import html
import inspect
import re
import urllib.parse as ul
from typing import Any, Callable, Dict, List, Optional, Union
import numpy as np
import PIL.Image
import torch
import torch.nn.functional as F
from transformers import CLIPImageProcessor, T5EncoderModel, T5Tokenizer
from ...loaders import LoraLoaderMixin
from ...models import UNet2DConditionModel
from ...schedulers import DDPMScheduler
from ...utils import (
BACKENDS_MAPPING,
is_bs4_available,
is_ftfy_available,
logging,
replace_example_docstring,
)
from ...utils.torch_utils import randn_tensor
from ..pipeline_utils import DiffusionPipeline
from .pipeline_output import IFPipelineOutput
from .safety_checker import IFSafetyChecker
from .watermark import IFWatermarker
if is_bs4_available():
from bs4 import BeautifulSoup
if is_ftfy_available():
import ftfy
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
EXAMPLE_DOC_STRING = """
Examples:
```py
>>> from diffusers import IFPipeline, IFSuperResolutionPipeline, DiffusionPipeline
>>> from diffusers.utils import pt_to_pil
>>> import torch
>>> pipe = IFPipeline.from_pretrained("DeepFloyd/IF-I-XL-v1.0", variant="fp16", torch_dtype=torch.float16)
>>> pipe.enable_model_cpu_offload()
>>> prompt = 'a photo of a kangaroo wearing an orange hoodie and blue sunglasses standing in front of the eiffel tower holding a sign that says "very deep learning"'
>>> prompt_embeds, negative_embeds = pipe.encode_prompt(prompt)
>>> image = pipe(prompt_embeds=prompt_embeds, negative_prompt_embeds=negative_embeds, output_type="pt").images
>>> # save intermediate image
>>> pil_image = pt_to_pil(image)
>>> pil_image[0].save("./if_stage_I.png")
>>> super_res_1_pipe = IFSuperResolutionPipeline.from_pretrained(
... "DeepFloyd/IF-II-L-v1.0", text_encoder=None, variant="fp16", torch_dtype=torch.float16
... )
>>> super_res_1_pipe.enable_model_cpu_offload()
>>> image = super_res_1_pipe(
... image=image, prompt_embeds=prompt_embeds, negative_prompt_embeds=negative_embeds
... ).images
>>> image[0].save("./if_stage_II.png")
```
"""
class IFSuperResolutionPipeline(DiffusionPipeline, LoraLoaderMixin):
tokenizer: T5Tokenizer
text_encoder: T5EncoderModel
unet: UNet2DConditionModel
scheduler: DDPMScheduler
image_noising_scheduler: DDPMScheduler
feature_extractor: Optional[CLIPImageProcessor]
safety_checker: Optional[IFSafetyChecker]
watermarker: Optional[IFWatermarker]
bad_punct_regex = re.compile(
r"["
+ "#®•©™&@·º½¾¿¡§~"
+ r"\)"
+ r"\("
+ r"\]"
+ r"\["
+ r"\}"
+ r"\{"
+ r"\|"
+ "\\"
+ r"\/"
+ r"\*"
+ r"]{1,}"
) # noqa
_optional_components = ["tokenizer", "text_encoder", "safety_checker", "feature_extractor", "watermarker"]
model_cpu_offload_seq = "text_encoder->unet"
_exclude_from_cpu_offload = ["watermarker"]
def __init__(
self,
tokenizer: T5Tokenizer,
text_encoder: T5EncoderModel,
unet: UNet2DConditionModel,
scheduler: DDPMScheduler,
image_noising_scheduler: DDPMScheduler,
safety_checker: Optional[IFSafetyChecker],
feature_extractor: Optional[CLIPImageProcessor],
watermarker: Optional[IFWatermarker],
requires_safety_checker: bool = True,
):
super().__init__()
if safety_checker is None and requires_safety_checker:
logger.warning(
f"You have disabled the safety checker for {self.__class__} by passing `safety_checker=None`. Ensure"
" that you abide to the conditions of the IF license and do not expose unfiltered"
" results in services or applications open to the public. Both the diffusers team and Hugging Face"
" strongly recommend to keep the safety filter enabled in all public facing circumstances, disabling"
" it only for use-cases that involve analyzing network behavior or auditing its results. For more"
" information, please have a look at https://github.com/huggingface/diffusers/pull/254 ."
