#!/usr/bin/env python3 import argparse import fnmatch from safetensors.torch import load_file from diffusers import Kandinsky3UNet MAPPING = { "to_time_embed.1": "time_embedding.linear_1", "to_time_embed.3": "time_embedding.linear_2", "in_layer": "conv_in", "out_layer.0": "conv_norm_out", "out_layer.2": "conv_out", "down_samples": "down_blocks", "up_samples": "up_blocks", "projection_lin": "encoder_hid_proj.projection_linear", "projection_ln": "encoder_hid_proj.projection_norm", "feature_pooling": "add_time_condition", "to_query": "to_q", "to_key": "to_k", "to_value": "to_v", "output_layer": "to_out.0", "self_attention_block": "attentions.0", } DYNAMIC_MAP = { "resnet_attn_blocks.*.0": "resnets_in.*", "resnet_attn_blocks.*.1": ("attentions.*", 1), "resnet_attn_blocks.*.2": "resnets_out.*", } # MAPPING = {} def convert_state_dict(unet_state_dict): """ Args: Convert the state dict of a U-Net model to match the key format expected by Kandinsky3UNet model. unet_model (torch.nn.Module): The original U-Net model. unet_kandi3_model (torch.nn.Module): The Kandinsky3UNet model to match keys with. Returns: OrderedDict: The converted state dictionary. """ # Example of renaming logic (this will vary based on your model's architecture) converted_state_dict = {} for key in unet_state_dict: new_key = key for pattern, new_pattern in MAPPING.items(): new_key = new_key.replace(pattern, new_pattern) for dyn_pattern, dyn_new_pattern in DYNAMIC_MAP.items(): has_matched = False if fnmatch.fnmatch(new_key, f"*.{dyn_pattern}.*") and not has_matched: star = int(new_key.split(dyn_pattern.split(".")[0])[-1].split(".")[1]) if isinstance(dyn_new_pattern, tuple): new_star = star + dyn_new_pattern[-1] dyn_new_pattern = dyn_new_pattern[0] else: new_star = star pattern = dyn_pattern.replace("*", str(star)) new_pattern = dyn_new_pattern.replace("*", str(new_star)) new_key = new_key.replace(pattern, new_pattern) has_matched = True converted_state_dict[new_key] = unet_state_dict[key] return converted_state_dict def main(model_path, output_path): # Load your original U-Net model unet_state_dict = load_file(model_path) # Initialize your Kandinsky3UNet model config = {} # Convert the state dict converted_state_dict = convert_state_dict(unet_state_dict) unet = Kandinsky3UNet(config) unet.load_state_dict(converted_state_dict) unet.save_pretrained(output_path) print(f"Converted model saved to {output_path}") if __name__ == "__main__": parser = argparse.ArgumentParser(description="Convert U-Net PyTorch model to Kandinsky3UNet format") parser.add_argument("--model_path", type=str, required=True, help="Path to the original U-Net PyTorch model") parser.add_argument("--output_path", type=str, required=True, help="Path to save the converted model") args = parser.parse_args() main(args.model_path, args.output_path)