# Copyright 2022 The Music Spectrogram Diffusion Authors. # Copyright 2024 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch import torch.nn as nn from transformers.modeling_utils import ModuleUtilsMixin from transformers.models.t5.modeling_t5 import ( T5Block, T5Config, T5LayerNorm, ) from ....configuration_utils import ConfigMixin, register_to_config from ....models import ModelMixin class SpectrogramContEncoder(ModelMixin, ConfigMixin, ModuleUtilsMixin): @register_to_config def __init__( self, input_dims: int, targets_context_length: int, d_model: int, dropout_rate: float, num_layers: int, num_heads: int, d_kv: int, d_ff: int, feed_forward_proj: str, is_decoder: bool = False, ): super().__init__() self.input_proj = nn.Linear(input_dims, d_model, bias=False) self.position_encoding = nn.Embedding(targets_context_length, d_model) self.position_encoding.weight.requires_grad = False self.dropout_pre = nn.Dropout(p=dropout_rate) t5config = T5Config( d_model=d_model, num_heads=num_heads, d_kv=d_kv, d_ff=d_ff, feed_forward_proj=feed_forward_proj, dropout_rate=dropout_rate, is_decoder=is_decoder, is_encoder_decoder=False, ) self.encoders = nn.ModuleList() for lyr_num in range(num_layers): lyr = T5Block(t5config) self.encoders.append(lyr) self.layer_norm = T5LayerNorm(d_model) self.dropout_post = nn.Dropout(p=dropout_rate) def forward(self, encoder_inputs, encoder_inputs_mask): x = self.input_proj(encoder_inputs) # terminal relative positional encodings max_positions = encoder_inputs.shape[1] input_positions = torch.arange(max_positions, device=encoder_inputs.device) seq_lens = encoder_inputs_mask.sum(-1) input_positions = torch.roll(input_positions.unsqueeze(0), tuple(seq_lens.tolist()), dims=0) x += self.position_encoding(input_positions) x = self.dropout_pre(x) # inverted the attention mask input_shape = encoder_inputs.size() extended_attention_mask = self.get_extended_attention_mask(encoder_inputs_mask, input_shape) for lyr in self.encoders: x = lyr(x, extended_attention_mask)[0] x = self.layer_norm(x) return self.dropout_post(x), encoder_inputs_mask