)
if safety_checker is not None and feature_extractor is None:
raise ValueError(
"Make sure to define a feature extractor when loading {self.__class__} if you want to use the safety"
" checker. If you do not want to use the safety checker, you can pass `'safety_checker=None'` instead."
)
if unet.config.in_channels != 6:
logger.warning(
"It seems like you have loaded a checkpoint that shall not be used for super resolution from {unet.config._name_or_path} as it accepts {unet.config.in_channels} input channels instead of 6. Please make sure to pass a super resolution checkpoint as the `'unet'`: IFSuperResolutionPipeline.from_pretrained(unet=super_resolution_unet, ...)`."
)
self.register_modules(
tokenizer=tokenizer,
text_encoder=text_encoder,
unet=unet,
scheduler=scheduler,
image_noising_scheduler=image_noising_scheduler,
safety_checker=safety_checker,
feature_extractor=feature_extractor,
watermarker=watermarker,
)
self.register_to_config(requires_safety_checker=requires_safety_checker)
# Copied from diffusers.pipelines.deepfloyd_if.pipeline_if.IFPipeline._text_preprocessing
def _text_preprocessing(self, text, clean_caption=False):
if clean_caption and not is_bs4_available():
logger.warning(BACKENDS_MAPPING["bs4"][-1].format("Setting `clean_caption=True`"))
logger.warning("Setting `clean_caption` to False...")
clean_caption = False
if clean_caption and not is_ftfy_available():
logger.warning(BACKENDS_MAPPING["ftfy"][-1].format("Setting `clean_caption=True`"))
logger.warning("Setting `clean_caption` to False...")
clean_caption = False
if not isinstance(text, (tuple, list)):
text = [text]
def process(text: str):
if clean_caption:
text = self._clean_caption(text)
text = self._clean_caption(text)
else:
text = text.lower().strip()
return text
return [process(t) for t in text]
# Copied from diffusers.pipelines.deepfloyd_if.pipeline_if.IFPipeline._clean_caption
def _clean_caption(self, caption):
caption = str(caption)
caption = ul.unquote_plus(caption)
caption = caption.strip().lower()
caption = re.sub("", "person", caption)
# urls:
caption = re.sub(
r"\b((?:https?:(?:\/{1,3}|[a-zA-Z0-9%])|[a-zA-Z0-9.\-]+[.](?:com|co|ru|net|org|edu|gov|it)[\w/-]*\b\/?(?!@)))", # noqa
"",
caption,
) # regex for urls
caption = re.sub(
r"\b((?:www:(?:\/{1,3}|[a-zA-Z0-9%])|[a-zA-Z0-9.\-]+[.](?:com|co|ru|net|org|edu|gov|it)[\w/-]*\b\/?(?!@)))", # noqa
"",
caption,
) # regex for urls
# html:
caption = BeautifulSoup(caption, features="html.parser").text
# @
caption = re.sub(r"@[\w\d]+\b", "", caption)
# 31C0—31EF CJK Strokes
# 31F0—31FF Katakana Phonetic Extensions
# 3200—32FF Enclosed CJK Letters and Months
# 3300—33FF CJK Compatibility
# 3400—4DBF CJK Unified Ideographs Extension A
# 4DC0—4DFF Yijing Hexagram Symbols
# 4E00—9FFF CJK Unified Ideographs
caption = re.sub(r"[\u31c0-\u31ef]+", "", caption)
caption = re.sub(r"[\u31f0-\u31ff]+", "", caption)
caption = re.sub(r"[\u3200-\u32ff]+", "", caption)
caption = re.sub(r"[\u3300-\u33ff]+", "", caption)
caption = re.sub(r"[\u3400-\u4dbf]+", "", caption)
caption = re.sub(r"[\u4dc0-\u4dff]+", "", caption)
caption = re.sub(r"[\u4e00-\u9fff]+", "", caption)
#######################################################
# все виды тире / all types of dash --> "-"
caption = re.sub(
r"[\u002D\u058A\u05BE\u1400\u1806\u2010-\u2015\u2E17\u2E1A\u2E3A\u2E3B\u2E40\u301C\u3030\u30A0\uFE31\uFE32\uFE58\uFE63\uFF0D]+", # noqa
"-",
caption,
)
# кавычки к одному стандарту
caption = re.sub(r"[`´«»“”¨]", '"', caption)
caption = re.sub(r"[‘’]", "'", caption)
# "
caption = re.sub(r""?", "", caption)
# &
caption = re.sub(r"&", "", caption)
# ip adresses:
caption = re.sub(r"\d{1,3}\.\d{1,3}\.\d{1,3}\.\d{1,3}", " ", caption)
# article ids:
caption = re.sub(r"\d:\d\d\s+$", "", caption)
# \n
caption = re.sub(r"\\n", " ", caption)
# "#123"
caption = re.sub(r"#\d{1,3}\b", "", caption)
