
+
# x = self.conv_block[idx // (len(self.blocks[0]) // 4)](x)
|
1244 |
+
# if idx + 1 != len(self.blocks[0]):
|
1245 |
+
# x = self.window_partition(x, self.window_size, (H // self.patch_size, W // self.patch_size), conv_feature=True)
|
1246 |
+
# else:
|
1247 |
+
# b, c, h, w = x.size()
|
1248 |
+
# x = x.permute(0, 2, 3, 1).contiguous().view(b, h, w, c)
|
1249 |
+
#features.append(x)
|
1250 |
+
|
1251 |
+
#return [features, (B, (H+pad_h)//self.patch_size, (W+pad_w)//self.patch_size, H, W)]
|
1252 |
+
|
1253 |
+
x_norm = self.norm(x)
|
1254 |
+
# return {
|
1255 |
+
# "x_norm_clstoken": x_norm[:, 0],
|
1256 |
+
# "x_norm_patchtokens": x_norm[:, 1:],
|
1257 |
+
# "x_prenorm": x,
|
1258 |
+
# "masks": masks,
|
1259 |
+
# }
|
1260 |
+
features = []
|
1261 |
+
features.append(x_norm)
|
1262 |
+
features.append(x_norm)
|
1263 |
+
features.append(x_norm)
|
1264 |
+
features.append(x_norm)
|
1265 |
+
return [features, (B, (H+pad_h)//self.patch_size, (W+pad_w)//self.patch_size, H, W)]
|
1266 |
+
|
1267 |
+
def _get_intermediate_layers_not_chunked(self, x, n=1):
|
1268 |
+
x = self.prepare_tokens_with_masks(x)
|
1269 |
+
# If n is an int, take the n last blocks. If it's a list, take them
|
1270 |
+
output, total_block_len = [], len(self.blocks)
|
1271 |
+
blocks_to_take = range(total_block_len - n, total_block_len) if isinstance(n, int) else n
|
1272 |
+
for i, blk in enumerate(self.blocks):
|
1273 |
+
x = blk(x)
|
1274 |
+
if i in blocks_to_take:
|
1275 |
+
output.append(x)
|
1276 |
+
assert len(output) == len(blocks_to_take), f"only {len(output)} / {len(blocks_to_take)} blocks found"
|
1277 |
+
return output
|
1278 |
+
|
1279 |
+
def _get_intermediate_layers_chunked(self, x, n=1):
|
1280 |
+
x = self.prepare_tokens_with_masks(x)
|
1281 |
+
output, i, total_block_len = [], 0, len(self.blocks[-1])
|
1282 |
+
# If n is an int, take the n last blocks. If it's a list, take them
|
1283 |
+
blocks_to_take = range(total_block_len - n, total_block_len) if isinstance(n, int) else n
|
1284 |
+
for block_chunk in self.blocks:
|
1285 |
+
for blk in block_chunk[i:]: # Passing the nn.Identity()
|
1286 |
+
x = blk(x)
|
1287 |
+
if i in blocks_to_take:
|
1288 |
+
output.append(x)
|
1289 |
+
i += 1
|
1290 |
+
assert len(output) == len(blocks_to_take), f"only {len(output)} / {len(blocks_to_take)} blocks found"
|
1291 |
+
return output
|
1292 |
+
|
1293 |
+
def get_intermediate_layers(
|
1294 |
+
self,
|
1295 |
+
x: torch.Tensor,
|
1296 |
+
n: Union[int, Sequence] = 1, # Layers or n last layers to take
|
1297 |
+
reshape: bool = False,
|
1298 |
+
return_class_token: bool = False,
|
1299 |
+
norm=True,
|
1300 |
+
) -> Tuple[Union[torch.Tensor, Tuple[torch.Tensor]]]:
|
1301 |
+
if self.chunked_blocks:
|
1302 |
+
outputs = self._get_intermediate_layers_chunked(x, n)
|
1303 |
+
else:
|
1304 |
+
outputs = self._get_intermediate_layers_not_chunked(x, n)
|
1305 |
+
if norm:
|
1306 |
+
outputs = [self.norm(out) for out in outputs]
|
1307 |
+
class_tokens = [out[:, 0] for out in outputs]
|
1308 |
+
outputs = [out[:, 1:] for out in outputs]
|
1309 |
+
if reshape:
|
1310 |
+
B, _, w, h = x.shape
|
1311 |
+
outputs = [
|
1312 |
+
out.reshape(B, w // self.patch_size, h // self.patch_size, -1).permute(0, 3, 1, 2).contiguous()
|
1313 |
+
for out in outputs
|
1314 |
+
]
|
1315 |
+
if return_class_token:
|
1316 |
+
return tuple(zip(outputs, class_tokens))
|
1317 |
+
return tuple(outputs)
|
1318 |
+
|
1319 |
+
def forward(self, *args, is_training=False, **kwargs):
|
1320 |
+
ret = self.forward_features(*args, **kwargs)
|
1321 |
+
return ret
|
1322 |
+
# if is_training:
|
1323 |
+
# return ret
|
1324 |
+
# else:
|
1325 |
+
# return self.head(ret["x_norm_clstoken"])
|
1326 |
+
|
1327 |
+
|
1328 |
+
|
1329 |
+
|
1330 |
+
def init_weights_vit_timm(module: nn.Module, name: str = ""):
|
1331 |
+
"""ViT weight initialization, original timm impl (for reproducibility)"""
|
1332 |
+
if isinstance(module, nn.Linear):
|
1333 |
+
trunc_normal_(module.weight, std=0.02)
|
1334 |
+
if module.bias is not None:
|
1335 |
+
nn.init.zeros_(module.bias)
|
1336 |
+
|
1337 |
+
|
1338 |
+
def vit_small(patch_size=14, **kwargs):
|
1339 |
+
model = DinoVisionTransformer(
|
1340 |
+
patch_size=patch_size,
|
1341 |
+
embed_dim=384,
|
1342 |
+
depth=12,
|
1343 |
+
num_heads=6,
|
1344 |
+
mlp_ratio=4,
|
1345 |
+
block_fn=partial(NestedTensorBlock, attn_class=MemEffAttention),
|
1346 |
+
**kwargs,
|
1347 |
+
)
|
1348 |
+
return model
|
1349 |
+
|
1350 |
+
|
1351 |
+
def vit_base(patch_size=14, **kwargs):
|
1352 |
+
model = DinoWindowVisionTransformer(
|
1353 |
+
patch_size=patch_size,
|
1354 |
+
embed_dim=768,
|
1355 |
+
depth=12,
|
1356 |
+
num_heads=12,
|
1357 |
+
mlp_ratio=4,
|
1358 |
+
block_fn=partial(NestedTensorBlock, attn_class=MemEffAttention),
|
1359 |
+
**kwargs,
|
1360 |
+
)
|
1361 |
+
return model
|
1362 |
+
|
1363 |
+
|
1364 |
+
def vit_large(patch_size=14, checkpoint=None, **kwargs):
|
1365 |
+
model = DinoVisionTransformer(
|
1366 |
+
img_size = 518,
|
1367 |
+
patch_size=patch_size,
|
1368 |
+
embed_dim=1024,
|
1369 |
+
depth=24,
|
1370 |
+
num_heads=16,
|
1371 |
+
mlp_ratio=4,
|
1372 |
+
block_fn=partial(NestedTensorBlock, attn_class=MemEffAttention),
|
1373 |
+
**kwargs,
|
1374 |
+
)
|
1375 |
+
|
1376 |
+
if checkpoint is not None:
|
1377 |
+
with open(checkpoint, "rb") as f:
|
1378 |
+
state_dict = torch.load(f)
|
1379 |
+
try:
|
1380 |
+
model.load_state_dict(state_dict, strict=True)
|
1381 |
+
except:
|
1382 |
+
new_state_dict = {}
|
1383 |
+
for key, value in state_dict.items():
|
1384 |
+
if 'blocks' in key:
|
1385 |
+
key_new = 'blocks.0' + key[len('blocks'):]
|
1386 |
+
else:
|
1387 |
+
key_new = key
|
1388 |
+
new_state_dict[key_new] = value
|
1389 |
+
|
1390 |
+
model.load_state_dict(new_state_dict, strict=True)
|
1391 |
+
#del model.norm
|
1392 |
+
del model.mask_token
|
1393 |
+
return model
|
1394 |
+
|
1395 |
+
# model = DinoWindowVisionTransformer(
|
1396 |
+
# img_size = 518,
|
1397 |
+
# patch_size=patch_size,
|
1398 |
+
# embed_dim=1024,
|
1399 |
+
# depth=24,
|
1400 |
+
# num_heads=16,
|
1401 |
+
# mlp_ratio=4,
|
1402 |
+
# block_fn=partial(NestedTensorBlock, attn_class=MemEffAttention),
|
1403 |
+
# window_size=37,
|
1404 |
+
# **kwargs,
|
1405 |
+
# )
|
1406 |
+
|
1407 |
+
# if checkpoint is not None:
|
1408 |
+
# with open(checkpoint, "rb") as f:
|
1409 |
+
# state_dict = torch.load(f)
|
1410 |
+
# try:
|
1411 |
+
# model.load_state_dict(state_dict, strict=True)
|
1412 |
+
# except:
|
1413 |
+
# new_state_dict = {}
|
1414 |
+
# for key, value in state_dict.items():
|
1415 |
+
# if 'blocks' in key:
|
1416 |
+
# key_new = 'blocks.0' + key[len('blocks'):]
|
1417 |
+
# else:
|
1418 |
+
# key_new = key
|
1419 |
+
# if 'pos_embed' in key:
|
1420 |
+
# value = value[:, 1:, :]
|
1421 |
+
# new_state_dict[key_new] = value
|
1422 |
+
|
1423 |
+
# model.load_state_dict(new_state_dict, strict=False)
|
1424 |
+
# #del model.norm
|
1425 |
+
# del model.mask_token
|
1426 |
+
return model
|
1427 |
+
|
1428 |
+
|
1429 |
+
def vit_giant2(patch_size=16, **kwargs):
|
1430 |
+
"""
|
1431 |
+
Close to ViT-giant, with embed-dim 1536 and 24 heads => embed-dim per head 64
|
1432 |
+
"""
|
1433 |
+
model = DinoVisionTransformer(
|
1434 |
+
patch_size=patch_size,
|
1435 |
+
embed_dim=1536,
|
1436 |
+
depth=40,
|
1437 |
+
num_heads=24,
|
1438 |
+
mlp_ratio=4,
|
1439 |
+
block_fn=partial(Block, attn_class=MemEffAttention),
|
1440 |
+
**kwargs,
|
1441 |
+
)
|
1442 |
+
return model
|
1443 |
+
|
1444 |
+
if __name__ == '__main__':
|
1445 |
+
try:
|
1446 |
+
from mmcv.utils import Config
|
1447 |
+
except:
|
1448 |
+
from mmengine import Config
|
1449 |
+
|
1450 |
+
#rgb = torch.rand((2, 3, 518, 518)).cuda()
|
1451 |
+
|
1452 |
+
#cfg.data_basic['crop_size']['0']
|
1453 |
+
#cfg.data_basic['crop_size']['1']
|
1454 |
+
cfg = Config.fromfile('/cpfs01/user/mu.hu/monodepth/mono/configs/HourglassDecoder/pub12.convlarge.0.3_150.py')
|
1455 |
+
|
1456 |
+
#rgb = torch.arange(0, 2*3*1036*1036, 1).cuda().float().view(2, 3, 1036, 1036)
|
1457 |
+
rgb = torch.zeros(1, 3, 1400, 1680).cuda()
|
1458 |
+
model = vit_large(checkpoint="/cpfs02/shared/public/custom/group_local_map/yvan/pretrained_weight_repo/vit/dinov2_vitl14_pretrain.pth", kwarg=cfg).cuda()
|
1459 |
+
|
1460 |
+
#import timm
|
1461 |
+
#model2 = timm.models.vision_transformer.vit_large_patch14_dinov2().cuda()
|
1462 |
+
#timm.models.load_checkpoint(model2, '/cpfs02/shared/public/yvan/pretrained_weight_repo/vit/dinov2_vitl14_pretrain.pth', filter_fn=timm.models.vision_transformer.checkpoint_filter_fn)
|
1463 |
+
|
1464 |
+
out1 = model(rgb)
|
1465 |
+
#out2 = model2(rgb)
|
1466 |
+
temp = 0
|
1467 |
+
|
1468 |
+
|
1469 |
+
|
1470 |
+
# import time
|
1471 |
+
# window_size = 37
|
1472 |
+
# def prepare_window_masks(shape):
|
1473 |
+
# if window_size <= 0:
|
1474 |
+
# return None
|
1475 |
+
# import xformers.components.attention.attention_patterns as AP
|
1476 |
+
|
1477 |
+
# B, nh, nw, _, _ = shape
|
1478 |
+
# radius = (window_size-1)//2
|
1479 |
+
# #time0 = time.time()
|
1480 |
+
# d = AP.local_nd_distance(nh, nw, distance = radius + 0.1, p=torch.inf).cuda()
|
1481 |
+
# #mask = AP.local_2d_pattern(nh, nw, distance = radius + 0.1, p=torch.inf).cuda()
|
1482 |
+
# # mask = mask.view(nh, nw, nh, nw)
|
1483 |
+
# # #time1 = time.time() - time0
|
1484 |
+
|
1485 |
+
# # # angle
|
1486 |
+
# # mask[:radius+1, :radius+1, :window_size, :window_size] = True
|
1487 |
+
# # mask[:radius+1, -radius-1:, :window_size, -window_size:] = True
|
1488 |
+
# # mask[-radius-1:, :radius+1, -window_size:, :window_size] = True
|
1489 |
+
# # mask[-radius-1:, -radius-1:, -window_size:, -window_size:] = True
|
1490 |
+
# # time2 = time.time() - time0 - time1
|
1491 |
+
|
1492 |
+
# # # edge
|
1493 |
+
# # mask[radius+1:-radius-1, :radius+1, :, :] = mask[radius+1:-radius-1, radius:radius+1, :, :]
|
1494 |
+
# # mask[radius+1:-radius-1, -radius-1:, :, :] = mask[radius+1:-radius-1, -radius-1:-radius, :, :]
|
1495 |
+
# # mask[:radius+1, radius+1:-radius-1, :, :] = mask[radius:radius+1, radius+1:-radius-1, :, :]
|
1496 |
+
# # mask[-radius-1:, radius+1:-radius-1, :, :] = mask[-radius-1:-radius, radius+1:-radius-1, :, :]
|
1497 |
+
# # time3 = time.time() - time0 - time2
|
1498 |
+
# # print(time1, time2, time3)
|
1499 |
+
|
1500 |
+
# # return mask.view(nw*nw, nh*nw).unsqueeze(0).repeat(B, 1)
|
1501 |
+
|
1502 |
+
# shape = (1, 55, 55, None, None)
|
1503 |
+
# mask = prepare_window_masks(shape)
|
1504 |
+
# # temp = 1
|
mono/model/backbones/ViT_DINO_reg.py
ADDED
@@ -0,0 +1,1293 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
2 |
+
# All rights reserved.
|
3 |
+
#
|
4 |
+
# This source code is licensed under the license found in the
|
5 |
+
# LICENSE file in the root directory of this source tree.
|
6 |
+
|
7 |
+
# References:
|
8 |
+
# https://github.com/facebookresearch/dino/blob/main/vision_transformer.py
|
9 |
+
# https://github.com/rwightman/pytorch-image-models/tree/master/timm/models/vision_transformer.py
|
10 |
+
|
11 |
+
from functools import partial
|
12 |
+
import math
|
13 |
+
import logging
|
14 |
+
from typing import Sequence, Tuple, Union, Callable, Optional, Dict, Any, List
|
15 |
+
|
16 |
+
import torch
|
17 |
+
import torch.nn as nn
|
18 |
+
from torch import Tensor
|
19 |
+
import torch.utils.checkpoint
|
20 |
+
from torch.nn.init import trunc_normal_
|
21 |
+
import torch.nn.init
|
22 |
+
import torch.nn.functional as F
|
23 |
+
|
24 |
+
#from dinov2.layers import Mlp, PatchEmbed, SwiGLUFFNFused, MemEffAttention, NestedTensorBlock as Block
|
25 |
+
|
26 |
+
logger = logging.getLogger("dinov2")
|
27 |
+
|
28 |
+
# SSF finetuning originally by dongzelian
|
29 |
+
def init_ssf_scale_shift(dim):
|
30 |
+
scale = nn.Parameter(torch.ones(dim))
|
31 |
+
shift = nn.Parameter(torch.zeros(dim))
|
32 |
+
|
33 |
+
nn.init.normal_(scale, mean=1, std=.02)
|
34 |
+
nn.init.normal_(shift, std=.02)
|
35 |
+
|
36 |
+
return scale, shift
|
37 |
+
|
38 |
+
def ssf_ada(x, scale, shift):
|
39 |
+
assert scale.shape == shift.shape
|
40 |
+
if x.shape[-1] == scale.shape[0]:
|
41 |
+
return x * scale + shift
|
42 |
+
elif x.shape[1] == scale.shape[0]:
|
43 |
+
return x * scale.view(1, -1, 1, 1) + shift.view(1, -1, 1, 1)
|
44 |
+
else:
|
45 |
+
raise ValueError('the input tensor shape does not match the shape of the scale factor.')
|
46 |
+
|
47 |
+
# LoRA finetuning originally by edwardjhu
|
48 |
+
class LoRALayer():
|
49 |
+
def __init__(
|
50 |
+
self,
|
51 |
+
r: int,
|
52 |
+
lora_alpha: int,
|
53 |
+
lora_dropout: float,
|
54 |
+
merge_weights: bool,
|
55 |
+
):
|
56 |
+
self.r = r
|
57 |
+
self.lora_alpha = lora_alpha
|
58 |
+
# Optional dropout
|
59 |
+
if lora_dropout > 0.:
|
60 |
+
self.lora_dropout = nn.Dropout(p=lora_dropout)
|
61 |
+
else:
|
62 |
+
self.lora_dropout = lambda x: x
|
63 |
+
# Mark the weight as unmerged
|
64 |
+
self.merged = False
|
65 |
+
self.merge_weights = merge_weights
|
66 |
+
|
67 |
+
class LoRALinear(nn.Linear, LoRALayer):
|
68 |
+
# LoRA implemented in a dense layer
|
69 |
+
def __init__(
|
70 |
+
self,
|
71 |
+
in_features: int,
|
72 |
+
out_features: int,
|
73 |
+
r: int = 0,
|
74 |
+
lora_alpha: int = 1,
|
75 |
+
lora_dropout: float = 0.,
|
76 |
+
fan_in_fan_out: bool = False, # Set this to True if the layer to replace stores weight like (fan_in, fan_out)
|
77 |
+
merge_weights: bool = True,
|
78 |
+
**kwargs
|
79 |
+
):
|
80 |
+
nn.Linear.__init__(self, in_features, out_features, **kwargs)
|
81 |
+
LoRALayer.__init__(self, r=r, lora_alpha=lora_alpha, lora_dropout=lora_dropout,
|
82 |
+
merge_weights=merge_weights)
|
83 |
+
|
84 |
+
self.fan_in_fan_out = fan_in_fan_out
|
85 |
+
# Actual trainable parameters
|
86 |
+
if r > 0:
|
87 |
+
self.lora_A = nn.Parameter(self.weight.new_zeros((r, in_features)))
|
88 |
+
self.lora_B = nn.Parameter(self.weight.new_zeros((out_features, r)))
|
89 |
+
self.scaling = self.lora_alpha / self.r
|
90 |
+
# Freezing the pre-trained weight matrix
|
91 |
+
self.weight.requires_grad = False
|
92 |
+
self.reset_parameters()
|
93 |
+
if fan_in_fan_out:
|
94 |
+
self.weight.data = self.weight.data.transpose(0, 1)
|
95 |
+
|
96 |
+
def reset_parameters(self):
|
97 |
+
#nn.Linear.reset_parameters(self)
|
98 |
+
if hasattr(self, 'lora_A'):
|
99 |
+
# initialize B the same way as the default for nn.Linear and A to zero
|
100 |
+
# this is different than what is described in the paper but should not affect performance
|
101 |
+
nn.init.kaiming_uniform_(self.lora_A, a=math.sqrt(5))
|
102 |
+
nn.init.zeros_(self.lora_B)
|
103 |
+
|
104 |
+
# def train(self, mode: bool = True):
|
105 |
+
# def T(w):
|
106 |
+
# return w.transpose(0, 1) if self.fan_in_fan_out else w
|
107 |
+
# nn.Linear.train(self, mode)
|
108 |
+
# if mode:
|
109 |
+
# if self.merge_weights and self.merged:
|
110 |
+
# # Make sure that the weights are not merged
|
111 |
+
# if self.r > 0:
|
112 |
+
# self.weight.data -= T(self.lora_B @ self.lora_A) * self.scaling
|
113 |
+
# self.merged = False
|
114 |
+
# else:
|
115 |
+
# if self.merge_weights and not self.merged:
|
116 |
+
# # Merge the weights and mark it
|
117 |
+
# if self.r > 0:
|
118 |
+
# self.weight.data += T(self.lora_B @ self.lora_A) * self.scaling
|
119 |
+
# self.merged = True
|
120 |
+
|
121 |
+
def forward(self, x: torch.Tensor):
|
122 |
+
def T(w):
|
123 |
+
return w.transpose(0, 1) if self.fan_in_fan_out else w
|
124 |
+
if self.r > 0 and not self.merged:
|
125 |
+
result = F.linear(x, T(self.weight), bias=self.bias)
|
126 |
+
result += (self.lora_dropout(x) @ self.lora_A.transpose(0, 1) @ self.lora_B.transpose(0, 1)) * self.scaling
|
127 |
+
return result
|
128 |
+
else:
|
129 |
+
return F.linear(x, T(self.weight), bias=self.bias)
|
130 |
+
|
131 |
+
|
132 |
+
|
133 |
+
def make_2tuple(x):
|
134 |
+
if isinstance(x, tuple):
|
135 |
+
assert len(x) == 2
|
136 |
+
return x
|
137 |
+
|
138 |
+
assert isinstance(x, int)
|
139 |
+
return (x, x)
|
140 |
+
|
141 |
+
def drop_path(x, drop_prob: float = 0.0, training: bool = False):
|
142 |
+
if drop_prob == 0.0 or not training:
|
143 |
+
return x
|
144 |
+
keep_prob = 1 - drop_prob
|
145 |
+
shape = (x.shape[0],) + (1,) * (x.ndim - 1) # work with diff dim tensors, not just 2D ConvNets
|
146 |
+
random_tensor = x.new_empty(shape).bernoulli_(keep_prob)
|
147 |
+
if keep_prob > 0.0:
|
148 |
+
random_tensor.div_(keep_prob)
|
149 |
+
output = x * random_tensor
|
150 |
+
return output
|
151 |
+
|
152 |
+
class DropPath(nn.Module):
|
153 |
+
"""Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks)."""
