# Copyright 2024 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import Optional, Tuple import jax import jax.numpy as jnp from flax import linen as nn from flax.core.frozen_dict import FrozenDict from transformers import CLIPConfig, FlaxPreTrainedModel from transformers.models.clip.modeling_flax_clip import FlaxCLIPVisionModule def jax_cosine_distance(emb_1, emb_2, eps=1e-12): norm_emb_1 = jnp.divide(emb_1.T, jnp.clip(jnp.linalg.norm(emb_1, axis=1), a_min=eps)).T norm_emb_2 = jnp.divide(emb_2.T, jnp.clip(jnp.linalg.norm(emb_2, axis=1), a_min=eps)).T return jnp.matmul(norm_emb_1, norm_emb_2.T) class FlaxStableDiffusionSafetyCheckerModule(nn.Module): config: CLIPConfig dtype: jnp.dtype = jnp.float32 def setup(self): self.vision_model = FlaxCLIPVisionModule(self.config.vision_config) self.visual_projection = nn.Dense(self.config.projection_dim, use_bias=False, dtype=self.dtype) self.concept_embeds = self.param("concept_embeds", jax.nn.initializers.ones, (17, self.config.projection_dim)) self.special_care_embeds = self.param( "special_care_embeds", jax.nn.initializers.ones, (3, self.config.projection_dim) ) self.concept_embeds_weights = self.param("concept_embeds_weights", jax.nn.initializers.ones, (17,)) self.special_care_embeds_weights = self.param("special_care_embeds_weights", jax.nn.initializers.ones, (3,)) def __call__(self, clip_input): pooled_output = self.vision_model(clip_input)[1] image_embeds = self.visual_projection(pooled_output) special_cos_dist = jax_cosine_distance(image_embeds, self.special_care_embeds) cos_dist = jax_cosine_distance(image_embeds, self.concept_embeds) # increase this value to create a stronger `nfsw` filter # at the cost of increasing the possibility of filtering benign image inputs adjustment = 0.0 special_scores = special_cos_dist - self.special_care_embeds_weights[None, :] + adjustment special_scores = jnp.round(special_scores, 3) is_special_care = jnp.any(special_scores > 0, axis=1, keepdims=True) # Use a lower threshold if an image has any special care concept special_adjustment = is_special_care * 0.01 concept_scores = cos_dist - self.concept_embeds_weights[None, :] + special_adjustment concept_scores = jnp.round(concept_scores, 3) has_nsfw_concepts = jnp.any(concept_scores > 0, axis=1) return has_nsfw_concepts class FlaxStableDiffusionSafetyChecker(FlaxPreTrainedModel): config_class = CLIPConfig main_input_name = "clip_input" module_class = FlaxStableDiffusionSafetyCheckerModule def __init__( self, config: CLIPConfig, input_shape: Optional[Tuple] = None, seed: int = 0, dtype: jnp.dtype = jnp.float32, _do_init: bool = True, **kwargs, ): if input_shape is None: input_shape = (1, 224, 224, 3) module = self.module_class(config=config, dtype=dtype, **kwargs) super().__init__(config, module, input_shape=input_shape, seed=seed, dtype=dtype, _do_init=_do_init) def init_weights(self, rng: jax.Array, input_shape: Tuple, params: FrozenDict = None) -> FrozenDict: # init input tensor clip_input = jax.random.normal(rng, input_shape) params_rng, dropout_rng = jax.random.split(rng) rngs = {"params": params_rng, "dropout": dropout_rng} random_params = self.module.init(rngs, clip_input)["params"] return random_params def __call__( self, clip_input, params: dict = None, ): clip_input = jnp.transpose(clip_input, (0, 2, 3, 1)) return self.module.apply( {"params": params or self.params}, jnp.array(clip_input, dtype=jnp.float32), rngs={}, )