# "#12345.."
caption = re.sub(r"#\d{5,}\b", "", caption)
# "123456.."
caption = re.sub(r"\b\d{6,}\b", "", caption)
# filenames:
caption = re.sub(r"[\S]+\.(?:png|jpg|jpeg|bmp|webp|eps|pdf|apk|mp4)", "", caption)
#
caption = re.sub(r"[\"\']{2,}", r'"', caption) # """AUSVERKAUFT"""
caption = re.sub(r"[\.]{2,}", r" ", caption) # """AUSVERKAUFT"""
caption = re.sub(self.bad_punct_regex, r" ", caption) # ***AUSVERKAUFT***, #AUSVERKAUFT
caption = re.sub(r"\s+\.\s+", r" ", caption) # " . "
# this-is-my-cute-cat / this_is_my_cute_cat
regex2 = re.compile(r"(?:\-|\_)")
if len(re.findall(regex2, caption)) > 3:
caption = re.sub(regex2, " ", caption)
caption = ftfy.fix_text(caption)
caption = html.unescape(html.unescape(caption))
caption = re.sub(r"\b[a-zA-Z]{1,3}\d{3,15}\b", "", caption) # jc6640
caption = re.sub(r"\b[a-zA-Z]+\d+[a-zA-Z]+\b", "", caption) # jc6640vc
caption = re.sub(r"\b\d+[a-zA-Z]+\d+\b", "", caption) # 6640vc231
caption = re.sub(r"(worldwide\s+)?(free\s+)?shipping", "", caption)
caption = re.sub(r"(free\s)?download(\sfree)?", "", caption)
caption = re.sub(r"\bclick\b\s(?:for|on)\s\w+", "", caption)
caption = re.sub(r"\b(?:png|jpg|jpeg|bmp|webp|eps|pdf|apk|mp4)(\simage[s]?)?", "", caption)
caption = re.sub(r"\bpage\s+\d+\b", "", caption)
caption = re.sub(r"\b\d*[a-zA-Z]+\d+[a-zA-Z]+\d+[a-zA-Z\d]*\b", r" ", caption) # j2d1a2a...
caption = re.sub(r"\b\d+\.?\d*[xх×]\d+\.?\d*\b", "", caption)
caption = re.sub(r"\b\s+\:\s+", r": ", caption)
caption = re.sub(r"(\D[,\./])\b", r"\1 ", caption)
caption = re.sub(r"\s+", " ", caption)
caption.strip()
caption = re.sub(r"^[\"\']([\w\W]+)[\"\']$", r"\1", caption)
caption = re.sub(r"^[\'\_,\-\:;]", r"", caption)
caption = re.sub(r"[\'\_,\-\:\-\+]$", r"", caption)
caption = re.sub(r"^\.\S+$", "", caption)
return caption.strip()
@torch.no_grad()
# Copied from diffusers.pipelines.deepfloyd_if.pipeline_if.IFPipeline.encode_prompt
def encode_prompt(
self,
prompt: Union[str, List[str]],
do_classifier_free_guidance: bool = True,
num_images_per_prompt: int = 1,
device: Optional[torch.device] = None,
negative_prompt: Optional[Union[str, List[str]]] = None,
prompt_embeds: Optional[torch.FloatTensor] = None,
negative_prompt_embeds: Optional[torch.FloatTensor] = None,
clean_caption: bool = False,
):
r"""
Encodes the prompt into text encoder hidden states.