|
154 |
+
|
155 |
+
def __init__(self, drop_prob=None):
|
156 |
+
super(DropPath, self).__init__()
|
157 |
+
self.drop_prob = drop_prob
|
158 |
+
|
159 |
+
def forward(self, x):
|
160 |
+
return drop_path(x, self.drop_prob, self.training)
|
161 |
+
|
162 |
+
class LayerScale(nn.Module):
|
163 |
+
def __init__(
|
164 |
+
self,
|
165 |
+
dim: int,
|
166 |
+
init_values: Union[float, Tensor] = 1e-5,
|
167 |
+
inplace: bool = False,
|
168 |
+
) -> None:
|
169 |
+
super().__init__()
|
170 |
+
self.inplace = inplace
|
171 |
+
self.gamma = nn.Parameter(init_values * torch.ones(dim))
|
172 |
+
|
173 |
+
def forward(self, x: Tensor) -> Tensor:
|
174 |
+
return x.mul_(self.gamma) if self.inplace else x * self.gamma
|
175 |
+
|
176 |
+
|
177 |
+
class PatchEmbed(nn.Module):
|
178 |
+
"""
|
179 |
+
2D image to patch embedding: (B,C,H,W) -> (B,N,D)
|
180 |
+
|
181 |
+
Args:
|
182 |
+
img_size: Image size.
|
183 |
+
patch_size: Patch token size.
|
184 |
+
in_chans: Number of input image channels.
|
185 |
+
embed_dim: Number of linear projection output channels.
|
186 |
+
norm_layer: Normalization layer.
|
187 |
+
"""
|
188 |
+
|
189 |
+
def __init__(
|
190 |
+
self,
|
191 |
+
img_size: Union[int, Tuple[int, int]] = 224,
|
192 |
+
patch_size: Union[int, Tuple[int, int]] = 16,
|
193 |
+
in_chans: int = 3,
|
194 |
+
embed_dim: int = 768,
|
195 |
+
norm_layer: Optional[Callable] = None,
|
196 |
+
flatten_embedding: bool = True,
|
197 |
+
tuning_mode: Optional[str] = None
|
198 |
+
) -> None:
|
199 |
+
super().__init__()
|
200 |
+
|
201 |
+
image_HW = make_2tuple(img_size)
|
202 |
+
patch_HW = make_2tuple(patch_size)
|
203 |
+
patch_grid_size = (
|
204 |
+
image_HW[0] // patch_HW[0],
|
205 |
+
image_HW[1] // patch_HW[1],
|
206 |
+
)
|
207 |
+
|
208 |
+
self.img_size = image_HW
|
209 |
+
self.patch_size = patch_HW
|
210 |
+
self.patches_resolution = patch_grid_size
|
211 |
+
self.num_patches = patch_grid_size[0] * patch_grid_size[1]
|
212 |
+
|
213 |
+
self.in_chans = in_chans
|
214 |
+
self.embed_dim = embed_dim
|
215 |
+
|
216 |
+
self.flatten_embedding = flatten_embedding
|
217 |
+
|
218 |
+
self.proj = nn.Conv2d(in_chans, embed_dim, kernel_size=patch_HW, stride=patch_HW)
|
219 |
+
self.norm = norm_layer(embed_dim) if norm_layer else nn.Identity()
|
220 |
+
|
221 |
+
if tuning_mode != None:
|
222 |
+
self.tuning_mode = tuning_mode
|
223 |
+
if tuning_mode == 'ssf':
|
224 |
+
self.ssf_scale_1, self.ssf_shift_1 = init_ssf_scale_shift(embed_dim)
|
225 |
+
else:
|
226 |
+
pass
|
227 |
+
#raise NotImplementedError()
|
228 |
+
else:
|
229 |
+
self.tuning_mode = None
|
230 |
+
|
231 |
+
def forward(self, x: Tensor) -> Tensor:
|
232 |
+
_, _, H, W = x.shape
|
233 |
+
patch_H, patch_W = self.patch_size
|
234 |
+
|
235 |
+
assert H % patch_H == 0, f"Input image height {H} is not a multiple of patch height {patch_H}"
|
236 |
+
assert W % patch_W == 0, f"Input image width {W} is not a multiple of patch width: {patch_W}"
|
237 |
+
|
238 |
+
x = self.proj(x) # B C H W
|
239 |
+
H, W = x.size(2), x.size(3)
|
240 |
+
x = x.flatten(2).transpose(1, 2) # B HW C
|
241 |
+
x = self.norm(x)
|
242 |
+
if self.tuning_mode == 'ssf':
|
243 |
+
x = ssf_ada(x, self.ssf_scale_1, self.ssf_shift_1)
|
244 |
+
if not self.flatten_embedding:
|
245 |
+
x = x.reshape(-1, H, W, self.embed_dim) # B H W C
|
246 |
+
return x
|
247 |
+
|
248 |
+
def flops(self) -> float:
|
249 |
+
Ho, Wo = self.patches_resolution
|
250 |
+
flops = Ho * Wo * self.embed_dim * self.in_chans * (self.patch_size[0] * self.patch_size[1])
|
251 |
+
if self.norm is not None:
|
252 |
+
flops += Ho * Wo * self.embed_dim
|
253 |
+
return flops
|
254 |
+
|
255 |
+
class Mlp(nn.Module):
|
256 |
+
def __init__(
|
257 |
+
self,
|
258 |
+
in_features: int,
|
259 |
+
hidden_features: Optional[int] = None,
|
260 |
+
out_features: Optional[int] = None,
|
261 |
+
act_layer: Callable[..., nn.Module] = nn.GELU,
|
262 |
+
drop: float = 0.0,
|
263 |
+
bias: bool = True,
|
264 |
+
tuning_mode: Optional[int] = None
|
265 |
+
) -> None:
|
266 |
+
super().__init__()
|
267 |
+
out_features = out_features or in_features
|
268 |
+
hidden_features = hidden_features or in_features
|
269 |
+
self.fc1 = nn.Linear(in_features, hidden_features, bias=bias)
|
270 |
+
self.act = act_layer()
|
271 |
+
self.fc2 = nn.Linear(hidden_features, out_features, bias=bias)
|
272 |
+
self.drop = nn.Dropout(drop)
|
273 |
+
|
274 |
+
if tuning_mode != None:
|
275 |
+
self.tuning_mode = tuning_mode
|
276 |
+
if tuning_mode == 'ssf':
|
277 |
+
self.ssf_scale_1, self.ssf_shift_1 = init_ssf_scale_shift(hidden_features)
|
278 |
+
self.ssf_scale_2, self.ssf_shift_2 = init_ssf_scale_shift(out_features)
|
279 |
+
else:
|
280 |
+
pass
|
281 |
+
#raise NotImplementedError()
|
282 |
+
else:
|
283 |
+
self.tuning_mode = None
|
284 |
+
|
285 |
+
def forward(self, x: Tensor) -> Tensor:
|
286 |
+
x = self.fc1(x)
|
287 |
+
if self.tuning_mode == 'ssf':
|
288 |
+
x = ssf_ada(x, self.ssf_scale_1, self.ssf_shift_1)
|
289 |
+
|
290 |
+
x = self.act(x)
|
291 |
+
x = self.drop(x)
|
292 |
+
x = self.fc2(x)
|
293 |
+
if self.tuning_mode == 'ssf':
|
294 |
+
x = ssf_ada(x, self.ssf_scale_2, self.ssf_shift_2)
|
295 |
+
|
296 |
+
x = self.drop(x)
|
297 |
+
return x
|
298 |
+
|
299 |
+
|
300 |
+
class SwiGLUFFN(nn.Module):
|
301 |
+
def __init__(
|
302 |
+
self,
|
303 |
+
in_features: int,
|
304 |
+
hidden_features: Optional[int] = None,
|
305 |
+
out_features: Optional[int] = None,
|
306 |
+
act_layer: Callable[..., nn.Module] = None,
|
307 |
+
drop: float = 0.0,
|
308 |
+
bias: bool = True,
|
309 |
+
tuning_mode: Optional[int] = None
|
310 |
+
) -> None:
|
311 |
+
super().__init__()
|
312 |
+
out_features = out_features or in_features
|
313 |
+
hidden_features = hidden_features or in_features
|
314 |
+
self.w12 = nn.Linear(in_features, 2 * hidden_features, bias=bias)
|
315 |
+
self.w3 = nn.Linear(hidden_features, out_features, bias=bias)
|
316 |
+
|
317 |
+
if tuning_mode != None:
|
318 |
+
self.tuning_mode = tuning_mode
|
319 |
+
if tuning_mode == 'ssf':
|
320 |
+
self.ssf_scale_1, self.ssf_shift_1 = init_ssf_scale_shift(2 * hidden_features)
|
321 |
+
self.ssf_scale_2, self.ssf_shift_2 = init_ssf_scale_shift(out_features)
|
322 |
+
else:
|
323 |
+
pass
|
324 |
+
#raise NotImplementedError()
|
325 |
+
else:
|
326 |
+
self.tuning_mode = None
|
327 |
+
|
328 |
+
|
329 |
+
def forward(self, x: Tensor) -> Tensor:
|
330 |
+
x12 = self.w12(x)
|
331 |
+
if self.tuning_mode == 'ssf':
|
332 |
+
x12 = ssf_ada(x12, self.ssf_scale_1, self.ssf_shift_1)
|
333 |
+
|
334 |
+
x1, x2 = x12.chunk(2, dim=-1)
|
335 |
+
hidden = F.silu(x1) * x2
|
336 |
+
out = self.w3(hidden)
|
337 |
+
|
338 |
+
if self.tuning_mode == 'ssf':
|
339 |
+
out = ssf_ada(out, self.ssf_scale_2, self.ssf_scale_2)
|
340 |
+
|
341 |
+
return out
|
342 |
+
|
343 |
+
|
344 |
+
try:
|
345 |
+
from xformers.ops import SwiGLU
|
346 |
+
#import numpy.bool
|
347 |
+
XFORMERS_AVAILABLE = True
|
348 |
+
except ImportError:
|
349 |
+
SwiGLU = SwiGLUFFN
|
350 |
+
XFORMERS_AVAILABLE = False
|
351 |
+
|
352 |
+
class SwiGLUFFNFused(SwiGLU):
|
353 |
+
def __init__(
|
354 |
+
self,
|
355 |
+
in_features: int,
|
356 |
+
hidden_features: Optional[int] = None,
|
357 |
+
out_features: Optional[int] = None,
|
358 |
+
act_layer: Callable[..., nn.Module] = None,
|
359 |
+
drop: float = 0.0,
|
360 |
+
bias: bool = True,
|
361 |
+
) -> None:
|
362 |
+
out_features = out_features or in_features
|
363 |
+
hidden_features = hidden_features or in_features
|
364 |
+
hidden_features = (int(hidden_features * 2 / 3) + 7) // 8 * 8
|
365 |
+
super().__init__(
|
366 |
+
in_features=in_features,
|
367 |
+
hidden_features=hidden_features,
|
368 |
+
out_features=out_features,
|
369 |
+
bias=bias,
|
370 |
+
)
|
371 |
+
|
372 |
+
|
373 |
+
try:
|
374 |
+
from xformers.ops import memory_efficient_attention, unbind, fmha
|
375 |
+
from xformers.components.attention import ScaledDotProduct
|
376 |
+
from xformers.components import MultiHeadDispatch
|
377 |
+
#import numpy.bool
|
378 |
+
XFORMERS_AVAILABLE = True
|
379 |
+
except ImportError:
|
380 |
+
logger.warning("xFormers not available")
|
381 |
+
XFORMERS_AVAILABLE = False
|
382 |
+
|
383 |
+
|
384 |
+
class Attention(nn.Module):
|
385 |
+
def __init__(
|
386 |
+
self,
|
387 |
+
dim: int,
|
388 |
+
num_heads: int = 8,
|
389 |
+
qkv_bias: bool = False,
|
390 |
+
proj_bias: bool = True,
|
391 |
+
attn_drop: float = 0.0,
|
392 |
+
proj_drop: float = 0.0,
|
393 |
+
window_size: int = 0,
|
394 |
+
tuning_mode: Optional[int] = None
|
395 |
+
) -> None:
|
396 |
+
super().__init__()
|
397 |
+
self.num_heads = num_heads
|
398 |
+
head_dim = dim // num_heads
|
399 |
+
self.scale = head_dim**-0.5
|
400 |
+
|
401 |
+
if tuning_mode == 'lora':
|
402 |
+
self.tuning_mode = tuning_mode
|
403 |
+
self.qkv = LoRALinear(dim, dim * 3, bias=qkv_bias, r=8)
|
404 |
+
else:
|
405 |
+
self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
|
406 |
+
|
407 |
+
self.attn_drop = nn.Dropout(attn_drop)
|
408 |
+
|
409 |
+
if tuning_mode == 'lora':
|
410 |
+
self.tuning_mode = tuning_mode
|
411 |
+
self.proj = LoRALinear(dim, dim, bias=proj_bias, r=8)
|
412 |
+
else:
|
413 |
+
self.proj = nn.Linear(dim, dim, bias=proj_bias)
|
414 |
+
self.proj_drop = nn.Dropout(proj_drop)
|
415 |
+
|
416 |
+
if tuning_mode != None:
|
417 |
+
self.tuning_mode = tuning_mode
|
418 |
+
if tuning_mode == 'ssf':
|
419 |
+
self.ssf_scale_1, self.ssf_shift_1 = init_ssf_scale_shift(dim * 3)
|
420 |
+
self.ssf_scale_2, self.ssf_shift_2 = init_ssf_scale_shift(dim)
|
421 |
+
else:
|
422 |
+
pass
|
423 |
+
#raise NotImplementedError()
|
424 |
+
else:
|
425 |
+
self.tuning_mode = None
|
426 |
+
|
427 |
+
#if not self.training:
|
428 |
+
#
|
429 |
+
# self.attn = ScaledDotProduct()
|
430 |
+
#self.attn = MultiHeadDispatch(dim_model=EMB, residual_dropout=DROPOUT, num_heads=HEADS, attention=attn)
|
431 |
+
|
432 |
+
def forward(self, x: Tensor, attn_bias=None) -> Tensor:
|
433 |
+
B, N, C = x.shape
|
434 |
+
if self.tuning_mode == 'ssf':
|
435 |
+
qkv = ssf_ada(self.qkv(x), self.ssf_scale_1, self.ssf_shift_1).reshape(B, N, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4)
|
436 |
+
else:
|
437 |
+
qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4)
|
438 |
+
|
439 |
+
q, k, v = qkv[0] * self.scale, qkv[1], qkv[2]
|
440 |
+
attn = q @ k.transpose(-2, -1)
|
441 |
+
|
442 |
+
if attn_bias is not None:
|
443 |
+
attn = attn + attn_bias[:, :, :N]
|
444 |
+
|
445 |
+
attn = attn.softmax(dim=-1)
|
446 |
+
attn = self.attn_drop(attn)
|
447 |
+
|
448 |
+
x = (attn @ v).transpose(1, 2).reshape(B, N, C)
|
449 |
+
x = self.proj(x)
|
450 |
+
|
451 |
+
if self.tuning_mode == 'ssf':
|
452 |
+
x = ssf_ada(x, self.ssf_scale_2, self.ssf_shift_2)
|
453 |
+
|
454 |
+
x = self.proj_drop(x)
|
455 |
+
return x
|
456 |
+
|
457 |
+
|
458 |
+
class MemEffAttention(Attention):
|
459 |
+
def forward(self, x: Tensor, attn_bias=None) -> Tensor:
|
460 |
+
if not XFORMERS_AVAILABLE:
|
461 |
+
#if True:
|
462 |
+
assert attn_bias is None, "xFormers is required for nested tensors usage"
|
463 |
+
return super().forward(x, attn_bias)
|
464 |
+
|
465 |
+
B, N, C = x.shape
|
466 |
+
if self.tuning_mode == 'ssf':
|
467 |
+
qkv = ssf_ada(self.qkv(x), self.ssf_scale_1, self.ssf_shift_1).reshape(B, N, 3, self.num_heads, C // self.num_heads)
|
468 |
+
else:
|
469 |
+
qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, C // self.num_heads)
|
470 |
+
|
471 |
+
q, k, v = unbind(qkv, 2)
|
472 |
+
if attn_bias is not None:
|
473 |
+
x = memory_efficient_attention(q, k, v, attn_bias=attn_bias[:, :, :N])
|
474 |
+
else:
|
475 |
+
x = memory_efficient_attention(q, k, v)
|
476 |
+
x = x.reshape([B, N, C])
|
477 |
+
|
478 |
+
x = self.proj(x)
|
479 |
+
if self.tuning_mode == 'ssf':
|
480 |
+
x = ssf_ada(x, self.ssf_scale_2, self.ssf_shift_2)
|
481 |
+
|
482 |
+
x = self.proj_drop(x)
|
483 |
+
return x
|
484 |
+
|
485 |
+
try:
|
486 |
+
from xformers.ops import fmha
|
487 |
+
from xformers.ops import scaled_index_add, index_select_cat
|
488 |
+
#import numpy.bool
|
489 |
+
XFORMERS_AVAILABLE = True
|
490 |
+
except ImportError:
|
491 |
+
logger.warning("xFormers not available")
|
492 |
+
XFORMERS_AVAILABLE = False
|
493 |
+
|
494 |
+
class Block(nn.Module):
|
495 |
+
def __init__(
|
496 |
+
self,
|
497 |
+
dim: int,
|
498 |
+
num_heads: int,
|
499 |
+
mlp_ratio: float = 4.0,
|
500 |
+
qkv_bias: bool = False,
|
501 |
+
proj_bias: bool = True,
|
502 |
+
ffn_bias: bool = True,
|
503 |
+
drop: float = 0.0,
|
504 |
+
attn_drop: float = 0.0,
|
505 |
+
init_values = None,
|
506 |
+
drop_path: float = 0.0,
|
507 |
+
act_layer: Callable[..., nn.Module] = nn.GELU,
|
508 |
+
norm_layer: Callable[..., nn.Module] = nn.LayerNorm,
|
509 |
+
attn_class: Callable[..., nn.Module] = Attention,
|
510 |
+
ffn_layer: Callable[..., nn.Module] = Mlp,
|
511 |
+
tuning_mode: Optional[int] = None
|
512 |
+
) -> None:
|
513 |
+
super().__init__()
|
514 |
+
# print(f"biases: qkv: {qkv_bias}, proj: {proj_bias}, ffn: {ffn_bias}")
|
515 |
+
self.norm1 = norm_layer(dim)
|
516 |
+
self.attn = attn_class(
|
517 |
+
dim,
|
518 |
+
num_heads=num_heads,
|
519 |
+
qkv_bias=qkv_bias,
|
520 |
+
proj_bias=proj_bias,
|
521 |
+
attn_drop=attn_drop,
|
522 |
+
proj_drop=drop,
|
523 |
+
tuning_mode=tuning_mode
|
524 |
+
)
|
525 |
+
|
526 |
+
if tuning_mode != None:
|
527 |
+
self.tuning_mode = tuning_mode
|
528 |
+
if tuning_mode == 'ssf':
|
529 |
+
self.ssf_scale_1, self.ssf_shift_1 = init_ssf_scale_shift(dim)
|
530 |
+
self.ssf_scale_2, self.ssf_shift_2 = init_ssf_scale_shift(dim)
|
531 |
+
else:
|
532 |
+
pass
|
533 |
+
#raise NotImplementedError()
|
534 |
+
else:
|
535 |
+
self.tuning_mode = None
|
536 |
+
|
537 |
+
self.ls1 = LayerScale(dim, init_values=init_values) if init_values else nn.Identity()
|
538 |
+
self.drop_path1 = DropPath(drop_path) if drop_path > 0.0 else nn.Identity()
|
539 |
+
|
540 |
+
self.norm2 = norm_layer(dim)
|
541 |
+
mlp_hidden_dim = int(dim * mlp_ratio)
|
542 |
+
self.mlp = ffn_layer(
|
543 |
+
in_features=dim,
|
544 |
+
hidden_features=mlp_hidden_dim,
|
545 |
+
act_layer=act_layer,
|
546 |
+
drop=drop,
|
547 |
+
bias=ffn_bias,
|
548 |
+
)
|
549 |
+
self.ls2 = LayerScale(dim, init_values=init_values) if init_values else nn.Identity()
|
550 |
+
self.drop_path2 = DropPath(drop_path) if drop_path > 0.0 else nn.Identity()
|
551 |
+
|
552 |
+
self.sample_drop_ratio = drop_path
|
553 |
+
|
554 |
+
def forward(self, x: Tensor, attn_bias=None) -> Tensor:
|
555 |
+
def attn_residual_func(x: Tensor, attn_bias) -> Tensor:
|
556 |
+
if self.tuning_mode == 'ssf':
|
557 |
+
return self.ls1(self.attn(ssf_ada(self.norm1(x), self.ssf_scale_1, self.ssf_shift_1), attn_bias))
|
558 |
+
else:
|
559 |
+
return self.ls1(self.attn(self.norm1(x), attn_bias))
|
560 |
+
|
561 |
+
def ffn_residual_func(x: Tensor) -> Tensor:
|
562 |
+
if self.tuning_mode == 'ssf':
|
563 |
+
return self.ls2(self.mlp(ssf_ada(self.norm2(x), self.ssf_scale_2, self.ssf_shift_2)))
|
564 |
+
else:
|
565 |
+
return self.ls2(self.mlp(self.norm2(x)))
|
566 |
+
|
567 |
+
if self.training and self.sample_drop_ratio > 0.1:
|
568 |
+
# the overhead is compensated only for a drop path rate larger than 0.1
|
569 |
+
x = drop_add_residual_stochastic_depth(
|
570 |
+
x,
|
571 |
+
residual_func=attn_residual_func,
|
572 |
+
sample_drop_ratio=self.sample_drop_ratio,
|
573 |
+
attn_bias=attn_bias
|
574 |
+
)
|
575 |
+
x = drop_add_residual_stochastic_depth(
|
576 |
+
x,
|
577 |
+
residual_func=ffn_residual_func,
|
578 |
+
sample_drop_ratio=self.sample_drop_ratio,
|
579 |
+
)
|
580 |
+
elif self.training and self.sample_drop_ratio > 0.0:
|
581 |
+
x = x + self.drop_path1(attn_residual_func(x, attn_bias))
|
582 |
+
x = x + self.drop_path1(ffn_residual_func(x)) # FIXME: drop_path2
|
583 |
+
else:
|
584 |
+
x = x + attn_residual_func(x, attn_bias)
|
585 |
+
x = x + ffn_residual_func(x)
|
586 |
+
return x
|
587 |
+
|
588 |
+
|
589 |
+
def drop_add_residual_stochastic_depth(
|
590 |
+
x: Tensor,
|
591 |
+
residual_func: Callable[[Tensor], Tensor],
|
592 |
+
sample_drop_ratio: float = 0.0, attn_bias=None
|
593 |
+
) -> Tensor:
|
594 |
+
# 1) extract subset using permutation
|
595 |
+
b, n, d = x.shape
|
596 |
+
sample_subset_size = max(int(b * (1 - sample_drop_ratio)), 1)
|
597 |
+
brange = (torch.randperm(b, device=x.device))[:sample_subset_size]
|
598 |
+
x_subset = x[brange]
|
599 |
+
|
600 |
+
# 2) apply residual_func to get residual
|
601 |
+
residual = residual_func(x_subset, attn_bias)
|
602 |
+
|
603 |
+
x_flat = x.flatten(1)
|
604 |
+
residual = residual.flatten(1)
|
605 |
+
|
606 |
+
residual_scale_factor = b / sample_subset_size
|
607 |
+
|
608 |
+
# 3) add the residual
|
609 |
+
x_plus_residual = torch.index_add(x_flat, 0, brange, residual.to(dtype=x.dtype), alpha=residual_scale_factor)
|
610 |
+
return x_plus_residual.view_as(x)
|
611 |
+
|
612 |
+
|
613 |
+
def get_branges_scales(x, sample_drop_ratio=0.0):
|
614 |
+
b, n, d = x.shape
|
615 |
+
sample_subset_size = max(int(b * (1 - sample_drop_ratio)), 1)
|
616 |
+
brange = (torch.randperm(b, device=x.device))[:sample_subset_size]
|
617 |
+
residual_scale_factor = b / sample_subset_size
|
618 |
+
return brange, residual_scale_factor
|
619 |
+
|
620 |
+
|
621 |
+
def add_residual(x, brange, residual, residual_scale_factor, scaling_vector=None):
|
622 |
+
if scaling_vector is None:
|
623 |
+
x_flat = x.flatten(1)
|
624 |
+
residual = residual.flatten(1)
|
625 |
+
x_plus_residual = torch.index_add(x_flat, 0, brange, residual.to(dtype=x.dtype), alpha=residual_scale_factor)
|
626 |
+
else:
|
627 |
+
x_plus_residual = scaled_index_add(
|
628 |
+
x, brange, residual.to(dtype=x.dtype), scaling=scaling_vector, alpha=residual_scale_factor
|
629 |
+
)
|
630 |
+
return x_plus_residual
|
631 |
+
|
632 |
+
|
633 |
+
attn_bias_cache: Dict[Tuple, Any] = {}
|
634 |
+
|
635 |
+
|
636 |
+
def get_attn_bias_and_cat(x_list, branges=None):
|
637 |
+
"""
|
638 |
+
this will perform the index select, cat the tensors, and provide the attn_bias from cache
|
639 |
+
"""
|
640 |
+
batch_sizes = [b.shape[0] for b in branges] if branges is not None else [x.shape[0] for x in x_list]
|
641 |
+
all_shapes = tuple((b, x.shape[1]) for b, x in zip(batch_sizes, x_list))
|
642 |
+
if all_shapes not in attn_bias_cache.keys():
|
643 |
+
seqlens = []
|
644 |
+
for b, x in zip(batch_sizes, x_list):
|
645 |
+
