# Copyright 2024 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import numpy as np # noqa: E402 from ....configuration_utils import ConfigMixin, register_to_config from ....schedulers.scheduling_utils import SchedulerMixin try: import librosa # noqa: E402 _librosa_can_be_imported = True _import_error = "" except Exception as e: _librosa_can_be_imported = False _import_error = ( f"Cannot import librosa because {e}. Make sure to correctly install librosa to be able to install it." ) from PIL import Image # noqa: E402 class Mel(ConfigMixin, SchedulerMixin): """ Parameters: x_res (`int`): x resolution of spectrogram (time). y_res (`int`): y resolution of spectrogram (frequency bins). sample_rate (`int`): Sample rate of audio. n_fft (`int`): Number of Fast Fourier Transforms. hop_length (`int`): Hop length (a higher number is recommended if `y_res` < 256). top_db (`int`): Loudest decibel value. n_iter (`int`): Number of iterations for Griffin-Lim Mel inversion. """ config_name = "mel_config.json" @register_to_config def __init__( self, x_res: int = 256, y_res: int = 256, sample_rate: int = 22050, n_fft: int = 2048, hop_length: int = 512, top_db: int = 80, n_iter: int = 32, ): self.hop_length = hop_length self.sr = sample_rate self.n_fft = n_fft self.top_db = top_db self.n_iter = n_iter self.set_resolution(x_res, y_res) self.audio = None if not _librosa_can_be_imported: raise ValueError(_import_error) def set_resolution(self, x_res: int, y_res: int): """Set resolution. Args: x_res (`int`): x resolution of spectrogram (time). y_res (`int`): y resolution of spectrogram (frequency bins). """ self.x_res = x_res self.y_res = y_res self.n_mels = self.y_res self.slice_size = self.x_res * self.hop_length - 1 def load_audio(self, audio_file: str = None, raw_audio: np.ndarray = None): """Load audio. Args: audio_file (`str`): An audio file that must be on disk due to [Librosa](https://librosa.org/) limitation. raw_audio (`np.ndarray`): The raw audio file as a NumPy array. """ if audio_file is not None: self.audio, _ = librosa.load(audio_file, mono=True, sr=self.sr) else: self.audio = raw_audio # Pad with silence if necessary. if len(self.audio) < self.x_res * self.hop_length: self.audio = np.concatenate([self.audio, np.zeros((self.x_res * self.hop_length - len(self.audio),))]) def get_number_of_slices(self) -> int: """Get number of slices in audio. Returns: `int`: Number of spectograms audio can be sliced into. """ return len(self.audio) // self.slice_size def get_audio_slice(self, slice: int = 0) -> np.ndarray: """Get slice of audio. Args: slice (`int`): Slice number of audio (out of `get_number_of_slices()`). Returns: `np.ndarray`: The audio slice as a NumPy array. """ return self.audio[self.slice_size * slice : self.slice_size * (slice + 1)] def get_sample_rate(self) -> int: """Get sample rate. Returns: `int`: Sample rate of audio. """ return self.sr def audio_slice_to_image(self, slice: int) -> Image.Image: """Convert slice of audio to spectrogram. Args: slice (`int`): Slice number of audio to convert (out of `get_number_of_slices()`). Returns: `PIL Image`: A grayscale image of `x_res x y_res`. """ S = librosa.feature.melspectrogram( y=self.get_audio_slice(slice), sr=self.sr, n_fft=self.n_fft, hop_length=self.hop_length, n_mels=self.n_mels ) log_S = librosa.power_to_db(S, ref=np.max, top_db=self.top_db) bytedata = (((log_S + self.top_db) * 255 / self.top_db).clip(0, 255) + 0.5).astype(np.uint8) image = Image.fromarray(bytedata) return image def image_to_audio(self, image: Image.Image) -> np.ndarray: """Converts spectrogram to audio. Args: image (`PIL Image`): An grayscale image of `x_res x y_res`. Returns: audio (`np.ndarray`): The audio as a NumPy array. """ bytedata = np.frombuffer(image.tobytes(), dtype="uint8").reshape((image.height, image.width)) log_S = bytedata.astype("float") * self.top_db / 255 - self.top_db S = librosa.db_to_power(log_S) audio = librosa.feature.inverse.mel_to_audio( S, sr=self.sr, n_fft=self.n_fft, hop_length=self.hop_length, n_iter=self.n_iter ) return audio