Args:
prompt (`str` or `List[str]`, *optional*):
prompt to be encoded
do_classifier_free_guidance (`bool`, *optional*, defaults to `True`):
whether to use classifier free guidance or not
num_images_per_prompt (`int`, *optional*, defaults to 1):
number of images that should be generated per prompt
device: (`torch.device`, *optional*):
torch device to place the resulting embeddings on
negative_prompt (`str` or `List[str]`, *optional*):
The prompt or prompts not to guide the image generation. If not defined, one has to pass
`negative_prompt_embeds`. instead. If not defined, one has to pass `negative_prompt_embeds`. instead.
Ignored when not using guidance (i.e., ignored if `guidance_scale` is less than `1`).
prompt_embeds (`torch.FloatTensor`, *optional*):
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
provided, text embeddings will be generated from `prompt` input argument.
negative_prompt_embeds (`torch.FloatTensor`, *optional*):
Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
argument.
clean_caption (bool, defaults to `False`):
If `True`, the function will preprocess and clean the provided caption before encoding.
"""
if prompt is not None and negative_prompt is not None:
if type(prompt) is not type(negative_prompt):
raise TypeError(
f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !="
f" {type(prompt)}."
)
if device is None:
device = self._execution_device
if prompt is not None and isinstance(prompt, str):
batch_size = 1
elif prompt is not None and isinstance(prompt, list):
batch_size = len(prompt)
else:
batch_size = prompt_embeds.shape[0]
# while T5 can handle much longer input sequences than 77, the text encoder was trained with a max length of 77 for IF
max_length = 77
if prompt_embeds is None:
prompt = self._text_preprocessing(prompt, clean_caption=clean_caption)
text_inputs = self.tokenizer(
prompt,
padding="max_length",
max_length=max_length,
truncation=True,
add_special_tokens=True,
return_tensors="pt",
)
text_input_ids = text_inputs.input_ids
untruncated_ids = self.tokenizer(prompt, padding="longest", return_tensors="pt").input_ids
if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(
text_input_ids, untruncated_ids
):
removed_text = self.tokenizer.batch_decode(untruncated_ids[:, max_length - 1 : -1])
logger.warning(
"The following part of your input was truncated because CLIP can only handle sequences up to"
f" {max_length} tokens: {removed_text}"
)
attention_mask = text_inputs.attention_mask.to(device)
prompt_embeds = self.text_encoder(
text_input_ids.to(device),
attention_mask=attention_mask,
)
prompt_embeds = prompt_embeds[0]
if self.text_encoder is not None:
dtype = self.text_encoder.dtype
elif self.unet is not None:
dtype = self.unet.dtype
else:
dtype = None
prompt_embeds = prompt_embeds.to(dtype=dtype, device=device)
bs_embed, seq_len, _ = prompt_embeds.shape
# duplicate text embeddings for each generation per prompt, using mps friendly method
prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1)
prompt_embeds = prompt_embeds.view(bs_embed * num_images_per_prompt, seq_len, -1)
# get unconditional embeddings for classifier free guidance
if do_classifier_free_guidance and negative_prompt_embeds is None:
uncond_tokens: List[str]
if negative_prompt is None:
uncond_tokens = [""] * batch_size
elif isinstance(negative_prompt, str):
uncond_tokens = [negative_prompt]
elif batch_size != len(negative_prompt):
raise ValueError(
f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:"
f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches"
" the batch size of `prompt`."