for _ in range(b):
|
646 |
+
seqlens.append(x.shape[1])
|
647 |
+
attn_bias = fmha.BlockDiagonalMask.from_seqlens(seqlens)
|
648 |
+
attn_bias._batch_sizes = batch_sizes
|
649 |
+
attn_bias_cache[all_shapes] = attn_bias
|
650 |
+
|
651 |
+
if branges is not None:
|
652 |
+
cat_tensors = index_select_cat([x.flatten(1) for x in x_list], branges).view(1, -1, x_list[0].shape[-1])
|
653 |
+
else:
|
654 |
+
tensors_bs1 = tuple(x.reshape([1, -1, *x.shape[2:]]) for x in x_list)
|
655 |
+
cat_tensors = torch.cat(tensors_bs1, dim=1)
|
656 |
+
|
657 |
+
return attn_bias_cache[all_shapes], cat_tensors
|
658 |
+
|
659 |
+
|
660 |
+
def drop_add_residual_stochastic_depth_list(
|
661 |
+
x_list: List[Tensor],
|
662 |
+
residual_func: Callable[[Tensor, Any], Tensor],
|
663 |
+
sample_drop_ratio: float = 0.0,
|
664 |
+
scaling_vector=None,
|
665 |
+
) -> Tensor:
|
666 |
+
# 1) generate random set of indices for dropping samples in the batch
|
667 |
+
branges_scales = [get_branges_scales(x, sample_drop_ratio=sample_drop_ratio) for x in x_list]
|
668 |
+
branges = [s[0] for s in branges_scales]
|
669 |
+
residual_scale_factors = [s[1] for s in branges_scales]
|
670 |
+
|
671 |
+
# 2) get attention bias and index+concat the tensors
|
672 |
+
attn_bias, x_cat = get_attn_bias_and_cat(x_list, branges)
|
673 |
+
|
674 |
+
# 3) apply residual_func to get residual, and split the result
|
675 |
+
residual_list = attn_bias.split(residual_func(x_cat, attn_bias=attn_bias)) # type: ignore
|
676 |
+
|
677 |
+
outputs = []
|
678 |
+
for x, brange, residual, residual_scale_factor in zip(x_list, branges, residual_list, residual_scale_factors):
|
679 |
+
outputs.append(add_residual(x, brange, residual, residual_scale_factor, scaling_vector).view_as(x))
|
680 |
+
return outputs
|
681 |
+
|
682 |
+
|
683 |
+
class NestedTensorBlock(Block):
|
684 |
+
def forward_nested(self, x_list: List[Tensor]) -> List[Tensor]:
|
685 |
+
"""
|
686 |
+
x_list contains a list of tensors to nest together and run
|
687 |
+
"""
|
688 |
+
assert isinstance(self.attn, MemEffAttention)
|
689 |
+
|
690 |
+
if self.training and self.sample_drop_ratio > 0.0:
|
691 |
+
|
692 |
+
def attn_residual_func(x: Tensor, attn_bias=None) -> Tensor:
|
693 |
+
return self.attn(self.norm1(x), attn_bias=attn_bias)
|
694 |
+
|
695 |
+
def ffn_residual_func(x: Tensor, attn_bias=None) -> Tensor:
|
696 |
+
return self.mlp(self.norm2(x))
|
697 |
+
|
698 |
+
x_list = drop_add_residual_stochastic_depth_list(
|
699 |
+
x_list,
|
700 |
+
residual_func=attn_residual_func,
|
701 |
+
sample_drop_ratio=self.sample_drop_ratio,
|
702 |
+
scaling_vector=self.ls1.gamma if isinstance(self.ls1, LayerScale) else None,
|
703 |
+
)
|
704 |
+
x_list = drop_add_residual_stochastic_depth_list(
|
705 |
+
x_list,
|
706 |
+
residual_func=ffn_residual_func,
|
707 |
+
sample_drop_ratio=self.sample_drop_ratio,
|
708 |
+
scaling_vector=self.ls2.gamma if isinstance(self.ls1, LayerScale) else None,
|
709 |
+
)
|
710 |
+
return x_list
|
711 |
+
else:
|
712 |
+
|
713 |
+
def attn_residual_func(x: Tensor, attn_bias=None) -> Tensor:
|
714 |
+
return self.ls1(self.attn(self.norm1(x), attn_bias=attn_bias))
|
715 |
+
|
716 |
+
def ffn_residual_func(x: Tensor, attn_bias=None) -> Tensor:
|
717 |
+
return self.ls2(self.mlp(self.norm2(x)))
|
718 |
+
|
719 |
+
attn_bias, x = get_attn_bias_and_cat(x_list)
|
720 |
+
x = x + attn_residual_func(x, attn_bias=attn_bias)
|
721 |
+
x = x + ffn_residual_func(x)
|
722 |
+
return attn_bias.split(x)
|
723 |
+
|
724 |
+
def forward(self, x_or_x_list, attn_bias=None):
|
725 |
+
if isinstance(x_or_x_list, Tensor):
|
726 |
+
return super().forward(x_or_x_list, attn_bias)
|
727 |
+
elif isinstance(x_or_x_list, list):
|
728 |
+
assert XFORMERS_AVAILABLE, "Please install xFormers for nested tensors usage"
|
729 |
+
return self.forward_nested(x_or_x_list)
|
730 |
+
else:
|
731 |
+
raise AssertionError
|
732 |
+
|
733 |
+
|
734 |
+
def named_apply(fn: Callable, module: nn.Module, name="", depth_first=True, include_root=False) -> nn.Module:
|
735 |
+
if not depth_first and include_root:
|
736 |
+
fn(module=module, name=name)
|
737 |
+
for child_name, child_module in module.named_children():
|
738 |
+
child_name = ".".join((name, child_name)) if name else child_name
|
739 |
+
named_apply(fn=fn, module=child_module, name=child_name, depth_first=depth_first, include_root=True)
|
740 |
+
if depth_first and include_root:
|
741 |
+
fn(module=module, name=name)
|
742 |
+
return module
|
743 |
+
|
744 |
+
|
745 |
+
class BlockChunk(nn.ModuleList):
|
746 |
+
def forward(self, x, others=None):
|
747 |
+
for b in self:
|
748 |
+
if others == None:
|
749 |
+
x = b(x)
|
750 |
+
else:
|
751 |
+
x = b(x, others)
|
752 |
+
return x
|
753 |
+
|
754 |
+
|
755 |
+
class DinoVisionTransformer(nn.Module):
|
756 |
+
def __init__(
|
757 |
+
self,
|
758 |
+
img_size=518,
|
759 |
+
patch_size=16,
|
760 |
+
in_chans=3,
|
761 |
+
embed_dim=768,
|
762 |
+
depth=12,
|
763 |
+
num_heads=12,
|
764 |
+
mlp_ratio=4.0,
|
765 |
+
qkv_bias=True,
|
766 |
+
ffn_bias=True,
|
767 |
+
proj_bias=True,
|
768 |
+
drop_path_rate=0.0,
|
769 |
+
drop_path_uniform=False,
|
770 |
+
init_values=1e-5, # for layerscale: None or 0 => no layerscale
|
771 |
+
embed_layer=PatchEmbed,
|
772 |
+
act_layer=nn.GELU,
|
773 |
+
block_fn=Block,
|
774 |
+
ffn_layer="mlp",
|
775 |
+
block_chunks=1,
|
776 |
+
num_register_tokens=0,
|
777 |
+
interpolate_antialias=False,
|
778 |
+
interpolate_offset=0.1,
|
779 |
+
tuning_mode=None,
|
780 |
+
**kwargs
|
781 |
+
):
|
782 |
+
"""
|
783 |
+
Args:
|
784 |
+
img_size (int, tuple): input image size
|
785 |
+
patch_size (int, tuple): patch size
|
786 |
+
in_chans (int): number of input channels
|
787 |
+
embed_dim (int): embedding dimension
|
788 |
+
depth (int): depth of transformer
|
789 |
+
num_heads (int): number of attention heads
|
790 |
+
mlp_ratio (int): ratio of mlp hidden dim to embedding dim
|
791 |
+
qkv_bias (bool): enable bias for qkv if True
|
792 |
+
proj_bias (bool): enable bias for proj in attn if True
|
793 |
+
ffn_bias (bool): enable bias for ffn if True
|
794 |
+
drop_path_rate (float): stochastic depth rate
|
795 |
+
drop_path_uniform (bool): apply uniform drop rate across blocks
|
796 |
+
weight_init (str): weight init scheme
|
797 |
+
init_values (float): layer-scale init values
|
798 |
+
embed_layer (nn.Module): patch embedding layer
|
799 |
+
act_layer (nn.Module): MLP activation layer
|
800 |
+
block_fn (nn.Module): transformer block class
|
801 |
+
ffn_layer (str): "mlp", "swiglu", "swiglufused" or "identity"
|
802 |
+
block_chunks: (int) split block sequence into block_chunks units for FSDP wrap
|
803 |
+
num_register_tokens: (int) number of extra cls tokens (so-called "registers")
|
804 |
+
interpolate_antialias: (str) flag to apply anti-aliasing when interpolating positional embeddings
|
805 |
+
interpolate_offset: (float) work-around offset to apply when interpolating positional embeddings
|
806 |
+
"""
|
807 |
+
super().__init__()
|
808 |
+
norm_layer = partial(nn.LayerNorm, eps=1e-6)
|
809 |
+
|
810 |
+
self.num_features = self.embed_dim = embed_dim # num_features for consistency with other models
|
811 |
+
self.num_tokens = 1
|
812 |
+
self.n_blocks = depth
|
813 |
+
self.num_heads = num_heads
|
814 |
+
self.patch_size = patch_size
|
815 |
+
self.num_register_tokens = num_register_tokens
|
816 |
+
self.interpolate_antialias = interpolate_antialias
|
817 |
+
self.interpolate_offset = interpolate_offset
|
818 |
+
|
819 |
+
if tuning_mode != None:
|
820 |
+
self.tuning_mode = tuning_mode
|
821 |
+
if tuning_mode == 'ssf':
|
822 |
+
self.ssf_scale_1, self.ssf_shift_1 = init_ssf_scale_shift(embed_dim)
|
823 |
+
else:
|
824 |
+
pass
|
825 |
+
#raise NotImplementedError()
|
826 |
+
else:
|
827 |
+
self.tuning_mode = None
|
828 |
+
tuning_mode_list = [tuning_mode] * depth
|
829 |
+
|
830 |
+
self.patch_embed = embed_layer(img_size=img_size, patch_size=patch_size, in_chans=in_chans, embed_dim=embed_dim, tuning_mode=tuning_mode)
|
831 |
+
num_patches = self.patch_embed.num_patches
|
832 |
+
|
833 |
+
self.cls_token = nn.Parameter(torch.zeros(1, 1, embed_dim))
|
834 |
+
self.pos_embed = nn.Parameter(torch.zeros(1, num_patches + self.num_tokens, embed_dim))
|
835 |
+
assert num_register_tokens >= 0
|
836 |
+
self.register_tokens = (
|
837 |
+
nn.Parameter(torch.zeros(1, num_register_tokens, embed_dim)) if num_register_tokens else None
|
838 |
+
)
|
839 |
+
|
840 |
+
if drop_path_uniform is True:
|
841 |
+
dpr = [drop_path_rate] * depth
|
842 |
+
else:
|
843 |
+
dpr = [x.item() for x in torch.linspace(0, drop_path_rate, depth)] # stochastic depth decay rule
|
844 |
+
|
845 |
+
if ffn_layer == "mlp":
|
846 |
+
logger.info("using MLP layer as FFN")
|
847 |
+
ffn_layer = Mlp
|
848 |
+
elif ffn_layer == "swiglufused" or ffn_layer == "swiglu":
|
849 |
+
logger.info("using SwiGLU layer as FFN")
|
850 |
+
ffn_layer = SwiGLUFFNFused
|
851 |
+
elif ffn_layer == "identity":
|
852 |
+
logger.info("using Identity layer as FFN")
|
853 |
+
|
854 |
+
def f(*args, **kwargs):
|
855 |
+
return nn.Identity()
|
856 |
+
|
857 |
+
ffn_layer = f
|
858 |
+
else:
|
859 |
+
raise NotImplementedError
|
860 |
+
|
861 |
+
blocks_list = [
|
862 |
+
block_fn(
|
863 |
+
dim=embed_dim,
|
864 |
+
num_heads=num_heads,
|
865 |
+
mlp_ratio=mlp_ratio,
|
866 |
+
qkv_bias=qkv_bias,
|
867 |
+
proj_bias=proj_bias,
|
868 |
+
ffn_bias=ffn_bias,
|
869 |
+
drop_path=dpr[i],
|
870 |
+
norm_layer=norm_layer,
|
871 |
+
act_layer=act_layer,
|
872 |
+
ffn_layer=ffn_layer,
|
873 |
+
init_values=init_values,
|
874 |
+
tuning_mode=tuning_mode_list[i]
|
875 |
+
)
|
876 |
+
for i in range(depth)
|
877 |
+
]
|
878 |
+
if block_chunks > 0:
|
879 |
+
self.chunked_blocks = True
|
880 |
+
chunked_blocks = []
|
881 |
+
chunksize = depth // block_chunks
|
882 |
+
for i in range(0, depth, chunksize):
|
883 |
+
# this is to keep the block index consistent if we chunk the block list
|
884 |
+
chunked_blocks.append([nn.Identity()] * i + blocks_list[i : i + chunksize])
|
885 |
+
self.blocks = nn.ModuleList([BlockChunk(p) for p in chunked_blocks])
|
886 |
+
else:
|
887 |
+
self.chunked_blocks = False
|
888 |
+
self.blocks = nn.ModuleList(blocks_list)
|
889 |
+
|
890 |
+
self.norm = norm_layer(embed_dim)
|
891 |
+
self.head = nn.Identity()
|
892 |
+
|
893 |
+
self.mask_token = nn.Parameter(torch.zeros(1, embed_dim))
|
894 |
+
|
895 |
+
self.init_weights()
|
896 |
+
|
897 |
+
def init_weights(self):
|
898 |
+
trunc_normal_(self.pos_embed, std=0.02)
|
899 |
+
nn.init.normal_(self.cls_token, std=1e-6)
|
900 |
+
if self.register_tokens is not None:
|
901 |
+
nn.init.normal_(self.register_tokens, std=1e-6)
|
902 |
+
named_apply(init_weights_vit_timm, self)
|
903 |
+
|
904 |
+
def interpolate_pos_encoding(self, x, w, h):
|
905 |
+
previous_dtype = x.dtype
|
906 |
+
npatch = x.shape[1] - 1
|
907 |
+
N = self.pos_embed.shape[1] - 1
|
908 |
+
if npatch == N and w == h:
|
909 |
+
return self.pos_embed
|
910 |
+
pos_embed = self.pos_embed.float()
|
911 |
+
class_pos_embed = pos_embed[:, 0]
|
912 |
+
patch_pos_embed = pos_embed[:, 1:]
|
913 |
+
dim = x.shape[-1]
|
914 |
+
w0 = w // self.patch_size
|
915 |
+
h0 = h // self.patch_size
|
916 |
+
# we add a small number to avoid floating point error in the interpolation
|
917 |
+
# see discussion at https://github.com/facebookresearch/dino/issues/8
|
918 |
+
w0, h0 = w0 + self.interpolate_offset, h0 + self.interpolate_offset
|
919 |
+
|
920 |
+
sqrt_N = math.sqrt(N)
|
921 |
+
sx, sy = float(w0) / sqrt_N, float(h0) / sqrt_N
|
922 |
+
patch_pos_embed = nn.functional.interpolate(
|
923 |
+
patch_pos_embed.reshape(1, int(sqrt_N), int(sqrt_N), dim).permute(0, 3, 1, 2),
|
924 |
+
scale_factor=(sx, sy),
|
925 |
+
mode="bicubic",
|
926 |
+
antialias=self.interpolate_antialias,
|
927 |
+
)
|
928 |
+
|
929 |
+
assert int(w0) == patch_pos_embed.shape[-2]
|
930 |
+
assert int(h0) == patch_pos_embed.shape[-1]
|
931 |
+
patch_pos_embed = patch_pos_embed.permute(0, 2, 3, 1).view(1, -1, dim)
|
932 |
+
return torch.cat((class_pos_embed.unsqueeze(0), patch_pos_embed), dim=1).to(previous_dtype)
|
933 |
+
|
934 |
+
def prepare_tokens_with_masks(self, x, masks=None):
|
935 |
+
B, nc, w, h = x.shape
|
936 |
+
x = self.patch_embed(x)
|
937 |
+
if masks is not None:
|
938 |
+
x = torch.where(masks.unsqueeze(-1), self.mask_token.to(x.dtype).unsqueeze(0), x)
|
939 |
+
|
940 |
+
x = torch.cat((self.cls_token.expand(x.shape[0], -1, -1), x), dim=1)
|
941 |
+
x = x + self.interpolate_pos_encoding(x, w, h)
|
942 |
+
|
943 |
+
if self.register_tokens is not None:
|
944 |
+
x = torch.cat(
|
945 |
+
(
|
946 |
+
x[:, :1],
|
947 |
+
self.register_tokens.expand(x.shape[0], -1, -1),
|
948 |
+
x[:, 1:],
|
949 |
+
),
|
950 |
+
dim=1,
|
951 |
+
)
|
952 |
+
|
953 |
+
return x
|
954 |
+
|
955 |
+
def forward_features_list(self, x_list, masks_list):
|
956 |
+
x = [self.prepare_tokens_with_masks(x, masks) for x, masks in zip(x_list, masks_list)]
|
957 |
+
for blk in self.blocks:
|
958 |
+
x = blk(x)
|
959 |
+
|
960 |
+
all_x = x
|
961 |
+
output = []
|
962 |
+
for x, masks in zip(all_x, masks_list):
|
963 |
+
x_norm = self.norm(x)
|
964 |
+
output.append(
|
965 |
+
{
|
966 |
+
"x_norm_clstoken": x_norm[:, 0],
|
967 |
+
"x_norm_regtokens": x_norm[:, 1 : self.num_register_tokens + 1],
|
968 |
+
"x_norm_patchtokens": x_norm[:, self.num_register_tokens + 1 :],
|
969 |
+
"x_prenorm": x,
|
970 |
+
"masks": masks,
|
971 |
+
}
|
972 |
+
)
|
973 |
+
return output
|
974 |
+
|
975 |
+
def forward_features(self, x, masks=None):
|
976 |
+
if isinstance(x, list):
|
977 |
+
return self.forward_features_list(x, masks)
|
978 |
+
|
979 |
+
B, C, H, W = x.size()
|
980 |
+
pad_h = (self.patch_size - H % self.patch_size)
|
981 |
+
pad_w = (self.patch_size - W % self.patch_size)
|
982 |
+
if pad_h == self.patch_size:
|
983 |
+
pad_h = 0
|
984 |
+
if pad_w == self.patch_size:
|
985 |
+
pad_w = 0
|
986 |
+
#x = nn.functional.pad(x, (pad_h//2, pad_h-pad_h//2, pad_w//2, pad_w-pad_w//2))
|
987 |
+
if pad_h + pad_w > 0:
|
988 |
+
x = torch.nn.functional.interpolate(x, (H+pad_h, W+pad_w), mode='bilinear')
|
989 |
+
|
990 |
+
x = self.prepare_tokens_with_masks(x, masks)
|
991 |
+
|
992 |
+
for blk in self.blocks:
|
993 |
+
x = blk(x)
|
994 |
+
|
995 |
+
x_norm = self.norm(x)
|
996 |
+
if self.tuning_mode == 'ssf':
|
997 |
+
x_norm = ssf_ada(x_norm, self.ssf_scale_1, self.ssf_shift_1)
|
998 |
+
|
999 |
+
# return {
|
1000 |
+
# "x_norm_clstoken": x_norm[:, 0],
|
1001 |
+
# "x_norm_regtokens": x_norm[:, 1 : self.num_register_tokens + 1],
|
1002 |
+
# "x_norm_patchtokens": x_norm[:, self.num_register_tokens + 1 :],
|
1003 |
+
# "x_prenorm": x,
|
1004 |
+
# "masks": masks,
|
1005 |
+
# }
|
1006 |
+
features = []
|
1007 |
+
features.append(x_norm)
|
1008 |
+
features.append(x_norm)
|
1009 |
+
features.append(x_norm)
|
1010 |
+
features.append(x_norm)
|
1011 |
+
return [features, (B, (H+pad_h)//self.patch_size, (W+pad_w)//self.patch_size, H, W, self.num_register_tokens)]
|
1012 |
+
|
1013 |
+
|
1014 |
+
def _get_intermediate_layers_not_chunked(self, x, n=1):
|
1015 |
+
x = self.prepare_tokens_with_masks(x)
|
1016 |
+
# If n is an int, take the n last blocks. If it's a list, take them
|
1017 |
+
output, total_block_len = [], len(self.blocks)
|
1018 |
+
blocks_to_take = range(total_block_len - n, total_block_len) if isinstance(n, int) else n
|
1019 |
+
for i, blk in enumerate(self.blocks):
|
1020 |
+
x = blk(x)
|
1021 |
+
if i in blocks_to_take:
|
1022 |
+
output.append(x)
|
1023 |
+
assert len(output) == len(blocks_to_take), f"only {len(output)} / {len(blocks_to_take)} blocks found"
|
1024 |
+
return output
|
1025 |
+
|
1026 |
+
def _get_intermediate_layers_chunked(self, x, n=1):
|
1027 |
+
x = self.prepare_tokens_with_masks(x)
|
1028 |
+
output, i, total_block_len = [], 0, len(self.blocks[-1])
|
1029 |
+
# If n is an int, take the n last blocks. If it's a list, take them
|
1030 |
+
blocks_to_take = range(total_block_len - n, total_block_len) if isinstance(n, int) else n
|
1031 |
+
for block_chunk in self.blocks:
|
1032 |
+
for blk in block_chunk[i:]: # Passing the nn.Identity()
|
1033 |
+
x = blk(x)
|
1034 |
+
if i in blocks_to_take:
|
1035 |
+
output.append(x)
|
1036 |
+
i += 1
|
1037 |
+
assert len(output) == len(blocks_to_take), f"only {len(output)} / {len(blocks_to_take)} blocks found"
|
1038 |
+
return output
|
1039 |
+
|
1040 |
+
def get_intermediate_layers(
|
1041 |
+
self,
|
1042 |
+
x: torch.Tensor,
|
1043 |
+
n: Union[int, Sequence] = 1, # Layers or n last layers to take
|
1044 |
+
reshape: bool = False,
|
1045 |
+
return_class_token: bool = False,
|
1046 |
+
norm=True,
|
1047 |
+
) -> Tuple[Union[torch.Tensor, Tuple[torch.Tensor]]]:
|
1048 |
+
if self.chunked_blocks:
|
1049 |
+
outputs = self._get_intermediate_layers_chunked(x, n)
|
1050 |
+
else:
|
1051 |
+
outputs = self._get_intermediate_layers_not_chunked(x, n)
|
1052 |
+
if norm:
|
1053 |
+
outputs = [self.norm(out) for out in outputs]
|
1054 |
+
class_tokens = [out[:, 0] for out in outputs]
|
1055 |
+
outputs = [out[:, 1:] for out in outputs]
|
1056 |
+
if reshape:
|
1057 |
+
B, _, w, h = x.shape
|
1058 |
+
outputs = [
|
1059 |
+
out.reshape(B, w // self.patch_size, h // self.patch_size, -1).permute(0, 3, 1, 2).contiguous()
|
1060 |
+
for out in outputs
|
1061 |
+
]
|
1062 |
+
if return_class_token:
|
1063 |
+
return tuple(zip(outputs, class_tokens))
|
1064 |
+
return tuple(outputs)
|
1065 |
+
|
1066 |
+
def forward(self, *args, is_training=False, **kwargs):
|
1067 |
+
ret = self.forward_features(*args, **kwargs)
|
1068 |
+
return ret
|
1069 |
+
# if is_training:
|
1070 |
+
# return ret
|
1071 |
+
# else:
|
1072 |
+
# return self.head(ret["x_norm_clstoken"])
|
1073 |
+
|
1074 |
+
|
1075 |
+
def init_weights_vit_timm(module: nn.Module, name: str = ""):
|
1076 |
+
"""ViT weight initialization, original timm impl (for reproducibility)"""
|
1077 |
+
if isinstance(module, nn.Linear):
|
1078 |
+
trunc_normal_(module.weight, std=0.02)
|
1079 |
+
if module.bias is not None:
|
1080 |
+
nn.init.zeros_(module.bias)
|
1081 |
+
|
1082 |
+
|
1083 |
+
def load_ckpt_dino(checkpoint, model):
|
1084 |
+
if checkpoint is not None:
|
1085 |
+
try:
|
1086 |
+
with open(checkpoint, "rb") as f:
|
1087 |
+
state_dict = torch.load(f)
|
1088 |
+
except:
|
1089 |
+
print('NO pretrained imagenet ckpt available! Check your path!')
