# Copyright 2024 Salesforce.com, inc. # Copyright 2024 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import Optional, Tuple, Union import torch from torch import nn from transformers import CLIPPreTrainedModel from transformers.modeling_outputs import BaseModelOutputWithPooling from transformers.models.clip.configuration_clip import CLIPTextConfig from transformers.models.clip.modeling_clip import CLIPEncoder def _expand_mask(mask: torch.Tensor, dtype: torch.dtype, tgt_len: Optional[int] = None): """ Expands attention_mask from `[bsz, seq_len]` to `[bsz, 1, tgt_seq_len, src_seq_len]`. """ bsz, src_len = mask.size() tgt_len = tgt_len if tgt_len is not None else src_len expanded_mask = mask[:, None, None, :].expand(bsz, 1, tgt_len, src_len).to(dtype) inverted_mask = 1.0 - expanded_mask return inverted_mask.masked_fill(inverted_mask.to(torch.bool), torch.finfo(dtype).min) # This is a modified version of the CLIPTextModel from transformers.models.clip.modeling_clip # Which allows for an extra input of "context embeddings", which are the query embeddings used in Qformer # They pass through the clip model, along with the text embeddings, and interact with them using self attention class ContextCLIPTextModel(CLIPPreTrainedModel): config_class = CLIPTextConfig _no_split_modules = ["CLIPEncoderLayer"] def __init__(self, config: CLIPTextConfig): super().__init__(config) self.text_model = ContextCLIPTextTransformer(config) # Initialize weights and apply final processing self.post_init() def forward( self, ctx_embeddings: torch.Tensor = None, ctx_begin_pos: list = None, input_ids: Optional[torch.Tensor] = None, attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.Tensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, BaseModelOutputWithPooling]: return self.text_model( ctx_embeddings=ctx_embeddings, ctx_begin_pos=ctx_begin_pos, input_ids=input_ids, attention_mask=attention_mask, position_ids=position_ids, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) class ContextCLIPTextTransformer(nn.Module): def __init__(self, config: CLIPTextConfig): super().__init__() self.config = config embed_dim = config.hidden_size self.embeddings = ContextCLIPTextEmbeddings(config) self.encoder = CLIPEncoder(config) self.final_layer_norm = nn.LayerNorm(embed_dim) def forward( self, ctx_embeddings: torch.Tensor, ctx_begin_pos: list, input_ids: Optional[torch.Tensor] = None, attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.Tensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, BaseModelOutputWithPooling]: r""" Returns: """ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.use_return_dict if input_ids is None: raise ValueError("You have to specify either input_ids") input_shape = input_ids.size() input_ids = input_ids.view(-1, input_shape[-1]) hidden_states = self.embeddings( input_ids=input_ids, position_ids=position_ids, ctx_embeddings=ctx_embeddings, ctx_begin_pos=ctx_begin_pos, ) bsz, seq_len = input_shape if ctx_embeddings is not None: seq_len += ctx_embeddings.size(1) # CLIP's text model uses causal mask, prepare it here. # https://github.com/openai/CLIP/blob/cfcffb90e69f37bf2ff1e988237a0fbe41f33c04/clip/model.py#L324 causal_attention_mask = self._build_causal_attention_mask(bsz, seq_len, hidden_states.dtype).to( hidden_states.device ) # expand attention_mask if attention_mask is not None: # [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len] attention_mask = _expand_mask(attention_mask, hidden_states.dtype) encoder_outputs = self.encoder( inputs_embeds=hidden_states, attention_mask=attention_mask, causal_attention_mask=causal_attention_mask, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) last_hidden_state = encoder_outputs[0] last_hidden_state = self.final_layer_norm(last_hidden_state) # text_embeds.shape = [batch_size, sequence_length, transformer.width] # take features from the eot embedding (eot_token is the highest number in each sequence) # casting to torch.int for onnx compatibility: argmax doesn't support int64 inputs with opset 14 pooled_output = last_hidden_state[ torch.arange(last_hidden_state.shape[0], device=input_ids.device), input_ids.to(torch.int).argmax(dim=-1), ] if not return_dict: return (last_hidden_state, pooled_output) + encoder_outputs[1:] return BaseModelOutputWithPooling( last_hidden_state=last_hidden_state, pooler_output=pooled_output, hidden_states=encoder_outputs.hidden_states, attentions=encoder_outputs.attentions, ) def _build_causal_attention_mask(self, bsz, seq_len, dtype): # lazily create causal attention mask, with full attention between the vision tokens # pytorch uses additive attention mask; fill with -inf mask = torch.empty(bsz, seq_len, seq_len, dtype=dtype) mask.fill_(torch.tensor(torch.finfo(dtype).min)) mask.triu_(1) # zero out the lower diagonal mask = mask.unsqueeze(1) # expand mask return mask class ContextCLIPTextEmbeddings(nn.Module): def __init__(self, config: CLIPTextConfig): super().__init__() embed_dim = config.hidden_size self.token_embedding = nn.Embedding(config.vocab_size, embed_dim) self.position_embedding = nn.Embedding(config.max_position_embeddings, embed_dim) # position_ids (1, len position emb) is contiguous in memory and exported when serialized self.register_buffer("position_ids", torch.arange(config.max_position_embeddings).expand((1, -1))) def forward( self, ctx_embeddings: torch.Tensor, ctx_begin_pos: list, input_ids: Optional[torch.LongTensor] = None, position_ids: Optional[torch.LongTensor] = None, inputs_embeds: Optional[torch.FloatTensor] = None, ) -> torch.Tensor: if ctx_embeddings is None: ctx_len = 0 else: ctx_len = ctx_embeddings.shape[1] seq_length = (input_ids.shape[-1] if input_ids is not None else inputs_embeds.shape[-2]) + ctx_len if position_ids is None: position_ids = self.position_ids[:, :seq_length] if inputs_embeds is None: inputs_embeds = self.token_embedding(input_ids) # for each input embeddings, add the ctx embeddings at the correct position input_embeds_ctx = [] bsz = inputs_embeds.shape[0] if ctx_embeddings is not None: for i in range(bsz): cbp = ctx_begin_pos[i] prefix = inputs_embeds[i, :cbp] # remove the special token embedding suffix = inputs_embeds[i, cbp:] input_embeds_ctx.append(torch.cat([prefix, ctx_embeddings[i], suffix], dim=0)) inputs_embeds = torch.stack(input_embeds_ctx, dim=0) position_embeddings = self.position_embedding(position_ids) embeddings = inputs_embeds + position_embeddings return embeddings