)
else:
uncond_tokens = negative_prompt
uncond_tokens = self._text_preprocessing(uncond_tokens, clean_caption=clean_caption)
max_length = prompt_embeds.shape[1]
uncond_input = self.tokenizer(
uncond_tokens,
padding="max_length",
max_length=max_length,
truncation=True,
return_attention_mask=True,
add_special_tokens=True,
return_tensors="pt",
)
attention_mask = uncond_input.attention_mask.to(device)
negative_prompt_embeds = self.text_encoder(
uncond_input.input_ids.to(device),
attention_mask=attention_mask,
)
negative_prompt_embeds = negative_prompt_embeds[0]
if do_classifier_free_guidance:
# duplicate unconditional embeddings for each generation per prompt, using mps friendly method
seq_len = negative_prompt_embeds.shape[1]
negative_prompt_embeds = negative_prompt_embeds.to(dtype=dtype, device=device)
negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt, 1)
negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1)
# For classifier free guidance, we need to do two forward passes.
# Here we concatenate the unconditional and text embeddings into a single batch
# to avoid doing two forward passes
else:
negative_prompt_embeds = None
return prompt_embeds, negative_prompt_embeds
# Copied from diffusers.pipelines.deepfloyd_if.pipeline_if.IFPipeline.run_safety_checker
def run_safety_checker(self, image, device, dtype):
if self.safety_checker is not None:
safety_checker_input = self.feature_extractor(self.numpy_to_pil(image), return_tensors="pt").to(device)
image, nsfw_detected, watermark_detected = self.safety_checker(
images=image,
clip_input=safety_checker_input.pixel_values.to(dtype=dtype),
)
else:
nsfw_detected = None
watermark_detected = None
return image, nsfw_detected, watermark_detected
# Copied from diffusers.pipelines.deepfloyd_if.pipeline_if.IFPipeline.prepare_extra_step_kwargs
def prepare_extra_step_kwargs(self, generator, eta):
# prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
# eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
# eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502
# and should be between [0, 1]
accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys())
extra_step_kwargs = {}
if accepts_eta:
extra_step_kwargs["eta"] = eta
# check if the scheduler accepts generator
accepts_generator = "generator" in set(inspect.signature(self.scheduler.step).parameters.keys())
if accepts_generator:
extra_step_kwargs["generator"] = generator
return extra_step_kwargs
def check_inputs(
self,
prompt,
image,
batch_size,
noise_level,
callback_steps,
negative_prompt=None,
prompt_embeds=None,
negative_prompt_embeds=None,
):
if (callback_steps is None) or (
callback_steps is not None and (not isinstance(callback_steps, int) or callback_steps <= 0)
):
raise ValueError(
f"`callback_steps` has to be a positive integer but is {callback_steps} of type"
f" {type(callback_steps)}."
)
if prompt is not None and prompt_embeds is not None:
raise ValueError(
f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to"
" only forward one of the two."
)
elif prompt is None and prompt_embeds is None:
raise ValueError(
"Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined."
)
elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)):
raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}")
if negative_prompt is not None and negative_prompt_embeds is not None:
raise ValueError(
f"Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`:"
f" {negative_prompt_embeds}. Please make sure to only forward one of the two."
)
if prompt_embeds is not None and negative_prompt_embeds is not None:
if prompt_embeds.shape != negative_prompt_embeds.shape:
raise ValueError(
"`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but"
f" got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds`"
f" {negative_prompt_embeds.shape}."