|
1090 |
+
del model.mask_token
|
1091 |
+
return
|
1092 |
+
|
1093 |
+
try:
|
1094 |
+
model.load_state_dict(state_dict, strict=True)
|
1095 |
+
except:
|
1096 |
+
new_state_dict = {}
|
1097 |
+
for key, value in state_dict.items():
|
1098 |
+
if 'blocks' in key:
|
1099 |
+
key_new = 'blocks.0' + key[len('blocks'):]
|
1100 |
+
else:
|
1101 |
+
key_new = key
|
1102 |
+
new_state_dict[key_new] = value
|
1103 |
+
|
1104 |
+
model.load_state_dict(new_state_dict, strict=True)
|
1105 |
+
del model.mask_token
|
1106 |
+
return
|
1107 |
+
else:
|
1108 |
+
return
|
1109 |
+
|
1110 |
+
|
1111 |
+
def vit_small(patch_size=14, num_register_tokens=0, checkpoint=None, **kwargs):
|
1112 |
+
model = DinoVisionTransformer(
|
1113 |
+
patch_size=patch_size,
|
1114 |
+
embed_dim=384,
|
1115 |
+
depth=12,
|
1116 |
+
num_heads=6,
|
1117 |
+
mlp_ratio=4,
|
1118 |
+
block_fn=partial(Block, attn_class=MemEffAttention),
|
1119 |
+
num_register_tokens=num_register_tokens,
|
1120 |
+
**kwargs,
|
1121 |
+
)
|
1122 |
+
|
1123 |
+
load_ckpt_dino(checkpoint, model)
|
1124 |
+
|
1125 |
+
return model
|
1126 |
+
|
1127 |
+
|
1128 |
+
def vit_base(patch_size=14, num_register_tokens=0, checkpoint=None, **kwargs):
|
1129 |
+
model = DinoVisionTransformer(
|
1130 |
+
patch_size=patch_size,
|
1131 |
+
embed_dim=768,
|
1132 |
+
depth=12,
|
1133 |
+
num_heads=12,
|
1134 |
+
mlp_ratio=4,
|
1135 |
+
block_fn=partial(Block, attn_class=MemEffAttention),
|
1136 |
+
num_register_tokens=num_register_tokens,
|
1137 |
+
**kwargs,
|
1138 |
+
)
|
1139 |
+
return model
|
1140 |
+
|
1141 |
+
|
1142 |
+
def vit_large(patch_size=14, num_register_tokens=0, checkpoint=None, **kwargs):
|
1143 |
+
model = DinoVisionTransformer(
|
1144 |
+
patch_size=patch_size,
|
1145 |
+
embed_dim=1024,
|
1146 |
+
depth=24,
|
1147 |
+
num_heads=16,
|
1148 |
+
mlp_ratio=4,
|
1149 |
+
block_fn=partial(Block, attn_class=MemEffAttention),
|
1150 |
+
num_register_tokens=num_register_tokens,
|
1151 |
+
**kwargs,
|
1152 |
+
)
|
1153 |
+
|
1154 |
+
if checkpoint is not None:
|
1155 |
+
with open(checkpoint, "rb") as f:
|
1156 |
+
state_dict = torch.load(f)
|
1157 |
+
try:
|
1158 |
+
model.load_state_dict(state_dict, strict=True)
|
1159 |
+
except:
|
1160 |
+
new_state_dict = {}
|
1161 |
+
for key, value in state_dict.items():
|
1162 |
+
if 'blocks' in key:
|
1163 |
+
key_new = 'blocks.0' + key[len('blocks'):]
|
1164 |
+
else:
|
1165 |
+
key_new = key
|
1166 |
+
new_state_dict[key_new] = value
|
1167 |
+
|
1168 |
+
model.load_state_dict(new_state_dict, strict=True)
|
1169 |
+
del model.mask_token
|
1170 |
+
return model
|
1171 |
+
|
1172 |
+
|
1173 |
+
def vit_giant2(patch_size=14, num_register_tokens=0, checkpoint=None, **kwargs):
|
1174 |
+
"""
|
1175 |
+
Close to ViT-giant, with embed-dim 1536 and 24 heads => embed-dim per head 64
|
1176 |
+
"""
|
1177 |
+
model = DinoVisionTransformer(
|
1178 |
+
patch_size=patch_size,
|
1179 |
+
embed_dim=1536,
|
1180 |
+
depth=40,
|
1181 |
+
num_heads=24,
|
1182 |
+
mlp_ratio=4,
|
1183 |
+
block_fn=partial(Block, attn_class=MemEffAttention),
|
1184 |
+
num_register_tokens=num_register_tokens,
|
1185 |
+
ffn_layer='swiglu',
|
1186 |
+
**kwargs,
|
1187 |
+
)
|
1188 |
+
return model
|
1189 |
+
|
1190 |
+
|
1191 |
+
|
1192 |
+
def vit_small_reg(patch_size=14, num_register_tokens=4, checkpoint=None, tuning_mode=None, **kwargs):
|
1193 |
+
model = DinoVisionTransformer(
|
1194 |
+
patch_size=patch_size,
|
1195 |
+
embed_dim=384,
|
1196 |
+
depth=12,
|
1197 |
+
num_heads=6,
|
1198 |
+
mlp_ratio=4,
|
1199 |
+
block_fn=partial(Block, attn_class=MemEffAttention),
|
1200 |
+
num_register_tokens=num_register_tokens,
|
1201 |
+
tuning_mode=tuning_mode,
|
1202 |
+
**kwargs,
|
1203 |
+
)
|
1204 |
+
|
1205 |
+
load_ckpt_dino(checkpoint, model)
|
1206 |
+
|
1207 |
+
return model
|
1208 |
+
|
1209 |
+
|
1210 |
+
def vit_base_reg(patch_size=14, num_register_tokens=4, checkpoint=None, **kwargs):
|
1211 |
+
model = DinoVisionTransformer(
|
1212 |
+
patch_size=patch_size,
|
1213 |
+
embed_dim=768,
|
1214 |
+
depth=12,
|
1215 |
+
num_heads=12,
|
1216 |
+
mlp_ratio=4,
|
1217 |
+
block_fn=partial(Block, attn_class=MemEffAttention),
|
1218 |
+
num_register_tokens=num_register_tokens,
|
1219 |
+
**kwargs,
|
1220 |
+
)
|
1221 |
+
|
1222 |
+
load_ckpt_dino(checkpoint, model)
|
1223 |
+
|
1224 |
+
return model
|
1225 |
+
|
1226 |
+
|
1227 |
+
def vit_large_reg(patch_size=14, num_register_tokens=4, checkpoint=None, tuning_mode=None, **kwargs):
|
1228 |
+
model = DinoVisionTransformer(
|
1229 |
+
img_size = 518,
|
1230 |
+
patch_size=patch_size,
|
1231 |
+
embed_dim=1024,
|
1232 |
+
depth=24,
|
1233 |
+
num_heads=16,
|
1234 |
+
mlp_ratio=4,
|
1235 |
+
block_fn=partial(Block, attn_class=MemEffAttention),
|
1236 |
+
num_register_tokens=num_register_tokens,
|
1237 |
+
tuning_mode=tuning_mode,
|
1238 |
+
**kwargs,
|
1239 |
+
)
|
1240 |
+
|
1241 |
+
load_ckpt_dino(checkpoint, model)
|
1242 |
+
|
1243 |
+
return model
|
1244 |
+
|
1245 |
+
|
1246 |
+
def vit_giant2_reg(patch_size=14, num_register_tokens=4, checkpoint=None, tuning_mode=None, **kwargs):
|
1247 |
+
"""
|
1248 |
+
Close to ViT-giant, with embed-dim 1536 and 24 heads => embed-dim per head 64
|
1249 |
+
"""
|
1250 |
+
model = DinoVisionTransformer(
|
1251 |
+
patch_size=patch_size,
|
1252 |
+
embed_dim=1536,
|
1253 |
+
depth=40,
|
1254 |
+
num_heads=24,
|
1255 |
+
mlp_ratio=4,
|
1256 |
+
block_fn=partial(Block, attn_class=MemEffAttention),
|
1257 |
+
num_register_tokens=num_register_tokens,
|
1258 |
+
ffn_layer='swiglu',
|
1259 |
+
tuning_mode=tuning_mode,
|
1260 |
+
**kwargs,
|
1261 |
+
)
|
1262 |
+
|
1263 |
+
load_ckpt_dino(checkpoint, model)
|
1264 |
+
|
1265 |
+
return model
|
1266 |
+
|
1267 |
+
if __name__ == '__main__':
|
1268 |
+
try:
|
1269 |
+
from mmcv.utils import Config
|
1270 |
+
except:
|
1271 |
+
from mmengine import Config
|
1272 |
+
|
1273 |
+
#rgb = torch.rand((2, 3, 518, 518)).cuda()
|
1274 |
+
|
1275 |
+
#cfg.data_basic['crop_size']['0']
|
1276 |
+
#cfg.data_basic['crop_size']['1']
|
1277 |
+
cfg = Config.fromfile('/opt/ml/project/mu.hu/projects/monodepth_vit/mono/configs/RAFTDecoder/vit.raft5.large.kitti.py')
|
1278 |
+
|
1279 |
+
#rgb = torch.arange(0, 2*3*1036*1036, 1).cuda().float().view(2, 3, 1036, 1036)
|
1280 |
+
rgb = torch.zeros(1, 3, 616, 1064).cuda()
|
1281 |
+
cfg['tuning_mode'] = 'ssf'
|
1282 |
+
#model = vit_large_reg(checkpoint="/cpfs02/shared/public/groups/local_map/yvan/pretrained_weight_repo/vit/dinov2_vitl14_reg4_pretrain.pth", kwarg=cfg).cuda()
|
1283 |
+
model = vit_large_reg(tuning_mode='ssf').cuda()
|
1284 |
+
|
1285 |
+
#import timm
|
1286 |
+
#model2 = timm.models.vision_transformer.vit_large_patch14_dinov2().cuda()
|
1287 |
+
#timm.models.load_checkpoint(model2, '/cpfs02/shared/public/yvan/pretrained_weight_repo/vit/dinov2_vitl14_pretrain.pth', filter_fn=timm.models.vision_transformer.checkpoint_filter_fn)
|
1288 |
+
|
1289 |
+
out1 = model(rgb)
|
1290 |
+
#out2 = model2(rgb)
|
1291 |
+
temp = 0
|
1292 |
+
|
1293 |
+
|
mono/model/backbones/__init__.py
ADDED
@@ -0,0 +1,11 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from .ConvNeXt import convnext_xlarge
|
2 |
+
from .ConvNeXt import convnext_small
|
3 |
+
from .ConvNeXt import convnext_base
|
4 |
+
from .ConvNeXt import convnext_large
|
5 |
+
from .ConvNeXt import convnext_tiny
|
6 |
+
from .ViT_DINO import vit_large
|
7 |
+
from .ViT_DINO_reg import vit_small_reg, vit_large_reg
|
8 |
+
|
9 |
+
__all__ = [
|
10 |
+
'convnext_xlarge', 'convnext_small', 'convnext_base', 'convnext_large', 'convnext_tiny', 'vit_small_reg', 'vit_large_reg'
|
11 |
+
]
|
mono/model/backbones/__pycache__/ConvNeXt.cpython-39.pyc
ADDED
Binary file (9.37 kB). View file
|
|
mono/model/backbones/__pycache__/__init__.cpython-39.pyc
ADDED
Binary file (410 Bytes). View file
|
|
mono/model/decode_heads/HourGlassDecoder.py
ADDED
@@ -0,0 +1,274 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torch.nn as nn
|
3 |
+
import numpy as np
|
4 |
+
import math
|
5 |
+
import torch.nn.functional as F
|
6 |
+
|
7 |
+
def compute_depth_expectation(prob, depth_values):
|
8 |
+
depth_values = depth_values.view(*depth_values.shape, 1, 1)
|
9 |
+
depth = torch.sum(prob * depth_values, 1)
|
10 |
+
return depth
|
11 |
+
|
12 |
+
class ConvBlock(nn.Module):
|
13 |
+
def __init__(self, in_channels, out_channels, kernel_size=3):
|
14 |
+
super(ConvBlock, self).__init__()
|
15 |
+
|
16 |
+
if kernel_size == 3:
|
17 |
+
self.conv = nn.Sequential(
|
18 |
+
nn.ReflectionPad2d(1),
|
19 |
+
nn.Conv2d(in_channels, out_channels, 3, padding=0, stride=1),
|
20 |
+
)
|
21 |
+
elif kernel_size == 1:
|
22 |
+
self.conv = nn.Conv2d(int(in_channels), int(out_channels), 1, padding=0, stride=1)
|
23 |
+
|
24 |
+
self.nonlin = nn.ELU(inplace=True)
|
25 |
+
|
26 |
+
def forward(self, x):
|
27 |
+
out = self.conv(x)
|
28 |
+
out = self.nonlin(out)
|
29 |
+
return out
|
30 |
+
|
31 |
+
|
32 |
+
class ConvBlock_double(nn.Module):
|
33 |
+
def __init__(self, in_channels, out_channels, kernel_size=3):
|
34 |
+
super(ConvBlock_double, self).__init__()
|
35 |
+
|
36 |
+
if kernel_size == 3:
|
37 |
+
self.conv = nn.Sequential(
|
38 |
+
nn.ReflectionPad2d(1),
|
39 |
+
nn.Conv2d(in_channels, out_channels, 3, padding=0, stride=1),
|
40 |
+
)
|
41 |
+
elif kernel_size == 1:
|
42 |
+
self.conv = nn.Conv2d(int(in_channels), int(out_channels), 1, padding=0, stride=1)
|
43 |
+
|
44 |
+
self.nonlin = nn.ELU(inplace=True)
|
45 |
+
self.conv_2 = nn.Conv2d(out_channels, out_channels, 1, padding=0, stride=1)
|
46 |
+
self.nonlin_2 =nn.ELU(inplace=True)
|
47 |
+
|
48 |
+
def forward(self, x):
|
49 |
+
out = self.conv(x)
|
50 |
+
out = self.nonlin(out)
|
51 |
+
out = self.conv_2(out)
|
52 |
+
out = self.nonlin_2(out)
|
53 |
+
return out
|
54 |
+
|
55 |
+
class DecoderFeature(nn.Module):
|
56 |
+
def __init__(self, feat_channels, num_ch_dec=[64, 64, 128, 256]):
|
57 |
+
super(DecoderFeature, self).__init__()
|
58 |
+
self.num_ch_dec = num_ch_dec
|
59 |
+
self.feat_channels = feat_channels
|
60 |
+
|
61 |
+
self.upconv_3_0 = ConvBlock(self.feat_channels[3], self.num_ch_dec[3], kernel_size=1)
|
62 |
+
self.upconv_3_1 = ConvBlock_double(
|
63 |
+
self.feat_channels[2] + self.num_ch_dec[3],
|
64 |
+
self.num_ch_dec[3],
|
65 |
+
kernel_size=1)
|
66 |
+
|
67 |
+
self.upconv_2_0 = ConvBlock(self.num_ch_dec[3], self.num_ch_dec[2], kernel_size=3)
|
68 |
+
self.upconv_2_1 = ConvBlock_double(
|
69 |
+
self.feat_channels[1] + self.num_ch_dec[2],
|
70 |
+
self.num_ch_dec[2],
|
71 |
+
kernel_size=3)
|
72 |
+
|
73 |
+
self.upconv_1_0 = ConvBlock(self.num_ch_dec[2], self.num_ch_dec[1], kernel_size=3)
|
74 |
+
self.upconv_1_1 = ConvBlock_double(
|
75 |
+
self.feat_channels[0] + self.num_ch_dec[1],
|
76 |
+
self.num_ch_dec[1],
|
77 |
+
kernel_size=3)
|
78 |
+
self.upsample = nn.Upsample(scale_factor=2, mode='nearest')
|
79 |
+
|
80 |
+
def forward(self, ref_feature):
|
81 |
+
x = ref_feature[3]
|
82 |
+
|
83 |
+
x = self.upconv_3_0(x)
|
84 |
+
x = torch.cat((self.upsample(x), ref_feature[2]), 1)
|
85 |
+
x = self.upconv_3_1(x)
|
86 |
+
|
87 |
+
x = self.upconv_2_0(x)
|
88 |
+
x = torch.cat((self.upsample(x), ref_feature[1]), 1)
|
89 |
+
x = self.upconv_2_1(x)
|
90 |
+
|
91 |
+
x = self.upconv_1_0(x)
|
92 |
+
x = torch.cat((self.upsample(x), ref_feature[0]), 1)
|
93 |
+
x = self.upconv_1_1(x)
|
94 |
+
return x
|
95 |
+
|
96 |
+
|
97 |
+
class UNet(nn.Module):
|
98 |
+
def __init__(self, inp_ch=32, output_chal=1, down_sample_times=3, channel_mode='v0'):
|
99 |
+
super(UNet, self).__init__()
|
100 |
+
basic_block = ConvBnReLU
|
101 |
+
num_depth = 128
|
102 |
+
|
103 |
+
self.conv0 = basic_block(inp_ch, num_depth)
|
104 |
+
if channel_mode == 'v0':
|
105 |
+
channels = [num_depth, num_depth//2, num_depth//4, num_depth//8, num_depth // 8]
|
106 |
+
elif channel_mode == 'v1':
|
107 |
+
channels = [num_depth, num_depth, num_depth, num_depth, num_depth, num_depth]
|
108 |
+
self.down_sample_times = down_sample_times
|
109 |
+
for i in range(down_sample_times):
|
110 |
+
setattr(
|
111 |
+
self, 'conv_%d' % i,
|
112 |
+
nn.Sequential(
|
113 |
+
basic_block(channels[i], channels[i+1], stride=2),
|
114 |
+
basic_block(channels[i+1], channels[i+1])
|
115 |
+
)
|
116 |
+
)
|
117 |
+
for i in range(down_sample_times-1,-1,-1):
|
118 |
+
setattr(self, 'deconv_%d' % i,
|
119 |
+
nn.Sequential(
|
120 |
+
nn.ConvTranspose2d(
|
121 |
+
channels[i+1],
|
122 |
+
channels[i],
|
123 |
+
kernel_size=3,
|
124 |
+
padding=1,
|
125 |
+
output_padding=1,
|
126 |
+
stride=2,
|
127 |
+
bias=False),
|
128 |
+
nn.BatchNorm2d(channels[i]),
|
129 |
+
nn.ReLU(inplace=True)
|
130 |
+
)
|
131 |
+
)
|
132 |
+
self.prob = nn.Conv2d(num_depth, output_chal, 1, stride=1, padding=0)
|
133 |
+
|
134 |
+
def forward(self, x):
|
135 |
+
features = {}
|
136 |
+
conv0 = self.conv0(x)
|
137 |
+
x = conv0
|
138 |
+
features[0] = conv0
|
139 |
+
for i in range(self.down_sample_times):
|
140 |
+
x = getattr(self, 'conv_%d' % i)(x)
|
141 |
+
features[i+1] = x
|
142 |
+
for i in range(self.down_sample_times-1,-1,-1):
|
143 |
+
x = features[i] + getattr(self, 'deconv_%d' % i)(x)
|
144 |
+
x = self.prob(x)
|
145 |
+
return x
|
146 |
+
|
147 |
+
class ConvBnReLU(nn.Module):
|
148 |
+
def __init__(self, in_channels, out_channels, kernel_size=3, stride=1, pad=1):
|
149 |
+
super(ConvBnReLU, self).__init__()
|
150 |
+
self.conv = nn.Conv2d(
|
151 |
+
in_channels,
|
152 |
+
out_channels,
|
153 |
+
kernel_size,
|
154 |
+
stride=stride,
|
155 |
+
padding=pad,
|
156 |
+
bias=False
|
157 |
+
)
|
158 |
+
self.bn = nn.BatchNorm2d(out_channels)
|
159 |
+
|
160 |
+
def forward(self, x):
|
161 |
+
return F.relu(self.bn(self.conv(x)), inplace=True)
|
162 |
+
|
163 |
+
|
164 |
+
class HourglassDecoder(nn.Module):
|
165 |
+
def __init__(self, cfg):
|
166 |
+
super(HourglassDecoder, self).__init__()
|
167 |
+
self.inchannels = cfg.model.decode_head.in_channels # [256, 512, 1024, 2048]
|
168 |
+
self.decoder_channels = cfg.model.decode_head.decoder_channel # [64, 64, 128, 256]
|
169 |
+
self.min_val = cfg.data_basic.depth_normalize[0]
|
170 |
+
self.max_val = cfg.data_basic.depth_normalize[1]
|
171 |
+
|
172 |
+
self.num_ch_dec = self.decoder_channels # [64, 64, 128, 256]
|
173 |
+
self.num_depth_regressor_anchor = 512
|
174 |
+
self.feat_channels = self.inchannels
|
175 |
+
unet_in_channel = self.num_ch_dec[1]
|
176 |
+
unet_out_channel = 256
|
177 |
+
|
178 |
+
self.decoder_mono = DecoderFeature(self.feat_channels, self.num_ch_dec)
|
179 |
+
self.conv_out_2 = UNet(inp_ch=unet_in_channel,
|
180 |
+
output_chal=unet_out_channel + 1,
|
181 |
+
down_sample_times=3,
|
182 |
+
channel_mode='v0',
|
183 |
+
)
|
184 |
+
|
185 |
+
self.depth_regressor_2 = nn.Sequential(
|
186 |
+
nn.Conv2d(unet_out_channel,
|
187 |
+
self.num_depth_regressor_anchor,
|
188 |
+
kernel_size=3,
