import inspect from typing import Callable, List, Optional, Union import PIL.Image import torch from transformers import CLIPImageProcessor, CLIPTextModel, CLIPTokenizer, CLIPVisionModel from ....models import AutoencoderKL, UNet2DConditionModel from ....schedulers import KarrasDiffusionSchedulers from ....utils import logging from ...pipeline_utils import DiffusionPipeline from .pipeline_versatile_diffusion_dual_guided import VersatileDiffusionDualGuidedPipeline from .pipeline_versatile_diffusion_image_variation import VersatileDiffusionImageVariationPipeline from .pipeline_versatile_diffusion_text_to_image import VersatileDiffusionTextToImagePipeline logger = logging.get_logger(__name__) # pylint: disable=invalid-name class VersatileDiffusionPipeline(DiffusionPipeline): r""" Pipeline for text-to-image generation using Stable Diffusion. This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods implemented for all pipelines (downloading, saving, running on a particular device, etc.). Args: vae ([`AutoencoderKL`]): Variational Auto-Encoder (VAE) model to encode and decode images to and from latent representations. text_encoder ([`~transformers.CLIPTextModel`]): Frozen text-encoder ([clip-vit-large-patch14](https://huggingface.co./openai/clip-vit-large-patch14)). tokenizer ([`~transformers.CLIPTokenizer`]): A `CLIPTokenizer` to tokenize text. unet ([`UNet2DConditionModel`]): A `UNet2DConditionModel` to denoise the encoded image latents. scheduler ([`SchedulerMixin`]): A scheduler to be used in combination with `unet` to denoise the encoded image latents. Can be one of [`DDIMScheduler`], [`LMSDiscreteScheduler`], or [`PNDMScheduler`]. safety_checker ([`StableDiffusionSafetyChecker`]): Classification module that estimates whether generated images could be considered offensive or harmful. Please refer to the [model card](https://huggingface.co./runwayml/stable-diffusion-v1-5) for more details about a model's potential harms. feature_extractor ([`~transformers.CLIPImageProcessor`]): A `CLIPImageProcessor` to extract features from generated images; used as inputs to the `safety_checker`. """ tokenizer: CLIPTokenizer image_feature_extractor: CLIPImageProcessor text_encoder: CLIPTextModel image_encoder: CLIPVisionModel image_unet: UNet2DConditionModel text_unet: UNet2DConditionModel vae: AutoencoderKL scheduler: KarrasDiffusionSchedulers def __init__( self, tokenizer: CLIPTokenizer, image_feature_extractor: CLIPImageProcessor, text_encoder: CLIPTextModel, image_encoder: CLIPVisionModel, image_unet: UNet2DConditionModel, text_unet: UNet2DConditionModel, vae: AutoencoderKL, scheduler: KarrasDiffusionSchedulers, ): super().__init__() self.register_modules( tokenizer=tokenizer, image_feature_extractor=image_feature_extractor, text_encoder=text_encoder, image_encoder=image_encoder, image_unet=image_unet, text_unet=text_unet, vae=vae, scheduler=scheduler, ) self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1) @torch.no_grad() def image_variation( self, image: Union[torch.FloatTensor, PIL.Image.Image], height: Optional[int] = None, width: Optional[int] = None, num_inference_steps: int = 50, guidance_scale: float = 7.5, negative_prompt: Optional[Union[str, List[str]]] = None, num_images_per_prompt: Optional[int] = 1, eta: float = 0.0, generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None, latents: Optional[torch.FloatTensor] = None, output_type: Optional[str] = "pil", return_dict: bool = True, callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None, callback_steps: int = 1, ): r""" The call function to the pipeline for generation. Args: image (`PIL.Image.Image`, `List[PIL.Image.Image]` or `torch.Tensor`): The image prompt or prompts to guide the image generation. height (`int`, *optional*, defaults to `self.image_unet.config.sample_size * self.vae_scale_factor`): The height in pixels of the generated image. width (`int`, *optional*, defaults to `self.image_unet.config.sample_size * self.vae_scale_factor`): The width in pixels of the generated image. num_inference_steps (`int`, *optional*, defaults to 50): The number of denoising steps. More denoising steps usually lead to a higher quality image at the expense of slower inference. guidance_scale (`float`, *optional*, defaults to 7.5): A higher guidance scale value encourages the model to generate images closely linked to the text `prompt` at the expense of lower image