)
if noise_level < 0 or noise_level >= self.image_noising_scheduler.config.num_train_timesteps:
raise ValueError(
f"`noise_level`: {noise_level} must be a valid timestep in `self.noising_scheduler`, [0, {self.image_noising_scheduler.config.num_train_timesteps})"
)
if isinstance(image, list):
check_image_type = image[0]
else:
check_image_type = image
if (
not isinstance(check_image_type, torch.Tensor)
and not isinstance(check_image_type, PIL.Image.Image)
and not isinstance(check_image_type, np.ndarray)
):
raise ValueError(
"`image` has to be of type `torch.FloatTensor`, `PIL.Image.Image`, `np.ndarray`, or List[...] but is"
f" {type(check_image_type)}"
)
if isinstance(image, list):
image_batch_size = len(image)
elif isinstance(image, torch.Tensor):
image_batch_size = image.shape[0]
elif isinstance(image, PIL.Image.Image):
image_batch_size = 1
elif isinstance(image, np.ndarray):
image_batch_size = image.shape[0]
else:
assert False
if batch_size != image_batch_size:
raise ValueError(f"image batch size: {image_batch_size} must be same as prompt batch size {batch_size}")
# Copied from diffusers.pipelines.deepfloyd_if.pipeline_if.IFPipeline.prepare_intermediate_images
def prepare_intermediate_images(self, batch_size, num_channels, height, width, dtype, device, generator):
shape = (batch_size, num_channels, height, width)
if isinstance(generator, list) and len(generator) != batch_size:
raise ValueError(
f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
f" size of {batch_size}. Make sure the batch size matches the length of the generators."
)
intermediate_images = randn_tensor(shape, generator=generator, device=device, dtype=dtype)
# scale the initial noise by the standard deviation required by the scheduler
intermediate_images = intermediate_images * self.scheduler.init_noise_sigma
return intermediate_images
def preprocess_image(self, image, num_images_per_prompt, device):
if not isinstance(image, torch.Tensor) and not isinstance(image, list):
image = [image]
if isinstance(image[0], PIL.Image.Image):
image = [np.array(i).astype(np.float32) / 127.5 - 1.0 for i in image]
image = np.stack(image, axis=0) # to np
image = torch.from_numpy(image.transpose(0, 3, 1, 2))
elif isinstance(image[0], np.ndarray):
image = np.stack(image, axis=0) # to np
if image.ndim == 5:
image = image[0]
image = torch.from_numpy(image.transpose(0, 3, 1, 2))
elif isinstance(image, list) and isinstance(image[0], torch.Tensor):
dims = image[0].ndim
if dims == 3:
image = torch.stack(image, dim=0)
elif dims == 4:
image = torch.concat(image, dim=0)
else:
raise ValueError(f"Image must have 3 or 4 dimensions, instead got {dims}")
image = image.to(device=device, dtype=self.unet.dtype)
image = image.repeat_interleave(num_images_per_prompt, dim=0)
return image
@torch.no_grad()
@replace_example_docstring(EXAMPLE_DOC_STRING)
def __call__(
self,
prompt: Union[str, List[str]] = None,
height: int = None,
width: int = None,
image: Union[PIL.Image.Image, np.ndarray, torch.FloatTensor] = None,
num_inference_steps: int = 50,
timesteps: List[int] = None,
guidance_scale: float = 4.0,
negative_prompt: Optional[Union[str, List[str]]] = None,
num_images_per_prompt: Optional[int] = 1,
eta: float = 0.0,
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
prompt_embeds: Optional[torch.FloatTensor] = None,
negative_prompt_embeds: Optional[torch.FloatTensor] = None,
output_type: Optional[str] = "pil",
return_dict: bool = True,
callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None,
callback_steps: int = 1,
cross_attention_kwargs: Optional[Dict[str, Any]] = None,
noise_level: int = 250,
clean_caption: bool = True,
):
"""
Function invoked when calling the pipeline for generation.
Args:
prompt (`str` or `List[str]`, *optional*):
The prompt or prompts to guide the image generation. If not defined, one has to pass `prompt_embeds`.
instead.
height (`int`, *optional*, defaults to None):
The height in pixels of the generated image.
width (`int`, *optional*, defaults to None):
The width in pixels of the generated image.
image (`PIL.Image.Image`, `np.ndarray`, `torch.FloatTensor`):
The image to be upscaled.
num_inference_steps (`int`, *optional*, defaults to 50):
The number of denoising steps. More denoising steps usually lead to a higher quality image at the
expense of slower inference.
timesteps (`List[int]`, *optional*, defaults to None):
Custom timesteps to use for the denoising process. If not defined, equal spaced `num_inference_steps`
timesteps are used. Must be in descending order.
guidance_scale (`float`, *optional*, defaults to 4.0):
Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598).