|
189 |
+
padding=1,
|
190 |
+
),
|
191 |
+
nn.BatchNorm2d(self.num_depth_regressor_anchor),
|
192 |
+
nn.ReLU(inplace=True),
|
193 |
+
nn.Conv2d(
|
194 |
+
self.num_depth_regressor_anchor,
|
195 |
+
self.num_depth_regressor_anchor,
|
196 |
+
kernel_size=1,
|
197 |
+
)
|
198 |
+
)
|
199 |
+
self.residual_channel = 16
|
200 |
+
self.conv_up_2 = nn.Sequential(
|
201 |
+
nn.Conv2d(1 + 2 + unet_out_channel, self.residual_channel, 3, padding=1),
|
202 |
+
nn.BatchNorm2d(self.residual_channel),
|
203 |
+
nn.ReLU(),
|
204 |
+
nn.Conv2d(self.residual_channel, self.residual_channel, 3, padding=1),
|
205 |
+
nn.Upsample(scale_factor=4),
|
206 |
+
nn.Conv2d(self.residual_channel, self.residual_channel, 3, padding=1),
|
207 |
+
nn.ReLU(),
|
208 |
+
nn.Conv2d(self.residual_channel, 1, 1, padding=0),
|
209 |
+
)
|
210 |
+
|
211 |
+
def get_bins(self, bins_num):
|
212 |
+
depth_bins_vec = torch.linspace(math.log(self.min_val), math.log(self.max_val), bins_num, device='cuda')
|
213 |
+
depth_bins_vec = torch.exp(depth_bins_vec)
|
214 |
+
return depth_bins_vec
|
215 |
+
|
216 |
+
def register_depth_expectation_anchor(self, bins_num, B):
|
217 |
+
depth_bins_vec = self.get_bins(bins_num)
|
218 |
+
depth_bins_vec = depth_bins_vec.unsqueeze(0).repeat(B, 1)
|
219 |
+
self.register_buffer('depth_expectation_anchor', depth_bins_vec, persistent=False)
|
220 |
+
|
221 |
+
def upsample(self, x, scale_factor=2):
|
222 |
+
return F.interpolate(x, scale_factor=scale_factor, mode='nearest')
|
223 |
+
|
224 |
+
def regress_depth_2(self, feature_map_d):
|
225 |
+
prob = self.depth_regressor_2(feature_map_d).softmax(dim=1)
|
226 |
+
B = prob.shape[0]
|
227 |
+
if "depth_expectation_anchor" not in self._buffers:
|
228 |
+
self.register_depth_expectation_anchor(self.num_depth_regressor_anchor, B)
|
229 |
+
d = compute_depth_expectation(
|
230 |
+
prob,
|
231 |
+
self.depth_expectation_anchor[:B, ...]
|
232 |
+
).unsqueeze(1)
|
233 |
+
return d
|
234 |
+
|
235 |
+
def create_mesh_grid(self, height, width, batch, device="cuda", set_buffer=True):
|
236 |
+
y, x = torch.meshgrid([torch.arange(0, height, dtype=torch.float32, device=device),
|
237 |
+
torch.arange(0, width, dtype=torch.float32, device=device)], indexing='ij')
|
238 |
+
meshgrid = torch.stack((x, y))
|
239 |
+
meshgrid = meshgrid.unsqueeze(0).repeat(batch, 1, 1, 1)
|
240 |
+
return meshgrid
|
241 |
+
|
242 |
+
def forward(self, features_mono, **kwargs):
|
243 |
+
'''
|
244 |
+
trans_ref2src: list of transformation matrix from the reference view to source view. [B, 4, 4]
|
245 |
+
inv_intrinsic_pool: list of inverse intrinsic matrix.
|
246 |
+
features_mono: features of reference and source views. [[ref_f1, ref_f2, ref_f3, ref_f4],[src1_f1, src1_f2, src1_f3, src1_f4], ...].
|
247 |
+
'''
|
248 |
+
outputs = {}
|
249 |
+
# get encoder feature of the reference view
|
250 |
+
ref_feat = features_mono
|
251 |
+
|
252 |
+
feature_map_mono = self.decoder_mono(ref_feat)
|
253 |
+
feature_map_mono_pred = self.conv_out_2(feature_map_mono)
|
254 |
+
confidence_map_2 = feature_map_mono_pred[:, -1:, :, :]
|
255 |
+
feature_map_d_2 = feature_map_mono_pred[:, :-1, :, :]
|
256 |
+
|
257 |
+
depth_pred_2 = self.regress_depth_2(feature_map_d_2)
|
258 |
+
|
259 |
+
B, _, H, W = depth_pred_2.shape
|
260 |
+
|
261 |
+
meshgrid = self.create_mesh_grid(H, W, B)
|
262 |
+
|
263 |
+
depth_pred_mono = self.upsample(depth_pred_2, scale_factor=4) + 1e-1 * \
|
264 |
+
self.conv_up_2(
|
265 |
+
torch.cat((depth_pred_2, meshgrid[:B, ...], feature_map_d_2), 1)
|
266 |
+
)
|
267 |
+
confidence_map_mono = self.upsample(confidence_map_2, scale_factor=4)
|
268 |
+
|
269 |
+
outputs=dict(
|
270 |
+
prediction=depth_pred_mono,
|
271 |
+
confidence=confidence_map_mono,
|
272 |
+
pred_logit=None,
|
273 |
+
)
|
274 |
+
return outputs
|
mono/model/decode_heads/RAFTDepthNormalDPTDecoder5.py
ADDED
@@ -0,0 +1,1033 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torch.nn as nn
|
3 |
+
import numpy as np
|
4 |
+
import math
|
5 |
+
import torch.nn.functional as F
|
6 |
+
|
7 |
+
# LORA finetuning originally by edwardjhu
|
8 |
+
class LoRALayer():
|
9 |
+
def __init__(
|
10 |
+
self,
|
11 |
+
r: int,
|
12 |
+
lora_alpha: int,
|
13 |
+
lora_dropout: float,
|
14 |
+
merge_weights: bool,
|
15 |
+
):
|
16 |
+
self.r = r
|
17 |
+
self.lora_alpha = lora_alpha
|
18 |
+
# Optional dropout
|
19 |
+
if lora_dropout > 0.:
|
20 |
+
self.lora_dropout = nn.Dropout(p=lora_dropout)
|
21 |
+
else:
|
22 |
+
self.lora_dropout = lambda x: x
|
23 |
+
# Mark the weight as unmerged
|
24 |
+
self.merged = False
|
25 |
+
self.merge_weights = merge_weights
|
26 |
+
|
27 |
+
class LoRALinear(nn.Linear, LoRALayer):
|
28 |
+
# LoRA implemented in a dense layer
|
29 |
+
def __init__(
|
30 |
+
self,
|
31 |
+
in_features: int,
|
32 |
+
out_features: int,
|
33 |
+
r: int = 0,
|
34 |
+
lora_alpha: int = 1,
|
35 |
+
lora_dropout: float = 0.,
|
36 |
+
fan_in_fan_out: bool = False, # Set this to True if the layer to replace stores weight like (fan_in, fan_out)
|
37 |
+
merge_weights: bool = True,
|
38 |
+
**kwargs
|
39 |
+
):
|
40 |
+
nn.Linear.__init__(self, in_features, out_features, **kwargs)
|
41 |
+
LoRALayer.__init__(self, r=r, lora_alpha=lora_alpha, lora_dropout=lora_dropout,
|
42 |
+
merge_weights=merge_weights)
|
43 |
+
|
44 |
+
self.fan_in_fan_out = fan_in_fan_out
|
45 |
+
# Actual trainable parameters
|
46 |
+
if r > 0:
|
47 |
+
self.lora_A = nn.Parameter(self.weight.new_zeros((r, in_features)))
|
48 |
+
self.lora_B = nn.Parameter(self.weight.new_zeros((out_features, r)))
|
49 |
+
self.scaling = self.lora_alpha / self.r
|
50 |
+
# Freezing the pre-trained weight matrix
|
51 |
+
self.weight.requires_grad = False
|
52 |
+
self.reset_parameters()
|
53 |
+
if fan_in_fan_out:
|
54 |
+
self.weight.data = self.weight.data.transpose(0, 1)
|
55 |
+
|
56 |
+
def reset_parameters(self):
|
57 |
+
#nn.Linear.reset_parameters(self)
|
58 |
+
if hasattr(self, 'lora_A'):
|
59 |
+
# initialize B the same way as the default for nn.Linear and A to zero
|
60 |
+
# this is different than what is described in the paper but should not affect performance
|
61 |
+
nn.init.kaiming_uniform_(self.lora_A, a=math.sqrt(5))
|
62 |
+
nn.init.zeros_(self.lora_B)
|
63 |
+
|
64 |
+
# def train(self, mode: bool = True):
|
65 |
+
# def T(w):
|
66 |
+
# return w.transpose(0, 1) if self.fan_in_fan_out else w
|
67 |
+
# nn.Linear.train(self, mode)
|
68 |
+
# if mode:
|
69 |
+
# if self.merge_weights and self.merged:
|
70 |
+
# # Make sure that the weights are not merged
|
71 |
+
# if self.r > 0:
|
72 |
+
# self.weight.data -= T(self.lora_B @ self.lora_A) * self.scaling
|
73 |
+
# self.merged = False
|
74 |
+
# else:
|
75 |
+
# if self.merge_weights and not self.merged:
|
76 |
+
# # Merge the weights and mark it
|
77 |
+
# if self.r > 0:
|
78 |
+
# self.weight.data += T(self.lora_B @ self.lora_A) * self.scaling
|
79 |
+
# self.merged = True
|
80 |
+
|
81 |
+
def forward(self, x: torch.Tensor):
|
82 |
+
def T(w):
|
83 |
+
return w.transpose(0, 1) if self.fan_in_fan_out else w
|
84 |
+
if self.r > 0 and not self.merged:
|
85 |
+
result = F.linear(x, T(self.weight), bias=self.bias)
|
86 |
+
result += (self.lora_dropout(x) @ self.lora_A.transpose(0, 1) @ self.lora_B.transpose(0, 1)) * self.scaling
|
87 |
+
return result
|
88 |
+
else:
|
89 |
+
return F.linear(x, T(self.weight), bias=self.bias)
|
90 |
+
|
91 |
+
class ConvLoRA(nn.Conv2d, LoRALayer):
|
92 |
+
def __init__(self, in_channels, out_channels, kernel_size, r=0, lora_alpha=1, lora_dropout=0., merge_weights=True, **kwargs):
|
93 |
+
#self.conv = conv_module(in_channels, out_channels, kernel_size, **kwargs)
|
94 |
+
nn.Conv2d.__init__(self, in_channels, out_channels, kernel_size, **kwargs)
|
95 |
+
LoRALayer.__init__(self, r=r, lora_alpha=lora_alpha, lora_dropout=lora_dropout, merge_weights=merge_weights)
|
96 |
+
assert isinstance(kernel_size, int)
|
97 |
+
|
98 |
+
# Actual trainable parameters
|
99 |
+
if r > 0:
|
100 |
+
self.lora_A = nn.Parameter(
|
101 |
+
self.weight.new_zeros((r * kernel_size, in_channels * kernel_size))
|
102 |
+
)
|
103 |
+
self.lora_B = nn.Parameter(
|
104 |
+
self.weight.new_zeros((out_channels//self.groups*kernel_size, r*kernel_size))
|
105 |
+
)
|
106 |
+
self.scaling = self.lora_alpha / self.r
|
107 |
+
# Freezing the pre-trained weight matrix
|
108 |
+
self.weight.requires_grad = False
|
109 |
+
self.reset_parameters()
|
110 |
+
self.merged = False
|
111 |
+
|
112 |
+
def reset_parameters(self):
|
113 |
+
#self.conv.reset_parameters()
|
114 |
+
if hasattr(self, 'lora_A'):
|
115 |
+
# initialize A the same way as the default for nn.Linear and B to zero
|
116 |
+
nn.init.kaiming_uniform_(self.lora_A, a=math.sqrt(5))
|
117 |
+
nn.init.zeros_(self.lora_B)
|
118 |
+
|
119 |
+
# def train(self, mode=True):
|
120 |
+
# super(ConvLoRA, self).train(mode)
|
121 |
+
# if mode:
|
122 |
+
# if self.merge_weights and self.merged:
|
123 |
+
# if self.r > 0:
|
124 |
+
# # Make sure that the weights are not merged
|
125 |
+
# self.conv.weight.data -= (self.lora_B @ self.lora_A).view(self.conv.weight.shape) * self.scaling
|
126 |
+
# self.merged = False
|
127 |
+
# else:
|
128 |
+
# if self.merge_weights and not self.merged:
|
129 |
+
# if self.r > 0:
|
130 |
+
# # Merge the weights and mark it
|
131 |
+
# self.conv.weight.data += (self.lora_B @ self.lora_A).view(self.conv.weight.shape) * self.scaling
|
132 |
+
# self.merged = True
|
133 |
+
|
134 |
+
def forward(self, x):
|
135 |
+
if self.r > 0 and not self.merged:
|
136 |
+
# return self.conv._conv_forward(
|
137 |
+
# x,
|
138 |
+
# self.conv.weight + (self.lora_B @ self.lora_A).view(self.conv.weight.shape) * self.scaling,
|
139 |
+
# self.conv.bias
|
140 |
+
# )
|
141 |
+
weight = self.weight + (self.lora_B @ self.lora_A).view(self.weight.shape) * self.scaling
|
142 |
+
bias = self.bias
|
143 |
+
|
144 |
+
return F.conv2d(x, weight, bias=bias, stride=self.stride, padding=self.padding, dilation=self.dilation, groups=self.groups)
|
145 |
+
else:
|
146 |
+
return F.conv2d(x, self.weight, bias=self.bias, stride=self.stride, padding=self.padding, dilation=self.dilation, groups=self.groups)
|
147 |
+
|
148 |
+
class ConvTransposeLoRA(nn.ConvTranspose2d, LoRALayer):
|
149 |
+
def __init__(self, in_channels, out_channels, kernel_size, r=0, lora_alpha=1, lora_dropout=0., merge_weights=True, **kwargs):
|
150 |
+
#self.conv = conv_module(in_channels, out_channels, kernel_size, **kwargs)
|
151 |
+
nn.ConvTranspose2d.__init__(self, in_channels, out_channels, kernel_size, **kwargs)
|
152 |
+
LoRALayer.__init__(self, r=r, lora_alpha=lora_alpha, lora_dropout=lora_dropout, merge_weights=merge_weights)
|
153 |
+
assert isinstance(kernel_size, int)
|
154 |
+
|
155 |
+
# Actual trainable parameters
|
156 |
+
if r > 0:
|
157 |
+
self.lora_A = nn.Parameter(
|
158 |
+
self.weight.new_zeros((r * kernel_size, in_channels * kernel_size))
|
159 |
+
)
|
160 |
+
self.lora_B = nn.Parameter(
|
161 |
+
self.weight.new_zeros((out_channels//self.groups*kernel_size, r*kernel_size))
|
162 |
+
)
|
163 |
+
self.scaling = self.lora_alpha / self.r
|
164 |
+
# Freezing the pre-trained weight matrix
|
165 |
+
self.weight.requires_grad = False
|
166 |
+
self.reset_parameters()
|
167 |
+
self.merged = False
|
168 |
+
|
169 |
+
def reset_parameters(self):
|
170 |
+
#self.conv.reset_parameters()
|
171 |
+
if hasattr(self, 'lora_A'):
|
172 |
+
# initialize A the same way as the default for nn.Linear and B to zero
|
173 |
+
nn.init.kaiming_uniform_(self.lora_A, a=math.sqrt(5))
|
174 |
+
nn.init.zeros_(self.lora_B)
|
175 |
+
|
176 |
+
# def train(self, mode=True):
|
177 |
+
# super(ConvTransposeLoRA, self).train(mode)
|
178 |
+
# if mode:
|
179 |
+
# if self.merge_weights and self.merged:
|
180 |
+
# if self.r > 0:
|
181 |
+
# # Make sure that the weights are not merged
|
182 |
+
# self.conv.weight.data -= (self.lora_B @ self.lora_A).view(self.conv.weight.shape) * self.scaling
|
183 |
+
# self.merged = False
|
184 |
+
# else:
|
185 |
+
# if self.merge_weights and not self.merged:
|
186 |
+
# if self.r > 0:
|
187 |
+
# # Merge the weights and mark it
|
188 |
+
# self.conv.weight.data += (self.lora_B @ self.lora_A).view(self.conv.weight.shape) * self.scaling
|
189 |
+
# self.merged = True
|
190 |
+
|
191 |
+
def forward(self, x):
|
192 |
+
if self.r > 0 and not self.merged:
|
193 |
+
weight = self.weight + (self.lora_B @ self.lora_A).view(self.weight.shape) * self.scaling
|
194 |
+
bias = self.bias
|
195 |
+
return F.conv_transpose2d(x, weight,
|
196 |
+
bias=bias, stride=self.stride, padding=self.padding, output_padding=self.output_padding,
|
197 |
+
groups=self.groups, dilation=self.dilation)
|
198 |
+
else:
|
199 |
+
return F.conv_transpose2d(x, self.weight,
|
200 |
+
bias=self.bias, stride=self.stride, padding=self.padding, output_padding=self.output_padding,
|
201 |
+
groups=self.groups, dilation=self.dilation)
|
202 |
+
#return self.conv(x)
|
203 |
+
|
204 |
+
class Conv2dLoRA(ConvLoRA):
|
205 |
+
def __init__(self, *args, **kwargs):
|
206 |
+
super(Conv2dLoRA, self).__init__(*args, **kwargs)
|
207 |
+
|
208 |
+
class ConvTranspose2dLoRA(ConvTransposeLoRA):
|
209 |
+
def __init__(self, *args, **kwargs):
|
210 |
+
super(ConvTranspose2dLoRA, self).__init__(*args, **kwargs)
|
211 |
+
|
212 |
+
|
213 |
+
def compute_depth_expectation(prob, depth_values):
|
214 |
+
depth_values = depth_values.view(*depth_values.shape, 1, 1)
|
215 |
+
depth = torch.sum(prob * depth_values, 1)
|
216 |
+
return depth
|
217 |
+
|
218 |
+
def interpolate_float32(x, size=None, scale_factor=None, mode='nearest', align_corners=None):
|
219 |
+
with torch.autocast(device_type='cuda', dtype=torch.bfloat16, enabled=False):
|
220 |
+
return F.interpolate(x.float(), size=size, scale_factor=scale_factor, mode=mode, align_corners=align_corners)
|
221 |
+
|
222 |
+
# def upflow8(flow, mode='bilinear'):
|
223 |
+
# new_size = (8 * flow.shape[2], 8 * flow.shape[3])
|
224 |
+
# return 8 * F.interpolate(flow, size=new_size, mode=mode, align_corners=True)
|
225 |
+
|
226 |
+
def upflow4(flow, mode='bilinear'):
|
227 |
+
new_size = (4 * flow.shape[2], 4 * flow.shape[3])
|
228 |
+
with torch.autocast(device_type='cuda', dtype=torch.bfloat16, enabled=False):
|
229 |
+
return F.interpolate(flow, size=new_size, mode=mode, align_corners=True)
|
230 |
+
|
231 |
+
def coords_grid(batch, ht, wd):
|
232 |
+
# coords = torch.meshgrid(torch.arange(ht), torch.arange(wd))
|
233 |
+
coords = (torch.zeros((ht, wd)), torch.zeros((ht, wd)), torch.zeros((ht, wd)), torch.zeros((ht, wd)), torch.zeros((ht, wd)), torch.zeros((ht, wd)))
|
234 |
+
coords = torch.stack(coords[::-1], dim=0).float()
|
235 |
+
return coords[None].repeat(batch, 1, 1, 1)
|
236 |
+
|
237 |
+
def norm_normalize(norm_out):
|
238 |
+
min_kappa = 0.01
|
