from dataclasses import dataclass from typing import List, Union import numpy as np import PIL import torch from ...utils import ( BaseOutput, ) @dataclass class TextToVideoSDPipelineOutput(BaseOutput): """ Output class for text-to-video pipelines. Args: frames (`torch.Tensor`, `np.ndarray`, or List[List[PIL.Image.Image]]): List of video outputs - It can be a nested list of length `batch_size,` with each sub-list containing denoised PIL image sequences of length `num_frames.` It can also be a NumPy array or Torch tensor of shape `(batch_size, num_frames, channels, height, width)` """ frames: Union[torch.Tensor, np.ndarray, List[List[PIL.Image.Image]]]