`guidance_scale` is defined as `w` of equation 2. of [Imagen
Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale >
1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`,
usually at the expense of lower image quality.
negative_prompt (`str` or `List[str]`, *optional*):
The prompt or prompts not to guide the image generation. If not defined, one has to pass
`negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is
less than `1`).
num_images_per_prompt (`int`, *optional*, defaults to 1):
The number of images to generate per prompt.
eta (`float`, *optional*, defaults to 0.0):
Corresponds to parameter eta (η) in the DDIM paper: https://arxiv.org/abs/2010.02502. Only applies to
[`schedulers.DDIMScheduler`], will be ignored for others.
generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html)
to make generation deterministic.
prompt_embeds (`torch.FloatTensor`, *optional*):
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
provided, text embeddings will be generated from `prompt` input argument.
negative_prompt_embeds (`torch.FloatTensor`, *optional*):
Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
argument.
output_type (`str`, *optional*, defaults to `"pil"`):
The output format of the generate image. Choose between
[PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`.
return_dict (`bool`, *optional*, defaults to `True`):
Whether or not to return a [`~pipelines.stable_diffusion.IFPipelineOutput`] instead of a plain tuple.
callback (`Callable`, *optional*):
A function that will be called every `callback_steps` steps during inference. The function will be
called with the following arguments: `callback(step: int, timestep: int, latents: torch.FloatTensor)`.
callback_steps (`int`, *optional*, defaults to 1):
The frequency at which the `callback` function will be called. If not specified, the callback will be
called at every step.
cross_attention_kwargs (`dict`, *optional*):
A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under
`self.processor` in
[diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
noise_level (`int`, *optional*, defaults to 250):
The amount of noise to add to the upscaled image. Must be in the range `[0, 1000)`
clean_caption (`bool`, *optional*, defaults to `True`):
Whether or not to clean the caption before creating embeddings. Requires `beautifulsoup4` and `ftfy` to
be installed. If the dependencies are not installed, the embeddings will be created from the raw
prompt.
Examples:
Returns:
[`~pipelines.stable_diffusion.IFPipelineOutput`] or `tuple`:
[`~pipelines.stable_diffusion.IFPipelineOutput`] if `return_dict` is True, otherwise a `tuple. When
returning a tuple, the first element is a list with the generated images, and the second element is a list
of `bool`s denoting whether the corresponding generated image likely represents "not-safe-for-work" (nsfw)
or watermarked content, according to the `safety_checker`.
"""
# 1. Check inputs. Raise error if not correct
if prompt is not None and isinstance(prompt, str):
batch_size = 1
elif prompt is not None and isinstance(prompt, list):
batch_size = len(prompt)
else:
batch_size = prompt_embeds.shape[0]
self.check_inputs(
prompt,
image,
batch_size,
noise_level,
callback_steps,
negative_prompt,
prompt_embeds,
negative_prompt_embeds,
)