239 |
+
norm_x, norm_y, norm_z, kappa = torch.split(norm_out, 1, dim=1)
|
240 |
+
norm = torch.sqrt(norm_x ** 2.0 + norm_y ** 2.0 + norm_z ** 2.0) + 1e-10
|
241 |
+
kappa = F.elu(kappa) + 1.0 + min_kappa
|
242 |
+
final_out = torch.cat([norm_x / norm, norm_y / norm, norm_z / norm, kappa], dim=1)
|
243 |
+
return final_out
|
244 |
+
|
245 |
+
# uncertainty-guided sampling (only used during training)
|
246 |
+
@torch.no_grad()
|
247 |
+
def sample_points(init_normal, gt_norm_mask, sampling_ratio, beta):
|
248 |
+
device = init_normal.device
|
249 |
+
B, _, H, W = init_normal.shape
|
250 |
+
N = int(sampling_ratio * H * W)
|
251 |
+
beta = beta
|
252 |
+
|
253 |
+
# uncertainty map
|
254 |
+
uncertainty_map = -1 * init_normal[:, -1, :, :] # B, H, W
|
255 |
+
|
256 |
+
# gt_invalid_mask (B, H, W)
|
257 |
+
if gt_norm_mask is not None:
|
258 |
+
gt_invalid_mask = F.interpolate(gt_norm_mask.float(), size=[H, W], mode='nearest')
|
259 |
+
gt_invalid_mask = gt_invalid_mask[:, 0, :, :] < 0.5
|
260 |
+
uncertainty_map[gt_invalid_mask] = -1e4
|
261 |
+
|
262 |
+
# (B, H*W)
|
263 |
+
_, idx = uncertainty_map.view(B, -1).sort(1, descending=True)
|
264 |
+
|
265 |
+
# importance sampling
|
266 |
+
if int(beta * N) > 0:
|
267 |
+
importance = idx[:, :int(beta * N)] # B, beta*N
|
268 |
+
|
269 |
+
# remaining
|
270 |
+
remaining = idx[:, int(beta * N):] # B, H*W - beta*N
|
271 |
+
|
272 |
+
# coverage
|
273 |
+
num_coverage = N - int(beta * N)
|
274 |
+
|
275 |
+
if num_coverage <= 0:
|
276 |
+
samples = importance
|
277 |
+
else:
|
278 |
+
coverage_list = []
|
279 |
+
for i in range(B):
|
280 |
+
idx_c = torch.randperm(remaining.size()[1]) # shuffles "H*W - beta*N"
|
281 |
+
coverage_list.append(remaining[i, :][idx_c[:num_coverage]].view(1, -1)) # 1, N-beta*N
|
282 |
+
coverage = torch.cat(coverage_list, dim=0) # B, N-beta*N
|
283 |
+
samples = torch.cat((importance, coverage), dim=1) # B, N
|
284 |
+
|
285 |
+
else:
|
286 |
+
# remaining
|
287 |
+
remaining = idx[:, :] # B, H*W
|
288 |
+
|
289 |
+
# coverage
|
290 |
+
num_coverage = N
|
291 |
+
|
292 |
+
coverage_list = []
|
293 |
+
for i in range(B):
|
294 |
+
idx_c = torch.randperm(remaining.size()[1]) # shuffles "H*W - beta*N"
|
295 |
+
coverage_list.append(remaining[i, :][idx_c[:num_coverage]].view(1, -1)) # 1, N-beta*N
|
296 |
+
coverage = torch.cat(coverage_list, dim=0) # B, N-beta*N
|
297 |
+
samples = coverage
|
298 |
+
|
299 |
+
# point coordinates
|
300 |
+
rows_int = samples // W # 0 for first row, H-1 for last row
|
301 |
+
rows_float = rows_int / float(H-1) # 0 to 1.0
|
302 |
+
rows_float = (rows_float * 2.0) - 1.0 # -1.0 to 1.0
|
303 |
+
|
304 |
+
cols_int = samples % W # 0 for first column, W-1 for last column
|
305 |
+
cols_float = cols_int / float(W-1) # 0 to 1.0
|
306 |
+
cols_float = (cols_float * 2.0) - 1.0 # -1.0 to 1.0
|
307 |
+
|
308 |
+
point_coords = torch.zeros(B, 1, N, 2)
|
309 |
+
point_coords[:, 0, :, 0] = cols_float # x coord
|
310 |
+
point_coords[:, 0, :, 1] = rows_float # y coord
|
311 |
+
point_coords = point_coords.to(device)
|
312 |
+
return point_coords, rows_int, cols_int
|
313 |
+
|
314 |
+
class FlowHead(nn.Module):
|
315 |
+
def __init__(self, input_dim=128, hidden_dim=256, output_dim_depth=2, output_dim_norm=4, tuning_mode=None):
|
316 |
+
super(FlowHead, self).__init__()
|
317 |
+
self.conv1d = Conv2dLoRA(input_dim, hidden_dim // 2, 3, padding=1, r = 8 if tuning_mode == 'lora' else 0)
|
318 |
+
self.conv2d = Conv2dLoRA(hidden_dim // 2, output_dim_depth, 3, padding=1, r = 8 if tuning_mode == 'lora' else 0)
|
319 |
+
|
320 |
+
self.conv1n = Conv2dLoRA(input_dim, hidden_dim // 2, 3, padding=1, r = 8 if tuning_mode == 'lora' else 0)
|
321 |
+
self.conv2n = Conv2dLoRA(hidden_dim // 2, output_dim_norm, 3, padding=1, r = 8 if tuning_mode == 'lora' else 0)
|
322 |
+
self.relu = nn.ReLU(inplace=True)
|
323 |
+
|
324 |
+
def forward(self, x):
|
325 |
+
depth = self.conv2d(self.relu(self.conv1d(x)))
|
326 |
+
normal = self.conv2n(self.relu(self.conv1n(x)))
|
327 |
+
return torch.cat((depth, normal), dim=1)
|
328 |
+
|
329 |
+
|
330 |
+
class ConvGRU(nn.Module):
|
331 |
+
def __init__(self, hidden_dim, input_dim, kernel_size=3, tuning_mode=None):
|
332 |
+
super(ConvGRU, self).__init__()
|
333 |
+
self.convz = Conv2dLoRA(hidden_dim+input_dim, hidden_dim, kernel_size, padding=kernel_size//2, r = 8 if tuning_mode == 'lora' else 0)
|
334 |
+
self.convr = Conv2dLoRA(hidden_dim+input_dim, hidden_dim, kernel_size, padding=kernel_size//2, r = 8 if tuning_mode == 'lora' else 0)
|
335 |
+
self.convq = Conv2dLoRA(hidden_dim+input_dim, hidden_dim, kernel_size, padding=kernel_size//2, r = 8 if tuning_mode == 'lora' else 0)
|
336 |
+
|
337 |
+
def forward(self, h, cz, cr, cq, *x_list):
|
338 |
+
x = torch.cat(x_list, dim=1)
|
339 |
+
hx = torch.cat([h, x], dim=1)
|
340 |
+
|
341 |
+
z = torch.sigmoid((self.convz(hx) + cz))
|
342 |
+
r = torch.sigmoid((self.convr(hx) + cr))
|
343 |
+
q = torch.tanh((self.convq(torch.cat([r*h, x], dim=1)) + cq))
|
344 |
+
|
345 |
+
# z = torch.sigmoid((self.convz(hx) + cz).float())
|
346 |
+
# r = torch.sigmoid((self.convr(hx) + cr).float())
|
347 |
+
# q = torch.tanh((self.convq(torch.cat([r*h, x], dim=1)) + cq).float())
|
348 |
+
|
349 |
+
h = (1-z) * h + z * q
|
350 |
+
return h
|
351 |
+
|
352 |
+
def pool2x(x):
|
353 |
+
return F.avg_pool2d(x, 3, stride=2, padding=1)
|
354 |
+
|
355 |
+
def pool4x(x):
|
356 |
+
return F.avg_pool2d(x, 5, stride=4, padding=1)
|
357 |
+
|
358 |
+
def interp(x, dest):
|
359 |
+
interp_args = {'mode': 'bilinear', 'align_corners': True}
|
360 |
+
return interpolate_float32(x, dest.shape[2:], **interp_args)
|
361 |
+
|
362 |
+
class BasicMultiUpdateBlock(nn.Module):
|
363 |
+
def __init__(self, args, hidden_dims=[], out_dims=2, tuning_mode=None):
|
364 |
+
super().__init__()
|
365 |
+
self.args = args
|
366 |
+
self.n_gru_layers = args.model.decode_head.n_gru_layers # 3
|
367 |
+
self.n_downsample = args.model.decode_head.n_downsample # 3, resolution of the disparity field (1/2^K)
|
368 |
+
|
369 |
+
# self.encoder = BasicMotionEncoder(args)
|
370 |
+
# encoder_output_dim = 128 # if there is corr volume
|
371 |
+
encoder_output_dim = 6 # no corr volume
|
372 |
+
|
373 |
+
self.gru08 = ConvGRU(hidden_dims[2], encoder_output_dim + hidden_dims[1] * (self.n_gru_layers > 1), tuning_mode=tuning_mode)
|
374 |
+
self.gru16 = ConvGRU(hidden_dims[1], hidden_dims[0] * (self.n_gru_layers == 3) + hidden_dims[2], tuning_mode=tuning_mode)
|
375 |
+
self.gru32 = ConvGRU(hidden_dims[0], hidden_dims[1], tuning_mode=tuning_mode)
|
376 |
+
self.flow_head = FlowHead(hidden_dims[2], hidden_dim=2*hidden_dims[2], tuning_mode=tuning_mode)
|
377 |
+
factor = 2**self.n_downsample
|
378 |
+
|
379 |
+
self.mask = nn.Sequential(
|
380 |
+
Conv2dLoRA(hidden_dims[2], hidden_dims[2], 3, padding=1, r = 8 if tuning_mode == 'lora' else 0),
|
381 |
+
nn.ReLU(inplace=True),
|
382 |
+
Conv2dLoRA(hidden_dims[2], (factor**2)*9, 1, padding=0, r = 8 if tuning_mode == 'lora' else 0))
|
383 |
+
|
384 |
+
def forward(self, net, inp, corr=None, flow=None, iter08=True, iter16=True, iter32=True, update=True):
|
385 |
+
|
386 |
+
if iter32:
|
387 |
+
net[2] = self.gru32(net[2], *(inp[2]), pool2x(net[1]))
|
388 |
+
if iter16:
|
389 |
+
if self.n_gru_layers > 2:
|
390 |
+
net[1] = self.gru16(net[1], *(inp[1]), interp(pool2x(net[0]), net[1]), interp(net[2], net[1]))
|
391 |
+
else:
|
392 |
+
net[1] = self.gru16(net[1], *(inp[1]), interp(pool2x(net[0]), net[1]))
|
393 |
+
if iter08:
|
394 |
+
if corr is not None:
|
395 |
+
motion_features = self.encoder(flow, corr)
|
396 |
+
else:
|
397 |
+
motion_features = flow
|
398 |
+
if self.n_gru_layers > 1:
|
399 |
+
net[0] = self.gru08(net[0], *(inp[0]), motion_features, interp(net[1], net[0]))
|
400 |
+
else:
|
401 |
+
net[0] = self.gru08(net[0], *(inp[0]), motion_features)
|
402 |
+
|
403 |
+
if not update:
|
404 |
+
return net
|
405 |
+
|
406 |
+
delta_flow = self.flow_head(net[0])
|
407 |
+
|
408 |
+
# scale mask to balence gradients
|
409 |
+
mask = .25 * self.mask(net[0])
|
410 |
+
return net, mask, delta_flow
|
411 |
+
|
412 |
+
class LayerNorm2d(nn.LayerNorm):
|
413 |
+
def __init__(self, dim):
|
414 |
+
super(LayerNorm2d, self).__init__(dim)
|
415 |
+
|
416 |
+
def forward(self, x):
|
417 |
+
x = x.permute(0, 2, 3, 1).contiguous()
|
418 |
+
x = super(LayerNorm2d, self).forward(x)
|
419 |
+
x = x.permute(0, 3, 1, 2).contiguous()
|
420 |
+
return x
|
421 |
+
|
422 |
+
class ResidualBlock(nn.Module):
|
423 |
+
def __init__(self, in_planes, planes, norm_fn='group', stride=1, tuning_mode=None):
|
424 |
+
super(ResidualBlock, self).__init__()
|
425 |
+
|
426 |
+
self.conv1 = Conv2dLoRA(in_planes, planes, kernel_size=3, padding=1, stride=stride, r = 8 if tuning_mode == 'lora' else 0)
|
427 |
+
self.conv2 = Conv2dLoRA(planes, planes, kernel_size=3, padding=1, r = 8 if tuning_mode == 'lora' else 0)
|
428 |
+
self.relu = nn.ReLU(inplace=True)
|
429 |
+
|
430 |
+
num_groups = planes // 8
|
431 |
+
|
432 |
+
if norm_fn == 'group':
|
433 |
+
self.norm1 = nn.GroupNorm(num_groups=num_groups, num_channels=planes)
|
434 |
+
self.norm2 = nn.GroupNorm(num_groups=num_groups, num_channels=planes)
|
435 |
+
if not (stride == 1 and in_planes == planes):
|
436 |
+
self.norm3 = nn.GroupNorm(num_groups=num_groups, num_channels=planes)
|
437 |
+
|
438 |
+
elif norm_fn == 'batch':
|
439 |
+
self.norm1 = nn.BatchNorm2d(planes)
|
440 |
+
self.norm2 = nn.BatchNorm2d(planes)
|
441 |
+
if not (stride == 1 and in_planes == planes):
|
442 |
+
self.norm3 = nn.BatchNorm2d(planes)
|
443 |
+
|
444 |
+
elif norm_fn == 'instance':
|
445 |
+
self.norm1 = nn.InstanceNorm2d(planes)
|
446 |
+
self.norm2 = nn.InstanceNorm2d(planes)
|
447 |
+
if not (stride == 1 and in_planes == planes):
|
448 |
+
self.norm3 = nn.InstanceNorm2d(planes)
|
449 |
+
|
450 |
+
elif norm_fn == 'layer':
|
451 |
+
self.norm1 = LayerNorm2d(planes)
|
452 |
+
self.norm2 = LayerNorm2d(planes)
|
453 |
+
if not (stride == 1 and in_planes == planes):
|
454 |
+
self.norm3 = LayerNorm2d(planes)
|
455 |
+
|
456 |
+
elif norm_fn == 'none':
|
457 |
+
self.norm1 = nn.Sequential()
|
458 |
+
self.norm2 = nn.Sequential()
|
459 |
+
if not (stride == 1 and in_planes == planes):
|
460 |
+
self.norm3 = nn.Sequential()
|
461 |
+
|
462 |
+
if stride == 1 and in_planes == planes:
|
463 |
+
self.downsample = None
|
464 |
+
|
465 |
+
else:
|
466 |
+
self.downsample = nn.Sequential(
|
467 |
+
Conv2dLoRA(in_planes, planes, kernel_size=1, stride=stride, r = 8 if tuning_mode == 'lora' else 0), self.norm3)
|
468 |
+
|
469 |
+
def forward(self, x):
|
470 |
+
y = x
|
471 |
+
y = self.conv1(y)
|
472 |
+
y = self.norm1(y)
|
473 |
+
y = self.relu(y)
|
474 |
+
y = self.conv2(y)
|
475 |
+
y = self.norm2(y)
|
476 |
+
y = self.relu(y)
|
477 |
+
|
478 |
+
if self.downsample is not None:
|
479 |
+
x = self.downsample(x)
|
480 |
+
|
481 |
+
return self.relu(x+y)
|
482 |
+
|
483 |
+
|
484 |
+
class ContextFeatureEncoder(nn.Module):
|
485 |
+
'''
|
486 |
+
Encoder features are used to:
|
487 |
+
1. initialize the hidden state of the update operator
|
488 |
+
2. and also injected into the GRU during each iteration of the update operator
|
489 |
+
'''
|
490 |
+
def __init__(self, in_dim, output_dim, tuning_mode=None):
|
491 |
+
'''
|
492 |
+
in_dim = [x4, x8, x16, x32]
|
493 |
+
output_dim = [hindden_dims, context_dims]
|
494 |
+
[[x4,x8,x16,x32],[x4,x8,x16,x32]]
|
495 |
+
'''
|
496 |
+
super().__init__()
|
497 |
+
|
498 |
+
output_list = []
|
499 |
+
for dim in output_dim:
|
500 |
+
conv_out = nn.Sequential(
|
501 |
+
ResidualBlock(in_dim[0], dim[0], 'layer', stride=1, tuning_mode=tuning_mode),
|
502 |
+
Conv2dLoRA(dim[0], dim[0], 3, padding=1, r = 8 if tuning_mode == 'lora' else 0))
|
503 |
+
output_list.append(conv_out)
|
504 |
+
|
505 |
+
self.outputs04 = nn.ModuleList(output_list)
|
506 |
+
|
507 |
+
output_list = []
|
508 |
+
for dim in output_dim:
|
509 |
+
conv_out = nn.Sequential(
|
510 |
+
ResidualBlock(in_dim[1], dim[1], 'layer', stride=1, tuning_mode=tuning_mode),
|
511 |
+
Conv2dLoRA(dim[1], dim[1], 3, padding=1, r = 8 if tuning_mode == 'lora' else 0))
|
512 |
+
output_list.append(conv_out)
|
513 |
+
|
514 |
+
self.outputs08 = nn.ModuleList(output_list)
|
515 |
+
|
516 |
+
output_list = []
|
517 |
+
for dim in output_dim:
|
518 |
+
conv_out = nn.Sequential(
|
519 |
+
ResidualBlock(in_dim[2], dim[2], 'layer', stride=1, tuning_mode=tuning_mode),
|
520 |
+
Conv2dLoRA(dim[2], dim[2], 3, padding=1, r = 8 if tuning_mode == 'lora' else 0))
|
521 |
+
output_list.append(conv_out)
|
522 |
+
|
523 |
+
self.outputs16 = nn.ModuleList(output_list)
|
524 |
+
|
525 |
+
# output_list = []
|
526 |
+
# for dim in output_dim:
|
527 |
+
# conv_out = Conv2dLoRA(in_dim[3], dim[3], 3, padding=1)
|
528 |
+
# output_list.append(conv_out)
|
529 |
+
|
530 |
+
# self.outputs32 = nn.ModuleList(output_list)
|
531 |
+
|
532 |
+
def forward(self, encoder_features):
|
533 |
+
x_4, x_8, x_16, x_32 = encoder_features
|
534 |
+
|
535 |
+
outputs04 = [f(x_4) for f in self.outputs04]
|
536 |
+
outputs08 = [f(x_8) for f in self.outputs08]
|
537 |
+
outputs16 = [f(x_16)for f in self.outputs16]
|
538 |
+
# outputs32 = [f(x_32) for f in self.outputs32]
|
539 |
+
|
540 |
+
return (outputs04, outputs08, outputs16)
|
541 |
+
|
542 |
+
class ConvBlock(nn.Module):
|
543 |
+
# reimplementation of DPT
|
544 |
+
def __init__(self, channels, tuning_mode=None):
|
545 |
+
super(ConvBlock, self).__init__()
|
546 |
+
|
547 |
+
self.act = nn.ReLU(inplace=True)
|
548 |
+
self.conv1 = Conv2dLoRA(
|
549 |
+
channels,
|
550 |
+
channels,
|
551 |
+
kernel_size=3,
|
552 |
+
stride=1,
|
553 |
+
padding=1,
|
554 |
+
r = 8 if tuning_mode == 'lora' else 0
|
555 |
+
)
|
556 |
+
self.conv2 = Conv2dLoRA(
|
557 |
+
channels,
|
558 |
+
channels,
|
559 |
+
kernel_size=3,
|
560 |
+
stride=1,
|
561 |
+
padding=1,
|
562 |
+
r = 8 if tuning_mode == 'lora' else 0
|
563 |
+
)
|
564 |
+
|
565 |
+
def forward(self, x):
|
566 |
+
out = self.act(x)
|
567 |
+
out = self.conv1(out)
|
568 |
+
out = self.act(out)
|
569 |
+
out = self.conv2(out)
|
570 |
+
return x + out
|
571 |
+
|
572 |
+
class FuseBlock(nn.Module):
|
573 |
+
# reimplementation of DPT
|
574 |
+
def __init__(self, in_channels, out_channels, fuse=True, upsample=True, scale_factor=2, tuning_mode=None):
|
575 |
+
super(FuseBlock, self).__init__()
|
576 |
+
|
577 |
+
self.fuse = fuse
|
578 |
+
self.scale_factor = scale_factor
|
579 |
+
self.way_trunk = ConvBlock(in_channels, tuning_mode=tuning_mode)
|
580 |
+
if self.fuse:
|
581 |
+
self.way_branch = ConvBlock(in_channels, tuning_mode=tuning_mode)
|
582 |
+
|
583 |
+
self.out_conv = Conv2dLoRA(
|
584 |
+
in_channels,
|
585 |
+
out_channels,
|
586 |
+
kernel_size=1,
|
587 |
+
stride=1,
|
588 |
+
padding=0,
|
589 |
+