quality. Guidance scale is enabled when `guidance_scale > 1`. negative_prompt (`str` or `List[str]`, *optional*): The prompt or prompts to guide what to not include in image generation. If not defined, you need to pass `negative_prompt_embeds` instead. Ignored when not using guidance (`guidance_scale < 1`). num_images_per_prompt (`int`, *optional*, defaults to 1): The number of images to generate per prompt. eta (`float`, *optional*, defaults to 0.0): Corresponds to parameter eta (η) from the [DDIM](https://arxiv.org/abs/2010.02502) paper. Only applies to the [`~schedulers.DDIMScheduler`], and is ignored in other schedulers. generator (`torch.Generator`, *optional*): A [`torch.Generator`](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make generation deterministic. latents (`torch.FloatTensor`, *optional*): Pre-generated noisy latents sampled from a Gaussian distribution, to be used as inputs for image generation. Can be used to tweak the same generation with different prompts. If not provided, a latents tensor is generated by sampling using the supplied random `generator`. output_type (`str`, *optional*, defaults to `"pil"`): The output format of the generated image. Choose between `PIL.Image` or `np.array`. return_dict (`bool`, *optional*, defaults to `True`): Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] instead of a plain tuple. callback (`Callable`, *optional*): A function that calls every `callback_steps` steps during inference. The function is called with the following arguments: `callback(step: int, timestep: int, latents: torch.FloatTensor)`. callback_steps (`int`, *optional*, defaults to 1): The frequency at which the `callback` function is called. If not specified, the callback is called at every step. Examples: ```py >>> from diffusers import VersatileDiffusionPipeline >>> import torch >>> import requests >>> from io import BytesIO >>> from PIL import Image >>> # let's download an initial image >>> url = "https://huggingface.co./datasets/diffusers/images/resolve/main/benz.jpg" >>> response = requests.get(url) >>> image = Image.open(BytesIO(response.content)).convert("RGB") >>> pipe = VersatileDiffusionPipeline.from_pretrained( ... "shi-labs/versatile-diffusion", torch_dtype=torch.float16 ... ) >>> pipe = pipe.to("cuda") >>> generator = torch.Generator(device="cuda").manual_seed(0) >>> image = pipe.image_variation(image, generator=generator).images[0] >>> image.save("./car_variation.png") ``` Returns: [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] or `tuple`: If `return_dict` is `True`, [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] is returned, otherwise a `tuple` is returned where the first element is a list with the generated images and the second element is a list of `bool`s indicating whether the corresponding generated image contains "not-safe-for-work" (nsfw) content. """ expected_components = inspect.signature(VersatileDiffusionImageVariationPipeline.__init__).parameters.keys() components = {name: component for name, component in self.components.items() if name in expected_components} return VersatileDiffusionImageVariationPipeline(**components)( image=image, height=height, width=width, num_inference_steps=num_inference_steps, guidance_scale=guidance_scale, negative_prompt=negative_prompt, num_images_per_prompt=num_images_per_prompt, eta=eta, generator=generator, latents=latents, output_type=output_type, return_dict=return_dict, callback=callback, callback_steps=callback_steps, ) @torch.no_grad() def text_to_image( self, prompt: Union[str, List[str]], height: Optional[int] = None, width: Optional[int] = None, num_inference_steps: int = 50, guidance_scale: float = 7.5, negative_prompt: Optional[Union[str, List[str]]] = None, num_images_per_prompt: Optional[int] = 1, eta: float = 0.0, generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None, latents: Optional[torch.FloatTensor] = None, output_type: Optional[str] = "pil", return_dict: bool = True, callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None, callback_steps: int = 1, ): r""" The call function to the pipeline for generation. Args: prompt (`str` or `List[str]`): The prompt or prompts to guide image generation. height (`int`, *optional*, defaults to `self.image_unet.config.sample_size * self.vae_scale_factor`): The height in pixels of the generated image. width (`int`, *optional*, defaults to `self.image_unet.config.sample_size * self.vae_scale_factor`): The width in pixels of the generated image. num_inference_steps (`int`, *optional*, defaults to 50): The number of denoising steps. More denoising steps usually lead to a higher quality image at the expense of slower inference. guidance_scale (`float`, *optional*, defaults to 7.5): A higher guidance scale value encourages the model to generate images closely linked to the text `prompt` at the expense of lower image quality. Guidance scale is enabled when `guidance_scale > 1`. negative_prompt (`str` or `List[str]`, *optional*): The prompt or prompts to guide what to not include in image generation. If not defined, you need to pass `negative_prompt_embeds` instead. Ignored when not using guidance (`guidance_scale < 1`). num_images_per_prompt (`int`, *optional*, defaults to 1): The number of images to generate per prompt. eta (`float`, *optional*, defaults to 0.0): Corresponds to parameter eta (η) from the [DDIM](https://arxiv.org/abs/2010.02502) paper. Only applies to the [`~schedulers.DDIMScheduler`], and is ignored in other schedulers. generator (`torch.Generator`, *optional*): A [`torch.Generator`](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make generation deterministic. latents (`torch.FloatTensor`, *optional*): Pre-generated noisy latents sampled from a Gaussian distribution, to be used as inputs for image generation. Can be used to tweak the same generation with different prompts. If not provided, a latents tensor is generated by sampling using the supplied random `generator`. output_type (`str`, *optional*, defaults to `"pil"`): The output format of the generated image. Choose between `PIL.Image` or `np.array`. return_dict (`bool`, *optional*, defaults to `True`): Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] instead of a plain tuple. callback (`Callable`, *optional*): A function that calls every `callback_steps` steps during inference. The function is called with the following arguments: `callback(step: int, timestep: int, latents: torch.FloatTensor)`. callback_steps (`int`, *optional*, defaults to 1): The frequency at which the `callback` function is called. If not specified, the callback is called at every step. Examples: ```py >>> from diffusers import VersatileDiffusionPipeline >>> import torch >>> pipe = VersatileDiffusionPipeline.from_pretrained( ... "shi-labs/versatile-diffusion", torch_dtype=torch.float16 ... ) >>> pipe = pipe.to("cuda") >>> generator = torch.Generator(device="cuda").manual_seed(0) >>> image = pipe.text_to_image("an astronaut riding on a horse on mars", generator=generator).images[0] >>> image.save("./astronaut.png") ``` Returns: [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] or `tuple`: If `return_dict` is `True`, [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] is returned, otherwise a `tuple` is returned where the first element is a list with the generated images and the second element is a list of `bool`s indicating whether the corresponding generated image contains "not-safe-for-work" (nsfw) content. """ expected_components = inspect.signature(VersatileDiffusionTextToImagePipeline.__init__).parameters.keys() components = {name: component for name, component in self.components.items() if name in expected_components} temp_pipeline = VersatileDiffusionTextToImagePipeline(**components) output = temp_pipeline( prompt=prompt, height=height, width=width, num_inference_steps=num_inference_steps, guidance_scale=guidance_scale, negative_prompt=negative_prompt, num_images_per_prompt=num_images_per_prompt, eta=eta, generator=generator, latents=latents, output_type=output_type, return_dict=return_dict, callback=callback, callback_steps=callback_steps, ) # swap the attention blocks back to the original state temp_pipeline._swap_unet_attention_blocks() return output @torch.no_grad() def dual_guided( self, prompt: Union[PIL.Image.Image, List[PIL.Image.Image]], image: Union[str, List[str]], text_to_image_strength: float = 0.5, height: Optional[int] = None, width: Optional[int] = None, num_inference_steps: int = 50, guidance_scale: float = 7.5, num_images_per_prompt: Optional[int] = 1, eta: float = 0.0, generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None, latents: Optional[torch.FloatTensor] = None, output_type: Optional[str] = "pil", return_dict: bool = True, callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None, callback_steps: int = 1, ): r""" The call function to the pipeline for generation. Args: prompt (`str` or `List[str]`): The prompt or prompts to guide image generation. height (`int`, *optional*, defaults to `self.image_unet.config.sample_size * self.vae_scale_factor`): The height in pixels of the generated image. width (`int`, *optional*, defaults to `self.image_unet.config.sample_size * self.vae_scale_factor`): The width in pixels of the generated image. num_inference_steps (`int`, *optional*, defaults to 50): The number of denoising steps. More denoising steps usually lead to a higher quality image at the expense of slower inference. guidance_scale (`float`, *optional*, defaults to 7.5): A higher guidance scale value encourages the model to generate images closely linked to the text `prompt` at the expense of lower image quality. Guidance scale is enabled when `guidance_scale > 1`. negative_prompt (`str` or `List[str]`, *optional*): The prompt or prompts to guide what to not include in image generation. If not defined, you need to pass `negative_prompt_embeds` instead. Ignored when not using guidance (`guidance_scale < 1`). num_images_per_prompt (`int`, *optional*, defaults to 1): The number of images to generate per prompt. eta (`float`, *optional*, defaults to 0.0): Corresponds to parameter eta (η) from the [DDIM](https://arxiv.org/abs/2010.02502) paper. Only applies to the [`~schedulers.DDIMScheduler`], and is ignored in other schedulers. generator (`torch.Generator` or `List[torch.Generator]`, *optional*): A [`torch.Generator`](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make generation deterministic. latents (`torch.FloatTensor`, *optional*): Pre-generated noisy latents sampled from a Gaussian distribution, to be used as inputs for image generation. Can be used to tweak the same generation with different prompts. If not provided, a latents tensor is generated by sampling using the supplied random `generator`. output_type (`str`, *optional*, defaults to `"pil"`): The output format of the generated image. Choose between `PIL.Image` or `np.array`. return_dict (`bool`, *optional*, defaults to `True`): Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] instead of a plain tuple. callback (`Callable`, *optional*): A function that calls every `callback_steps` steps during inference. The function is called with the following arguments: `callback(step: int, timestep: int, latents: torch.FloatTensor)`. callback_steps (`int`, *optional*, defaults to 1): The frequency at which the `callback` function is called. If not specified, the callback is called at every step. Examples: ```py >>> from diffusers import VersatileDiffusionPipeline >>> import torch >>> import requests >>> from io import BytesIO >>> from PIL import Image >>> # let's download an initial image >>> url = "https://huggingface.co./datasets/diffusers/images/resolve/main/benz.jpg" >>> response = requests.get(url) >>> image = Image.open(BytesIO(response.content)).convert("RGB") >>> text = "a red car in the sun" >>> pipe = VersatileDiffusionPipeline.from_pretrained( ... "shi-labs/versatile-diffusion", torch_dtype=torch.float16 ... ) >>> pipe = pipe.to("cuda") >>> generator = torch.Generator(device="cuda").manual_seed(0) >>> text_to_image_strength = 0.75 >>> image = pipe.dual_guided( ... prompt=text, image=image, text_to_image_strength=text_to_image_strength, generator=generator ... ).images[0] >>> image.save("./car_variation.png") ``` Returns: [`~pipelines.ImagePipelineOutput`] or `tuple`: If `return_dict` is `True`, [`~pipelines.ImagePipelineOutput`] is returned, otherwise a `tuple` is returned where the first element is a list with the generated images. """ expected_components = inspect.signature(VersatileDiffusionDualGuidedPipeline.__init__).parameters.keys() components = {name: component for name, component in self.components.items() if name in expected_components} temp_pipeline = VersatileDiffusionDualGuidedPipeline(**components) output = temp_pipeline( prompt=prompt, image=image, text_to_image_strength=text_to_image_strength, height=height, width=width, num_inference_steps=num_inference_steps, guidance_scale=guidance_scale, num_images_per_prompt=num_images_per_prompt, eta=eta, generator=generator, latents=latents, output_type=output_type, return_dict=return_dict, callback=callback, callback_steps=callback_steps, ) temp_pipeline._revert_dual_attention() return output