# 2. Define call parameters
height = height or self.unet.config.sample_size
width = width or self.unet.config.sample_size
device = self._execution_device
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
# of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
# corresponds to doing no classifier free guidance.
do_classifier_free_guidance = guidance_scale > 1.0
# 3. Encode input prompt
prompt_embeds, negative_prompt_embeds = self.encode_prompt(
prompt,
do_classifier_free_guidance,
num_images_per_prompt=num_images_per_prompt,
device=device,
negative_prompt=negative_prompt,
prompt_embeds=prompt_embeds,
negative_prompt_embeds=negative_prompt_embeds,
clean_caption=clean_caption,
)
if do_classifier_free_guidance:
prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds])
# 4. Prepare timesteps
if timesteps is not None:
self.scheduler.set_timesteps(timesteps=timesteps, device=device)
timesteps = self.scheduler.timesteps
num_inference_steps = len(timesteps)
else:
self.scheduler.set_timesteps(num_inference_steps, device=device)
timesteps = self.scheduler.timesteps
if hasattr(self.scheduler, "set_begin_index"):
self.scheduler.set_begin_index(0)
# 5. Prepare intermediate images
num_channels = self.unet.config.in_channels // 2
intermediate_images = self.prepare_intermediate_images(
batch_size * num_images_per_prompt,
num_channels,
height,
width,
prompt_embeds.dtype,
device,
generator,
)
# 6. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline
extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)
# 7. Prepare upscaled image and noise level
image = self.preprocess_image(image, num_images_per_prompt, device)
upscaled = F.interpolate(image, (height, width), mode="bilinear", align_corners=True)
noise_level = torch.tensor([noise_level] * upscaled.shape[0], device=upscaled.device)
noise = randn_tensor(upscaled.shape, generator=generator, device=upscaled.device, dtype=upscaled.dtype)
upscaled = self.image_noising_scheduler.add_noise(upscaled, noise, timesteps=noise_level)
if do_classifier_free_guidance:
noise_level = torch.cat([noise_level] * 2)
# HACK: see comment in `enable_model_cpu_offload`
if hasattr(self, "text_encoder_offload_hook") and self.text_encoder_offload_hook is not None:
self.text_encoder_offload_hook.offload()
# 8. Denoising loop
num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order
with self.progress_bar(total=num_inference_steps) as progress_bar:
for i, t in enumerate(timesteps):
model_input = torch.cat([intermediate_images, upscaled], dim=1)
model_input = torch.cat([model_input] * 2) if do_classifier_free_guidance else model_input
model_input = self.scheduler.scale_model_input(model_input, t)
# predict the noise residual
noise_pred = self.unet(
model_input,
t,
encoder_hidden_states=prompt_embeds,
class_labels=noise_level,
cross_attention_kwargs=cross_attention_kwargs,
return_dict=False,
)[0]
# perform guidance
if do_classifier_free_guidance:
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
noise_pred_uncond, _ = noise_pred_uncond.split(model_input.shape[1] // 2, dim=1)
noise_pred_text, predicted_variance = noise_pred_text.split(model_input.shape[1] // 2, dim=1)
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
noise_pred = torch.cat([noise_pred, predicted_variance], dim=1)
if self.scheduler.config.variance_type not in ["learned", "learned_range"]:
noise_pred, _ = noise_pred.split(intermediate_images.shape[1], dim=1)
# compute the previous noisy sample x_t -> x_t-1
intermediate_images = self.scheduler.step(
noise_pred, t, intermediate_images, **extra_step_kwargs, return_dict=False
)[0]
# call the callback, if provided
if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
progress_bar.update()
if callback is not None and i % callback_steps == 0:
callback(i, t, intermediate_images)
image = intermediate_images
if output_type == "pil":
# 9. Post-processing
image = (image / 2 + 0.5).clamp(0, 1)
image = image.cpu().permute(0, 2, 3, 1).float().numpy()
# 10. Run safety checker
image, nsfw_detected, watermark_detected = self.run_safety_checker(image, device, prompt_embeds.dtype)
# 11. Convert to PIL
image = self.numpy_to_pil(image)
# 12. Apply watermark
if self.watermarker is not None:
self.watermarker.apply_watermark(image, self.unet.config.sample_size)
elif output_type == "pt":
nsfw_detected = None
watermark_detected = None
if hasattr(self, "unet_offload_hook") and self.unet_offload_hook is not None:
self.unet_offload_hook.offload()
else:
# 9. Post-processing
image = (image / 2 + 0.5).clamp(0, 1)
image = image.cpu().permute(0, 2, 3, 1).float().numpy()
# 10. Run safety checker
image, nsfw_detected, watermark_detected = self.run_safety_checker(image, device, prompt_embeds.dtype)
# Offload all models
self.maybe_free_model_hooks()
if not return_dict:
return (image, nsfw_detected, watermark_detected)
return IFPipelineOutput(images=image, nsfw_detected=nsfw_detected, watermark_detected=watermark_detected)