r = 8 if tuning_mode == 'lora' else 0
|
590 |
+
)
|
591 |
+
self.upsample = upsample
|
592 |
+
|
593 |
+
def forward(self, x1, x2=None):
|
594 |
+
if x2 is not None:
|
595 |
+
x2 = self.way_branch(x2)
|
596 |
+
x1 = x1 + x2
|
597 |
+
|
598 |
+
out = self.way_trunk(x1)
|
599 |
+
|
600 |
+
if self.upsample:
|
601 |
+
out = interpolate_float32(
|
602 |
+
out, scale_factor=self.scale_factor, mode="bilinear", align_corners=True
|
603 |
+
)
|
604 |
+
out = self.out_conv(out)
|
605 |
+
return out
|
606 |
+
|
607 |
+
class Readout(nn.Module):
|
608 |
+
# From DPT
|
609 |
+
def __init__(self, in_features, use_cls_token=True, num_register_tokens=0, tuning_mode=None):
|
610 |
+
super(Readout, self).__init__()
|
611 |
+
self.use_cls_token = use_cls_token
|
612 |
+
if self.use_cls_token == True:
|
613 |
+
self.project_patch = LoRALinear(in_features, in_features, r = 8 if tuning_mode == 'lora' else 0)
|
614 |
+
self.project_learn = LoRALinear((1 + num_register_tokens) * in_features, in_features, bias=False, r = 8 if tuning_mode == 'lora' else 0)
|
615 |
+
self.act = nn.GELU()
|
616 |
+
else:
|
617 |
+
self.project = nn.Identity()
|
618 |
+
|
619 |
+
def forward(self, x):
|
620 |
+
|
621 |
+
if self.use_cls_token == True:
|
622 |
+
x_patch = self.project_patch(x[0])
|
623 |
+
x_learn = self.project_learn(x[1])
|
624 |
+
x_learn = x_learn.expand_as(x_patch).contiguous()
|
625 |
+
features = x_patch + x_learn
|
626 |
+
return self.act(features)
|
627 |
+
else:
|
628 |
+
return self.project(x)
|
629 |
+
|
630 |
+
class Token2Feature(nn.Module):
|
631 |
+
# From DPT
|
632 |
+
def __init__(self, vit_channel, feature_channel, scale_factor, use_cls_token=True, num_register_tokens=0, tuning_mode=None):
|
633 |
+
super(Token2Feature, self).__init__()
|
634 |
+
self.scale_factor = scale_factor
|
635 |
+
self.readoper = Readout(in_features=vit_channel, use_cls_token=use_cls_token, num_register_tokens=num_register_tokens, tuning_mode=tuning_mode)
|
636 |
+
if scale_factor > 1 and isinstance(scale_factor, int):
|
637 |
+
self.sample = ConvTranspose2dLoRA(r = 8 if tuning_mode == 'lora' else 0,
|
638 |
+
in_channels=vit_channel,
|
639 |
+
out_channels=feature_channel,
|
640 |
+
kernel_size=scale_factor,
|
641 |
+
stride=scale_factor,
|
642 |
+
padding=0,
|
643 |
+
)
|
644 |
+
|
645 |
+
elif scale_factor > 1:
|
646 |
+
self.sample = nn.Sequential(
|
647 |
+
# Upsample2(upscale=scale_factor),
|
648 |
+
# nn.Upsample(scale_factor=scale_factor),
|
649 |
+
Conv2dLoRA(r = 8 if tuning_mode == 'lora' else 0,
|
650 |
+
in_channels=vit_channel,
|
651 |
+
out_channels=feature_channel,
|
652 |
+
kernel_size=1,
|
653 |
+
stride=1,
|
654 |
+
padding=0,
|
655 |
+
),
|
656 |
+
)
|
657 |
+
|
658 |
+
|
659 |
+
elif scale_factor < 1:
|
660 |
+
scale_factor = int(1.0 / scale_factor)
|
661 |
+
self.sample = Conv2dLoRA(r = 8 if tuning_mode == 'lora' else 0,
|
662 |
+
in_channels=vit_channel,
|
663 |
+
out_channels=feature_channel,
|
664 |
+
kernel_size=scale_factor+1,
|
665 |
+
stride=scale_factor,
|
666 |
+
padding=1,
|
667 |
+
)
|
668 |
+
|
669 |
+
else:
|
670 |
+
self.sample = nn.Identity()
|
671 |
+
|
672 |
+
def forward(self, x):
|
673 |
+
x = self.readoper(x)
|
674 |
+
#if use_cls_token == True:
|
675 |
+
x = x.permute(0, 3, 1, 2).contiguous()
|
676 |
+
if isinstance(self.scale_factor, float):
|
677 |
+
x = interpolate_float32(x.float(), scale_factor=self.scale_factor, mode='nearest')
|
678 |
+
x = self.sample(x)
|
679 |
+
return x
|
680 |
+
|
681 |
+
class EncoderFeature(nn.Module):
|
682 |
+
def __init__(self, vit_channel, num_ch_dec=[256, 512, 1024, 1024], use_cls_token=True, num_register_tokens=0, tuning_mode=None):
|
683 |
+
super(EncoderFeature, self).__init__()
|
684 |
+
self.vit_channel = vit_channel
|
685 |
+
self.num_ch_dec = num_ch_dec
|
686 |
+
|
687 |
+
self.read_3 = Token2Feature(self.vit_channel, self.num_ch_dec[3], scale_factor=1, use_cls_token=use_cls_token, num_register_tokens=num_register_tokens, tuning_mode=tuning_mode)
|
688 |
+
self.read_2 = Token2Feature(self.vit_channel, self.num_ch_dec[2], scale_factor=1, use_cls_token=use_cls_token, num_register_tokens=num_register_tokens, tuning_mode=tuning_mode)
|
689 |
+
self.read_1 = Token2Feature(self.vit_channel, self.num_ch_dec[1], scale_factor=2, use_cls_token=use_cls_token, num_register_tokens=num_register_tokens, tuning_mode=tuning_mode)
|
690 |
+
self.read_0 = Token2Feature(self.vit_channel, self.num_ch_dec[0], scale_factor=7/2, use_cls_token=use_cls_token, num_register_tokens=num_register_tokens, tuning_mode=tuning_mode)
|
691 |
+
|
692 |
+
def forward(self, ref_feature):
|
693 |
+
x = self.read_3(ref_feature[3]) # 1/14
|
694 |
+
x2 = self.read_2(ref_feature[2]) # 1/14
|
695 |
+
x1 = self.read_1(ref_feature[1]) # 1/7
|
696 |
+
x0 = self.read_0(ref_feature[0]) # 1/4
|
697 |
+
|
698 |
+
return x, x2, x1, x0
|
699 |
+
|
700 |
+
class DecoderFeature(nn.Module):
|
701 |
+
def __init__(self, vit_channel, num_ch_dec=[128, 256, 512, 1024, 1024], use_cls_token=True, tuning_mode=None):
|
702 |
+
super(DecoderFeature, self).__init__()
|
703 |
+
self.vit_channel = vit_channel
|
704 |
+
self.num_ch_dec = num_ch_dec
|
705 |
+
|
706 |
+
self.upconv_3 = FuseBlock(
|
707 |
+
self.num_ch_dec[4],
|
708 |
+
self.num_ch_dec[3],
|
709 |
+
fuse=False, upsample=False, tuning_mode=tuning_mode)
|
710 |
+
|
711 |
+
self.upconv_2 = FuseBlock(
|
712 |
+
self.num_ch_dec[3],
|
713 |
+
self.num_ch_dec[2],
|
714 |
+
tuning_mode=tuning_mode)
|
715 |
+
|
716 |
+
self.upconv_1 = FuseBlock(
|
717 |
+
self.num_ch_dec[2],
|
718 |
+
self.num_ch_dec[1] + 2,
|
719 |
+
scale_factor=7/4,
|
720 |
+
tuning_mode=tuning_mode)
|
721 |
+
|
722 |
+
# self.upconv_0 = FuseBlock(
|
723 |
+
# self.num_ch_dec[1],
|
724 |
+
# self.num_ch_dec[0] + 1,
|
725 |
+
# )
|
726 |
+
|
727 |
+
def forward(self, ref_feature):
|
728 |
+
x, x2, x1, x0 = ref_feature # 1/14 1/14 1/7 1/4
|
729 |
+
|
730 |
+
x = self.upconv_3(x) # 1/14
|
731 |
+
x = self.upconv_2(x, x2) # 1/7
|
732 |
+
x = self.upconv_1(x, x1) # 1/4
|
733 |
+
# x = self.upconv_0(x, x0) # 4/7
|
734 |
+
return x
|
735 |
+
|
736 |
+
class RAFTDepthNormalDPT5(nn.Module):
|
737 |
+
def __init__(self, cfg):
|
738 |
+
super().__init__()
|
739 |
+
self.in_channels = cfg.model.decode_head.in_channels # [1024, 1024, 1024, 1024]
|
740 |
+
self.feature_channels = cfg.model.decode_head.feature_channels # [256, 512, 1024, 1024] [2/7, 1/7, 1/14, 1/14]
|
741 |
+
self.decoder_channels = cfg.model.decode_head.decoder_channels # [128, 256, 512, 1024, 1024] [-, 1/4, 1/7, 1/14, 1/14]
|
742 |
+
self.use_cls_token = cfg.model.decode_head.use_cls_token
|
743 |
+
self.up_scale = cfg.model.decode_head.up_scale
|
744 |
+
self.num_register_tokens = cfg.model.decode_head.num_register_tokens
|
745 |
+
self.min_val = cfg.data_basic.depth_normalize[0]
|
746 |
+
self.max_val = cfg.data_basic.depth_normalize[1]
|
747 |
+
self.regress_scale = 100.0\
|
748 |
+
|
749 |
+
try:
|
750 |
+
tuning_mode = cfg.model.decode_head.tuning_mode
|
751 |
+
except:
|
752 |
+
tuning_mode = None
|
753 |
+
self.tuning_mode = tuning_mode
|
754 |
+
|
755 |
+
self.hidden_dims = self.context_dims = cfg.model.decode_head.hidden_channels # [128, 128, 128, 128]
|
756 |
+
self.n_gru_layers = cfg.model.decode_head.n_gru_layers # 3
|
757 |
+
self.n_downsample = cfg.model.decode_head.n_downsample # 3, resolution of the disparity field (1/2^K)
|
758 |
+
self.iters = cfg.model.decode_head.iters # 22
|
759 |
+
self.slow_fast_gru = cfg.model.decode_head.slow_fast_gru # True
|
760 |
+
|
761 |
+
self.num_depth_regressor_anchor = 256 # 512
|
762 |
+
self.used_res_channel = self.decoder_channels[1] # now, use 2/7 res
|
763 |
+
self.token2feature = EncoderFeature(self.in_channels[0], self.feature_channels, self.use_cls_token, self.num_register_tokens, tuning_mode=tuning_mode)
|
764 |
+
self.decoder_mono = DecoderFeature(self.in_channels, self.decoder_channels, tuning_mode=tuning_mode)
|
765 |
+
self.depth_regressor = nn.Sequential(
|
766 |
+
Conv2dLoRA(self.used_res_channel,
|
767 |
+
self.num_depth_regressor_anchor,
|
768 |
+
kernel_size=3,
|
769 |
+
padding=1, r = 8 if tuning_mode == 'lora' else 0),
|
770 |
+
# nn.BatchNorm2d(self.num_depth_regressor_anchor),
|
771 |
+
nn.ReLU(inplace=True),
|
772 |
+
Conv2dLoRA(self.num_depth_regressor_anchor,
|
773 |
+
self.num_depth_regressor_anchor,
|
774 |
+
kernel_size=1, r = 8 if tuning_mode == 'lora' else 0),
|
775 |
+
)
|
776 |
+
self.normal_predictor = nn.Sequential(
|
777 |
+
Conv2dLoRA(self.used_res_channel,
|
778 |
+
128,
|
779 |
+
kernel_size=3,
|
780 |
+
padding=1, r = 8 if tuning_mode == 'lora' else 0,),
|
781 |
+
# nn.BatchNorm2d(128),
|
782 |
+
nn.ReLU(inplace=True),
|
783 |
+
Conv2dLoRA(128, 128, kernel_size=1, r = 8 if tuning_mode == 'lora' else 0), nn.ReLU(inplace=True),
|
784 |
+
Conv2dLoRA(128, 128, kernel_size=1, r = 8 if tuning_mode == 'lora' else 0), nn.ReLU(inplace=True),
|
785 |
+
Conv2dLoRA(128, 3, kernel_size=1, r = 8 if tuning_mode == 'lora' else 0),
|
786 |
+
)
|
787 |
+
|
788 |
+
self.context_feature_encoder = ContextFeatureEncoder(self.feature_channels, [self.hidden_dims, self.context_dims], tuning_mode=tuning_mode)
|
789 |
+
self.context_zqr_convs = nn.ModuleList([Conv2dLoRA(self.context_dims[i], self.hidden_dims[i]*3, 3, padding=3//2, r = 8 if tuning_mode == 'lora' else 0) for i in range(self.n_gru_layers)])
|
790 |
+
self.update_block = BasicMultiUpdateBlock(cfg, hidden_dims=self.hidden_dims, out_dims=6, tuning_mode=tuning_mode)
|
791 |
+
|
792 |
+
self.relu = nn.ReLU(inplace=True)
|
793 |
+
|
794 |
+
def get_bins(self, bins_num):
|
795 |
+
depth_bins_vec = torch.linspace(math.log(self.min_val), math.log(self.max_val), bins_num, device="cuda")
|
796 |
+
depth_bins_vec = torch.exp(depth_bins_vec)
|
797 |
+
return depth_bins_vec
|
798 |
+
|
799 |
+
def register_depth_expectation_anchor(self, bins_num, B):
|
800 |
+
depth_bins_vec = self.get_bins(bins_num)
|
801 |
+
depth_bins_vec = depth_bins_vec.unsqueeze(0).repeat(B, 1)
|
802 |
+
self.register_buffer('depth_expectation_anchor', depth_bins_vec, persistent=False)
|
803 |
+
|
804 |
+
def clamp(self, x):
|
805 |
+
y = self.relu(x - self.min_val) + self.min_val
|
806 |
+
y = self.max_val - self.relu(self.max_val - y)
|
807 |
+
return y
|
808 |
+
|
809 |
+
def regress_depth(self, feature_map_d):
|
810 |
+
prob_feature = self.depth_regressor(feature_map_d)
|
811 |
+
prob = prob_feature.softmax(dim=1)
|
812 |
+
#prob = prob_feature.float().softmax(dim=1)
|
813 |
+
|
814 |
+
## Error logging
|
815 |
+
if torch.isnan(prob).any():
|
816 |
+
print('prob_feat_nan!!!')
|
817 |
+
if torch.isinf(prob).any():
|
818 |
+
print('prob_feat_inf!!!')
|
819 |
+
|
820 |
+
# h = prob[0,:,0,0].cpu().numpy().reshape(-1)
|
821 |
+
# import matplotlib.pyplot as plt
|
822 |
+
# plt.bar(range(len(h)), h)
|
823 |
+
B = prob.shape[0]
|
824 |
+
if "depth_expectation_anchor" not in self._buffers:
|
825 |
+
self.register_depth_expectation_anchor(self.num_depth_regressor_anchor, B)
|
826 |
+
d = compute_depth_expectation(
|
827 |
+
prob,
|
828 |
+
self.depth_expectation_anchor[:B, ...]).unsqueeze(1)
|
829 |
+
|
830 |
+
## Error logging
|
831 |
+
if torch.isnan(d ).any():
|
832 |
+
print('d_nan!!!')
|
833 |
+
if torch.isinf(d ).any():
|
834 |
+
print('d_inf!!!')
|
835 |
+
|
836 |
+
return (self.clamp(d) - self.max_val)/ self.regress_scale, prob_feature
|
837 |
+
|
838 |
+
def pred_normal(self, feature_map, confidence):
|
839 |
+
normal_out = self.normal_predictor(feature_map)
|
840 |
+
|
841 |
+
## Error logging
|
842 |
+
if torch.isnan(normal_out).any():
|
843 |
+
print('norm_nan!!!')
|
844 |
+
if torch.isinf(normal_out).any():
|
845 |
+
print('norm_feat_inf!!!')
|
846 |
+
|
847 |
+
return norm_normalize(torch.cat([normal_out, confidence], dim=1))
|
848 |
+
#return norm_normalize(torch.cat([normal_out, confidence], dim=1).float())
|
849 |
+
|
850 |
+
def create_mesh_grid(self, height, width, batch, device="cuda", set_buffer=True):
|
851 |
+
y, x = torch.meshgrid([torch.arange(0, height, dtype=torch.float32, device=device),
|
852 |
+
torch.arange(0, width, dtype=torch.float32, device=device)], indexing='ij')
|
853 |
+
meshgrid = torch.stack((x, y))
|
854 |
+
meshgrid = meshgrid.unsqueeze(0).repeat(batch, 1, 1, 1)
|
855 |
+
#self.register_buffer('meshgrid', meshgrid, persistent=False)
|
856 |
+
return meshgrid
|
857 |
+
|
858 |
+
def upsample_flow(self, flow, mask):
|
859 |
+
""" Upsample flow field [H/8, W/8, 2] -> [H, W, 2] using convex combination """
|
860 |
+
N, D, H, W = flow.shape
|
861 |
+
factor = 2 ** self.n_downsample
|
862 |
+
mask = mask.view(N, 1, 9, factor, factor, H, W)
|
863 |
+
mask = torch.softmax(mask, dim=2)
|
864 |
+
#mask = torch.softmax(mask.float(), dim=2)
|
865 |
+
|
866 |
+
#up_flow = F.unfold(factor * flow, [3,3], padding=1)
|
867 |
+
up_flow = F.unfold(flow, [3,3], padding=1)
|
868 |
+
up_flow = up_flow.view(N, D, 9, 1, 1, H, W)
|
869 |
+
|
870 |
+
up_flow = torch.sum(mask * up_flow, dim=2)
|
871 |
+
up_flow = up_flow.permute(0, 1, 4, 2, 5, 3)
|
872 |
+
return up_flow.reshape(N, D, factor*H, factor*W)
|
873 |
+
|
874 |
+
def initialize_flow(self, img):
|
875 |
+
""" Flow is represented as difference between two coordinate grids flow = coords1 - coords0"""
|
876 |
+
N, _, H, W = img.shape
|
877 |
+
|
878 |
+
coords0 = coords_grid(N, H, W).to(img.device)
|
879 |
+
coords1 = coords_grid(N, H, W).to(img.device)
|
880 |
+
|
881 |
+
return coords0, coords1
|
882 |
+
|
883 |
+
def upsample(self, x, scale_factor=2):
|
884 |
+
"""Upsample input tensor by a factor of 2
|
885 |
+
"""
|
886 |
+
return interpolate_float32(x, scale_factor=scale_factor*self.up_scale/8, mode="nearest")
|
887 |
+
|
888 |
+
def forward(self, vit_features, **kwargs):
|
889 |
+
## read vit token to multi-scale features
|
890 |
+
B, H, W, _, _, num_register_tokens = vit_features[1]
|
891 |
+
vit_features = vit_features[0]
|
892 |
+
|
893 |
+
## Error logging
|
894 |
+
if torch.isnan(vit_features[0]).any():
|
895 |
+
print('vit_feature_nan!!!')
|
896 |
+
if torch.isinf(vit_features[0]).any():
|
897 |
+
print('vit_feature_inf!!!')
|
898 |
+
|
899 |
+
if self.use_cls_token == True:
|
900 |
+
vit_features = [[ft[:, 1+num_register_tokens:, :].view(B, H, W, self.in_channels[0]), \
|
901 |
+
ft[:, 0:1+num_register_tokens, :].view(B, 1, 1, self.in_channels[0] * (1+num_register_tokens))] for ft in vit_features]
|
902 |
+
else:
|
903 |
+
vit_features = [ft.view(B, H, W, self.in_channels[0]) for ft in vit_features]
|
904 |
+
encoder_features = self.token2feature(vit_features) # 1/14, 1/14, 1/7, 1/4
|
905 |
+
|
906 |
+
## Error logging
|
907 |
+
for en_ft in encoder_features:
|
908 |
+
if torch.isnan(en_ft).any():
|
909 |
+
print('decoder_feature_nan!!!')
|
910 |
+
print(en_ft.shape)
|
911 |
+
if torch.isinf(en_ft).any():
|
912 |
+
print('decoder_feature_inf!!!')
