from dataclasses import dataclass from typing import List, Optional, Union import numpy as np import PIL.Image from ...utils import BaseOutput @dataclass class LEditsPPDiffusionPipelineOutput(BaseOutput): """ Output class for LEdits++ Diffusion pipelines. Args: images (`List[PIL.Image.Image]` or `np.ndarray`) List of denoised PIL images of length `batch_size` or NumPy array of shape `(batch_size, height, width, num_channels)`. nsfw_content_detected (`List[bool]`) List indicating whether the corresponding generated image contains “not-safe-for-work” (nsfw) content or `None` if safety checking could not be performed. """ images: Union[List[PIL.Image.Image], np.ndarray] nsfw_content_detected: Optional[List[bool]] @dataclass class LEditsPPInversionPipelineOutput(BaseOutput): """ Output class for LEdits++ Diffusion pipelines. Args: input_images (`List[PIL.Image.Image]` or `np.ndarray`) List of the cropped and resized input images as PIL images of length `batch_size` or NumPy array of shape ` (batch_size, height, width, num_channels)`. vae_reconstruction_images (`List[PIL.Image.Image]` or `np.ndarray`) List of VAE reconstruction of all input images as PIL images of length `batch_size` or NumPy array of shape ` (batch_size, height, width, num_channels)`. """ images: Union[List[PIL.Image.Image], np.ndarray] vae_reconstruction_images: Union[List[PIL.Image.Image], np.ndarray]