# coding=utf-8 # Copyright 2024 The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """PyTorch - Flax general utilities.""" import re import jax.numpy as jnp from flax.traverse_util import flatten_dict, unflatten_dict from jax.random import PRNGKey from ..utils import logging logger = logging.get_logger(__name__) def rename_key(key): regex = r"\w+[.]\d+" pats = re.findall(regex, key) for pat in pats: key = key.replace(pat, "_".join(pat.split("."))) return key ##################### # PyTorch => Flax # ##################### # Adapted from https://github.com/huggingface/transformers/blob/c603c80f46881ae18b2ca50770ef65fa4033eacd/src/transformers/modeling_flax_pytorch_utils.py#L69 # and https://github.com/patil-suraj/stable-diffusion-jax/blob/main/stable_diffusion_jax/convert_diffusers_to_jax.py def rename_key_and_reshape_tensor(pt_tuple_key, pt_tensor, random_flax_state_dict): """Rename PT weight names to corresponding Flax weight names and reshape tensor if necessary""" # conv norm or layer norm renamed_pt_tuple_key = pt_tuple_key[:-1] + ("scale",) # rename attention layers if len(pt_tuple_key) > 1: for rename_from, rename_to in ( ("to_out_0", "proj_attn"), ("to_k", "key"), ("to_v", "value"), ("to_q", "query"), ): if pt_tuple_key[-2] == rename_from: weight_name = pt_tuple_key[-1] weight_name = "kernel" if weight_name == "weight" else weight_name renamed_pt_tuple_key = pt_tuple_key[:-2] + (rename_to, weight_name) if renamed_pt_tuple_key in random_flax_state_dict: assert random_flax_state_dict[renamed_pt_tuple_key].shape == pt_tensor.T.shape return renamed_pt_tuple_key, pt_tensor.T if ( any("norm" in str_ for str_ in pt_tuple_key) and (pt_tuple_key[-1] == "bias") and (pt_tuple_key[:-1] + ("bias",) not in random_flax_state_dict) and (pt_tuple_key[:-1] + ("scale",) in random_flax_state_dict) ): renamed_pt_tuple_key = pt_tuple_key[:-1] + ("scale",) return renamed_pt_tuple_key, pt_tensor elif pt_tuple_key[-1] in ["weight", "gamma"] and pt_tuple_key[:-1] + ("scale",) in random_flax_state_dict: renamed_pt_tuple_key = pt_tuple_key[:-1] + ("scale",) return renamed_pt_tuple_key, pt_tensor # embedding if pt_tuple_key[-1] == "weight" and pt_tuple_key[:-1] + ("embedding",) in random_flax_state_dict: pt_tuple_key = pt_tuple_key[:-1] + ("embedding",) return renamed_pt_tuple_key, pt_tensor # conv layer renamed_pt_tuple_key = pt_tuple_key[:-1] + ("kernel",) if pt_tuple_key[-1] == "weight" and pt_tensor.ndim == 4: pt_tensor = pt_tensor.transpose(2, 3, 1, 0) return renamed_pt_tuple_key, pt_tensor # linear layer renamed_pt_tuple_key = pt_tuple_key[:-1] + ("kernel",) if pt_tuple_key[-1] == "weight": pt_tensor = pt_tensor.T return renamed_pt_tuple_key, pt_tensor # old PyTorch layer norm weight renamed_pt_tuple_key = pt_tuple_key[:-1] + ("weight",) if pt_tuple_key[-1] == "gamma": return renamed_pt_tuple_key, pt_tensor # old PyTorch layer norm bias renamed_pt_tuple_key = pt_tuple_key[:-1] + ("bias",) if pt_tuple_key[-1] == "beta": return renamed_pt_tuple_key, pt_tensor return pt_tuple_key, pt_tensor def convert_pytorch_state_dict_to_flax(pt_state_dict, flax_model, init_key=42): # Step 1: Convert pytorch tensor to numpy pt_state_dict = {k: v.numpy() for k, v in pt_state_dict.items()} # Step 2: Since the model is stateless, get random Flax params random_flax_params = flax_model.init_weights(PRNGKey(init_key)) random_flax_state_dict = flatten_dict(random_flax_params) flax_state_dict = {} # Need to change some parameters name to match Flax names for pt_key, pt_tensor in pt_state_dict.items(): renamed_pt_key = rename_key(pt_key) pt_tuple_key = tuple(renamed_pt_key.split(".")) # Correctly rename weight parameters flax_key, flax_tensor = rename_key_and_reshape_tensor(pt_tuple_key, pt_tensor, random_flax_state_dict) if flax_key in random_flax_state_dict: if flax_tensor.shape != random_flax_state_dict[flax_key].shape: raise ValueError( f"PyTorch checkpoint seems to be incorrect. Weight {pt_key} was expected to be of shape " f"{random_flax_state_dict[flax_key].shape}, but is {flax_tensor.shape}." ) # also add unexpected weight so that warning is thrown flax_state_dict[flax_key] = jnp.asarray(flax_tensor) return unflatten_dict(flax_state_dict)