|
913 |
+
print(en_ft.shape)
|
914 |
+
|
915 |
+
## decode features to init-depth (and confidence)
|
916 |
+
ref_feat= self.decoder_mono(encoder_features) # now, 1/4 for depth
|
917 |
+
|
918 |
+
## Error logging
|
919 |
+
if torch.isnan(ref_feat).any():
|
920 |
+
print('ref_feat_nan!!!')
|
921 |
+
if torch.isinf(ref_feat).any():
|
922 |
+
print('ref_feat_inf!!!')
|
923 |
+
|
924 |
+
feature_map = ref_feat[:, :-2, :, :] # feature map share of depth and normal prediction
|
925 |
+
depth_confidence_map = ref_feat[:, -2:-1, :, :]
|
926 |
+
normal_confidence_map = ref_feat[:, -1:, :, :]
|
927 |
+
depth_pred, binmap = self.regress_depth(feature_map) # regress bin for depth
|
928 |
+
normal_pred = self.pred_normal(feature_map, normal_confidence_map) # mlp for normal
|
929 |
+
|
930 |
+
depth_init = torch.cat((depth_pred, depth_confidence_map, normal_pred), dim=1) # (N, 1+1+4, H, W)
|
931 |
+
|
932 |
+
## encoder features to context-feature for init-hidden-state and contex-features
|
933 |
+
cnet_list = self.context_feature_encoder(encoder_features[::-1])
|
934 |
+
net_list = [torch.tanh(x[0]) for x in cnet_list] # x_4, x_8, x_16 of hidden state
|
935 |
+
inp_list = [torch.relu(x[1]) for x in cnet_list] # x_4, x_8, x_16 context features
|
936 |
+
|
937 |
+
# Rather than running the GRU's conv layers on the context features multiple times, we do it once at the beginning
|
938 |
+
inp_list = [list(conv(i).split(split_size=conv.out_channels//3, dim=1)) for i,conv in zip(inp_list, self.context_zqr_convs)]
|
939 |
+
|
940 |
+
coords0, coords1 = self.initialize_flow(net_list[0])
|
941 |
+
if depth_init is not None:
|
942 |
+
coords1 = coords1 + depth_init
|
943 |
+
|
944 |
+
if self.training:
|
945 |
+
low_resolution_init = [self.clamp(depth_init[:,:1] * self.regress_scale + self.max_val), depth_init[:,1:2], norm_normalize(depth_init[:,2:].clone())]
|
946 |
+
init_depth = upflow4(depth_init)
|
947 |
+
flow_predictions = [self.clamp(init_depth[:,:1] * self.regress_scale + self.max_val)]
|
948 |
+
conf_predictions = [init_depth[:,1:2]]
|
949 |
+
normal_outs = [norm_normalize(init_depth[:,2:].clone())]
|
950 |
+
|
951 |
+
else:
|
952 |
+
flow_predictions = []
|
953 |
+
conf_predictions = []
|
954 |
+
samples_pred_list = []
|
955 |
+
coord_list = []
|
956 |
+
normal_outs = []
|
957 |
+
low_resolution_init = []
|
958 |
+
|
959 |
+
for itr in range(self.iters):
|
960 |
+
# coords1 = coords1.detach()
|
961 |
+
flow = coords1 - coords0
|
962 |
+
if self.n_gru_layers == 3 and self.slow_fast_gru: # Update low-res GRU
|
963 |
+
net_list = self.update_block(net_list, inp_list, iter32=True, iter16=False, iter08=False, update=False)
|
964 |
+
if self.n_gru_layers >= 2 and self.slow_fast_gru:# Update low-res GRU and mid-res GRU
|
965 |
+
net_list = self.update_block(net_list, inp_list, iter32=self.n_gru_layers==3, iter16=True, iter08=False, update=False)
|
966 |
+
net_list, up_mask, delta_flow = self.update_block(net_list, inp_list, None, flow, iter32=self.n_gru_layers==3, iter16=self.n_gru_layers>=2)
|
967 |
+
|
968 |
+
# F(t+1) = F(t) + \Delta(t)
|
969 |
+
coords1 = coords1 + delta_flow
|
970 |
+
|
971 |
+
# We do not need to upsample or output intermediate results in test_mode
|
972 |
+
#if (not self.training) and itr < self.iters-1:
|
973 |
+
#continue
|
974 |
+
|
975 |
+
# upsample predictions
|
976 |
+
if up_mask is None:
|
977 |
+
flow_up = self.upsample(coords1-coords0, 4)
|
978 |
+
else:
|
979 |
+
flow_up = self.upsample_flow(coords1 - coords0, up_mask)
|
980 |
+
# flow_up = self.upsample(coords1-coords0, 4)
|
981 |
+
|
982 |
+
flow_predictions.append(self.clamp(flow_up[:,:1] * self.regress_scale + self.max_val))
|
983 |
+
conf_predictions.append(flow_up[:,1:2])
|
984 |
+
normal_outs.append(norm_normalize(flow_up[:,2:].clone()))
|
985 |
+
|
986 |
+
outputs=dict(
|
987 |
+
prediction=flow_predictions[-1],
|
988 |
+
predictions_list=flow_predictions,
|
989 |
+
confidence=conf_predictions[-1],
|
990 |
+
confidence_list=conf_predictions,
|
991 |
+
pred_logit=None,
|
992 |
+
# samples_pred_list=samples_pred_list,
|
993 |
+
# coord_list=coord_list,
|
994 |
+
prediction_normal=normal_outs[-1],
|
995 |
+
normal_out_list=normal_outs,
|
996 |
+
low_resolution_init=low_resolution_init,
|
997 |
+
)
|
998 |
+
|
999 |
+
return outputs
|
1000 |
+
|
1001 |
+
|
1002 |
+
if __name__ == "__main__":
|
1003 |
+
try:
|
1004 |
+
from mmcv.utils import Config
|
1005 |
+
except:
|
1006 |
+
from mmengine import Config
|
1007 |
+
cfg = Config.fromfile('/cpfs01/shared/public/users/mu.hu/monodepth/mono/configs/RAFTDecoder/vit.raft.full2t.py')
|
1008 |
+
cfg.model.decode_head.in_channels = [384, 384, 384, 384]
|
1009 |
+
cfg.model.decode_head.feature_channels = [96, 192, 384, 768]
|
1010 |
+
cfg.model.decode_head.decoder_channels = [48, 96, 192, 384, 384]
|
1011 |
+
cfg.model.decode_head.hidden_channels = [48, 48, 48, 48, 48]
|
1012 |
+
cfg.model.decode_head.up_scale = 7
|
1013 |
+
|
1014 |
+
# cfg.model.decode_head.use_cls_token = True
|
1015 |
+
# vit_feature = [[torch.rand((2, 20, 60, 384)).cuda(), torch.rand(2, 384).cuda()], \
|
1016 |
+
# [torch.rand((2, 20, 60, 384)).cuda(), torch.rand(2, 384).cuda()], \
|
1017 |
+
# [torch.rand((2, 20, 60, 384)).cuda(), torch.rand(2, 384).cuda()], \
|
1018 |
+
# [torch.rand((2, 20, 60, 384)).cuda(), torch.rand(2, 384).cuda()]]
|
1019 |
+
|
1020 |
+
cfg.model.decode_head.use_cls_token = True
|
1021 |
+
cfg.model.decode_head.num_register_tokens = 4
|
1022 |
+
vit_feature = [[torch.rand((2, (74 * 74) + 5, 384)).cuda(),\
|
1023 |
+
torch.rand((2, (74 * 74) + 5, 384)).cuda(), \
|
1024 |
+
torch.rand((2, (74 * 74) + 5, 384)).cuda(), \
|
1025 |
+
torch.rand((2, (74 * 74) + 5, 384)).cuda()], (2, 74, 74, 1036, 1036, 4)]
|
1026 |
+
|
1027 |
+
decoder = RAFTDepthNormalDPT5(cfg).cuda()
|
1028 |
+
output = decoder(vit_feature)
|
1029 |
+
temp = 1
|
1030 |
+
|
1031 |
+
|
1032 |
+
|
1033 |
+
|
mono/model/decode_heads/__init__.py
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from .HourGlassDecoder import HourglassDecoder
|
2 |
+
from .RAFTDepthNormalDPTDecoder5 import RAFTDepthNormalDPT5
|
3 |
+
|
4 |
+
__all__=['HourglassDecoder', 'RAFTDepthNormalDPT5']
|
mono/model/decode_heads/__pycache__/HourGlassDecoder.cpython-39.pyc
ADDED
Binary file (8.65 kB). View file
|
|
mono/model/decode_heads/__pycache__/__init__.cpython-39.pyc
ADDED
Binary file (252 Bytes). View file
|
|
mono/model/model_pipelines/__base_model__.py
ADDED
@@ -0,0 +1,20 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torch.nn as nn
|
3 |
+
from mono.utils.comm import get_func
|
4 |
+
|
5 |
+
|
6 |
+
class BaseDepthModel(nn.Module):
|
7 |
+
def __init__(self, cfg, **kwargs) -> None:
|
8 |
+
super(BaseDepthModel, self).__init__()
|
9 |
+
model_type = cfg.model.type
|
10 |
+
self.depth_model = get_func('mono.model.model_pipelines.' + model_type)(cfg)
|
11 |
+
|
12 |
+
def forward(self, data):
|
13 |
+
output = self.depth_model(**data)
|
14 |
+
|
15 |
+
return output['prediction'], output['confidence'], output
|
16 |
+
|
17 |
+
def inference(self, data):
|
18 |
+
with torch.no_grad():
|
19 |
+
pred_depth, confidence, _ = self.forward(data)
|
20 |
+
return pred_depth, confidence
|
mono/model/model_pipelines/__init__.py
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
from .dense_pipeline import DensePredModel
|
3 |
+
from .__base_model__ import BaseDepthModel
|
4 |
+
__all__ = [
|
5 |
+
'DensePredModel', 'BaseDepthModel',
|
6 |
+
]
|
mono/model/model_pipelines/__pycache__/__base_model__.cpython-39.pyc
ADDED
Binary file (1.19 kB). View file
|
|
mono/model/model_pipelines/__pycache__/__init__.cpython-39.pyc
ADDED
Binary file (313 Bytes). View file
|
|
mono/model/model_pipelines/__pycache__/dense_pipeline.cpython-39.pyc
ADDED
Binary file (1.01 kB). View file
|
|
mono/model/model_pipelines/dense_pipeline.py
ADDED
@@ -0,0 +1,16 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torch.nn as nn
|
3 |
+
from mono.utils.comm import get_func
|
4 |
+
|
5 |
+
class DensePredModel(nn.Module):
|
6 |
+
def __init__(self, cfg) -> None:
|
7 |
+
super(DensePredModel, self).__init__()
|
8 |
+
|
9 |
+
self.encoder = get_func('mono.model.' + cfg.model.backbone.prefix + cfg.model.backbone.type)(**cfg.model.backbone)
|
10 |
+
self.decoder = get_func('mono.model.' + cfg.model.decode_head.prefix + cfg.model.decode_head.type)(cfg)
|
11 |
+
|
12 |
+
def forward(self, input, **kwargs):
|
13 |
+
# [f_32, f_16, f_8, f_4]
|
14 |
+
features = self.encoder(input)
|
15 |
+
out = self.decoder(features, **kwargs)
|
16 |
+
return out
|
mono/model/monodepth_model.py
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torch.nn as nn
|
3 |
+
from .model_pipelines.__base_model__ import BaseDepthModel
|
4 |
+
|
5 |
+
class DepthModel(BaseDepthModel):
|
6 |
+
def __init__(self, cfg, **kwards):
|
7 |
+
super(DepthModel, self).__init__(cfg)
|
8 |
+
model_type = cfg.model.type
|
9 |
+
|
10 |
+
def inference(self, data):
|
11 |
+
with torch.no_grad():
|
12 |
+
pred_depth, confidence, output_dict = self.forward(data)
|
13 |
+
return pred_depth, confidence, output_dict
|
14 |
+
|
15 |
+
def get_monodepth_model(
|
16 |
+
cfg : dict,
|
17 |
+
**kwargs
|
18 |
+
) -> nn.Module:
|
19 |
+
# config depth model
|
20 |
+
model = DepthModel(cfg, **kwargs)
|
21 |
+
#model.init_weights(load_imagenet_model, imagenet_ckpt_fpath)
|
22 |
+
assert isinstance(model, nn.Module)
|
23 |
+
return model
|
24 |
+
|
25 |
+
def get_configured_monodepth_model(
|
26 |
+
cfg: dict,
|
27 |
+
) -> nn.Module:
|
28 |
+
"""
|
29 |
+
Args:
|
30 |
+
@ configs: configures for the network.
|
31 |
+
@ load_imagenet_model: whether to initialize from ImageNet-pretrained model.
|
32 |
+
@ imagenet_ckpt_fpath: string representing path to file with weights to initialize model with.
|
33 |
+
Returns:
|
34 |
+
# model: depth model.
|
35 |
+
"""
|
36 |
+
model = get_monodepth_model(cfg)
|
37 |
+
return model
|
mono/tools/test_scale_cano.py
ADDED
@@ -0,0 +1,158 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import os.path as osp
|
3 |
+
import cv2
|
4 |
+
import time
|
5 |
+
import sys
|
6 |
+
CODE_SPACE=os.path.dirname(os.path.dirname(os.path.dirname(os.path.abspath(__file__))))
|
7 |
+
sys.path.append(CODE_SPACE)
|
8 |
+
import argparse
|
9 |
+
import mmcv
|
10 |
+
import torch
|
11 |
+
import torch.distributed as dist
|
12 |
+
import torch.multiprocessing as mp
|
13 |
+
|
14 |
+
try:
|
15 |
+
from mmcv.utils import Config, DictAction
|
16 |
+
except:
|
17 |
+
from mmengine import Config, DictAction
|
18 |
+
from datetime import timedelta
|
19 |
+
import random
|
20 |
+
import numpy as np
|
21 |
+
from mono.utils.logger import setup_logger
|
22 |
+
import glob
|
23 |
+
from mono.utils.comm import init_env
|
24 |
+
from mono.model.monodepth_model import get_configured_monodepth_model
|
25 |
+
from mono.utils.running import load_ckpt
|
26 |
+
from mono.utils.do_test import do_scalecano_test_with_custom_data
|
27 |
+
from mono.utils.mldb import load_data_info, reset_ckpt_path
|
28 |
+
from mono.utils.custom_data import load_from_annos, load_data
|
29 |
+
|
30 |
+
def parse_args():
|
31 |
+
parser = argparse.ArgumentParser(description='Train a segmentor')
|
32 |
+
parser.add_argument('config', help='train config file path')
|
33 |
+
parser.add_argument('--show-dir', help='the dir to save logs and visualization results')
|
34 |
+
parser.add_argument('--load-from', help='the checkpoint file to load weights from')
|
35 |
+
parser.add_argument('--node_rank', type=int, default=0)
|
36 |
+
parser.add_argument('--nnodes', type=int, default=1, help='number of nodes')
|
37 |
+
parser.add_argument('--options', nargs='+', action=DictAction, help='custom options')
|
38 |
+
parser.add_argument('--launcher', choices=['None', 'pytorch', 'slurm', 'mpi', 'ror'], default='slurm', help='job launcher')
|
39 |
+
parser.add_argument('--test_data_path', default='None', type=str, help='the path of test data')
|
40 |
+
args = parser.parse_args()
|
41 |
+
return args
|
42 |
+
|
43 |
+
def main(args):
|
44 |
+
os.chdir(CODE_SPACE)
|
45 |
+
cfg = Config.fromfile(args.config)
|
46 |
+
|
47 |
+
if args.options is not None:
|
48 |
+
cfg.merge_from_dict(args.options)
|
49 |
+
|
50 |
+
# show_dir is determined in this priority: CLI > segment in file > filename
|
51 |
+
if args.show_dir is not None:
|
52 |
+
# update configs according to CLI args if args.show_dir is not None
|
53 |
+
cfg.show_dir = args.show_dir
|
54 |
+
else:
|
55 |
+
# use condig filename + timestamp as default show_dir if args.show_dir is None
|
56 |
+
cfg.show_dir = osp.join('./show_dirs',
|
57 |
+
osp.splitext(osp.basename(args.config))[0],
|
58 |
+
args.timestamp)
|
59 |
+
|
60 |
+
# ckpt path
|
61 |
+
if args.load_from is None:
|
62 |
+
raise RuntimeError('Please set model path!')
|
63 |
+
cfg.load_from = args.load_from
|
64 |
+
|
65 |
+
# load data info
|
66 |
+
data_info = {}
|
67 |
+
load_data_info('data_info', data_info=data_info)
|
68 |
+
cfg.mldb_info = data_info
|
69 |
+
# update check point info
|
70 |
+
reset_ckpt_path(cfg.model, data_info)
|
71 |
+
|
72 |
+
# create show dir
|
73 |
+
os.makedirs(osp.abspath(cfg.show_dir), exist_ok=True)
|
74 |
+
|
75 |
+
# init the logger before other steps
|
76 |
+
cfg.log_file = osp.join(cfg.show_dir, f'{args.timestamp}.log')
|
77 |
+
logger = setup_logger(cfg.log_file)
|
78 |
+
|
79 |
+
# log some basic info
|
80 |
+
logger.info(f'Config:\n{cfg.pretty_text}')
|
81 |
+
|
82 |
+
# init distributed env dirst, since logger depends on the dist info
|
83 |
+
if args.launcher == 'None':
|
84 |
+
cfg.distributed = False
|
85 |
+
else:
|
86 |
+
cfg.distributed = True
|
87 |
+
init_env(args.launcher, cfg)
|
88 |
+
logger.info(f'Distributed training: {cfg.distributed}')
|
89 |
+
|
90 |
+
# dump config
|
91 |
+
cfg.dump(osp.join(cfg.show_dir, osp.basename(args.config)))
|
92 |
+
test_data_path = args.test_data_path
|
93 |
+
if not os.path.isabs(test_data_path):
|
94 |
+
test_data_path = osp.join(CODE_SPACE, test_data_path)
|
95 |
+
|
96 |
+
if 'json' in test_data_path:
|
97 |
+
test_data = load_from_annos(test_data_path)
|
98 |
+
else:
|
99 |
+
test_data = load_data(args.test_data_path)
|
100 |
+
|
101 |
+
if not cfg.distributed:
|
102 |
+
main_worker(0, cfg, args.launcher, test_data)
|
103 |
+
else:
|
104 |
+
# distributed training
|
105 |
+
if args.launcher == 'ror':
|
106 |
+
local_rank = cfg.dist_params.local_rank
|
107 |
+
main_worker(local_rank, cfg, args.launcher, test_data)
|
108 |
+
else:
|
109 |
+
mp.spawn(main_worker, nprocs=cfg.dist_params.num_gpus_per_node, args=(cfg, args.launcher, test_data))
|
110 |
+
|
111 |
+
def main_worker(local_rank: int, cfg: dict, launcher: str, test_data: list):
|
112 |
+
if cfg.distributed:
|
113 |
+
cfg.dist_params.global_rank = cfg.dist_params.node_rank * cfg.dist_params.num_gpus_per_node + local_rank
|
114 |
+
cfg.dist_params.local_rank = local_rank
|
115 |
+
|
116 |
+
if launcher == 'ror':
|
117 |
+
init_torch_process_group(use_hvd=False)
|
118 |
+
else:
|
119 |
+
torch.cuda.set_device(local_rank)
|
120 |
+
default_timeout = timedelta(minutes=30)
|
121 |
+
dist.init_process_group(
|
122 |
+
backend=cfg.dist_params.backend,
|
123 |
+
init_method=cfg.dist_params.dist_url,
|
124 |
+
world_size=cfg.dist_params.world_size,
|
125 |
+
rank=cfg.dist_params.global_rank,
|
126 |
+
timeout=default_timeout)
|
127 |
+
|
128 |
+
logger = setup_logger(cfg.log_file)
|
129 |
+
# build model
|
130 |
+
model = get_configured_monodepth_model(cfg, )
|
131 |
+
|
132 |
+
# config distributed training
|
133 |
+
if cfg.distributed:
|
134 |
+
model = torch.nn.parallel.DistributedDataParallel(model.cuda(),
|
135 |
+
device_ids=[local_rank],
|
136 |
+
output_device=local_rank,
|
137 |
+
find_unused_parameters=True)
|
138 |
+
else:
|
139 |
+
model = torch.nn.DataParallel(model).cuda()
|
140 |
+
|
141 |
+
# load ckpt
|
142 |
+
model, _, _, _ = load_ckpt(cfg.load_from, model, strict_match=False)
|
143 |
+
model.eval()
|
144 |
+
|
145 |
+
do_scalecano_test_with_custom_data(
|
146 |
+
model,
|
147 |
+
cfg,
|
148 |
+
test_data,
|
149 |
+
logger,
|
150 |
+
cfg.distributed,
|
151 |
+
local_rank
|
152 |
+
)
|
153 |
+
|
154 |
+
if __name__ == '__main__':
|
155 |
+
args = parse_args()
|
156 |
+
timestamp = time.strftime('%Y%m%d_%H%M%S', time.localtime())
|
157 |
+
args.timestamp = timestamp
|
158 |
+
main(args)
|
mono/utils/__init__.py
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
|
mono/utils/__pycache__/__init__.cpython-39.pyc
ADDED
Binary file (160 Bytes). View file
|
|
mono/utils/__pycache__/avg_meter.cpython-39.pyc
ADDED
Binary file (10.1 kB). View file
|
|
mono/utils/__pycache__/comm.cpython-39.pyc
ADDED
Binary file (9.72 kB). View file
|
|
mono/utils/__pycache__/custom_data.cpython-39.pyc
ADDED
Binary file (1.21 kB). View file
|
|
mono/utils/__pycache__/do_test.cpython-39.pyc
ADDED
Binary file (8.71 kB). View file
|
|
mono/utils/__pycache__/logger.cpython-39.pyc
ADDED
Binary file (3.17 kB). View file
|
|
mono/utils/__pycache__/mldb.cpython-39.pyc
ADDED
Binary file (1.18 kB). View file
|
|
mono/utils/__pycache__/running.cpython-39.pyc
ADDED
Binary file (2.09 kB). View file
|
|
mono/utils/__pycache__/transform.cpython-39.pyc
ADDED
Binary file (11.5 kB). View file
|
|
mono/utils/__pycache__/unproj_pcd.cpython-39.pyc
ADDED
Binary file (2.61 kB). View file
|
|