# Copyright 2024 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import platform from argparse import ArgumentParser import huggingface_hub from .. import __version__ as version from ..utils import is_accelerate_available, is_torch_available, is_transformers_available, is_xformers_available from . import BaseDiffusersCLICommand def info_command_factory(_): return EnvironmentCommand() class EnvironmentCommand(BaseDiffusersCLICommand): @staticmethod def register_subcommand(parser: ArgumentParser): download_parser = parser.add_parser("env") download_parser.set_defaults(func=info_command_factory) def run(self): hub_version = huggingface_hub.__version__ pt_version = "not installed" pt_cuda_available = "NA" if is_torch_available(): import torch pt_version = torch.__version__ pt_cuda_available = torch.cuda.is_available() transformers_version = "not installed" if is_transformers_available(): import transformers transformers_version = transformers.__version__ accelerate_version = "not installed" if is_accelerate_available(): import accelerate accelerate_version = accelerate.__version__ xformers_version = "not installed" if is_xformers_available(): import xformers xformers_version = xformers.__version__ info = { "`diffusers` version": version, "Platform": platform.platform(), "Python version": platform.python_version(), "PyTorch version (GPU?)": f"{pt_version} ({pt_cuda_available})", "Huggingface_hub version": hub_version, "Transformers version": transformers_version, "Accelerate version": accelerate_version, "xFormers version": xformers_version, "Using GPU in script?": "", "Using distributed or parallel set-up in script?": "", } print("\nCopy-and-paste the text below in your GitHub issue and FILL OUT the two last points.\n") print(self.format_dict(info)) return info @staticmethod def format_dict(d): return "\n".join([f"- {prop}: {val}" for prop, val in d.items()]) + "\n"