# Copyright 2022 The Music Spectrogram Diffusion Authors. # Copyright 2024 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch import torch.nn as nn from transformers.modeling_utils import ModuleUtilsMixin from transformers.models.t5.modeling_t5 import T5Block, T5Config, T5LayerNorm from ....configuration_utils import ConfigMixin, register_to_config from ....models import ModelMixin class SpectrogramNotesEncoder(ModelMixin, ConfigMixin, ModuleUtilsMixin): @register_to_config def __init__( self, max_length: int, vocab_size: int, d_model: int, dropout_rate: float, num_layers: int, num_heads: int, d_kv: int, d_ff: int, feed_forward_proj: str, is_decoder: bool = False, ): super().__init__() self.token_embedder = nn.Embedding(vocab_size, d_model) self.position_encoding = nn.Embedding(max_length, d_model) self.position_encoding.weight.requires_grad = False self.dropout_pre = nn.Dropout(p=dropout_rate) t5config = T5Config( vocab_size=vocab_size, d_model=d_model, num_heads=num_heads, d_kv=d_kv, d_ff=d_ff, dropout_rate=dropout_rate, feed_forward_proj=feed_forward_proj, is_decoder=is_decoder, is_encoder_decoder=False, ) self.encoders = nn.ModuleList() for lyr_num in range(num_layers): lyr = T5Block(t5config) self.encoders.append(lyr) self.layer_norm = T5LayerNorm(d_model) self.dropout_post = nn.Dropout(p=dropout_rate) def forward(self, encoder_input_tokens, encoder_inputs_mask): x = self.token_embedder(encoder_input_tokens) seq_length = encoder_input_tokens.shape[1] inputs_positions = torch.arange(seq_length, device=encoder_input_tokens.device) x += self.position_encoding(inputs_positions) x = self.dropout_pre(x) # inverted the attention mask input_shape = encoder_input_tokens.size() extended_attention_mask = self.get_extended_attention_mask(encoder_inputs_mask, input_shape) for lyr in self.encoders: x = lyr(x, extended_attention_mask)[0] x = self.layer_norm(x) return self.dropout_post(x), encoder_inputs_mask