import os import torch from typing import List from collections import namedtuple, OrderedDict def is_torch2_available(): return hasattr(torch.nn.functional, "scaled_dot_product_attention") if is_torch2_available(): from .attention_processor import ( AttnProcessor2_0 as AttnProcessor, ) from .attention_processor import ( CNAttnProcessor2_0 as CNAttnProcessor, ) from .attention_processor import ( IPAttnProcessor2_0 as IPAttnProcessor, ) from .attention_processor import ( TA_IPAttnProcessor2_0 as TA_IPAttnProcessor, ) else: from .attention_processor import AttnProcessor, CNAttnProcessor, IPAttnProcessor, TA_IPAttnProcessor class ImageProjModel(torch.nn.Module): """Projection Model""" def __init__(self, cross_attention_dim=2048, clip_embeddings_dim=1280, clip_extra_context_tokens=4): super().__init__() self.cross_attention_dim = cross_attention_dim self.clip_extra_context_tokens = clip_extra_context_tokens self.proj = torch.nn.Linear(clip_embeddings_dim, self.clip_extra_context_tokens * cross_attention_dim) self.norm = torch.nn.LayerNorm(cross_attention_dim) def forward(self, image_embeds): embeds = image_embeds clip_extra_context_tokens = self.proj(embeds).reshape( -1, self.clip_extra_context_tokens, self.cross_attention_dim ) clip_extra_context_tokens = self.norm(clip_extra_context_tokens) return clip_extra_context_tokens class MLPProjModel(torch.nn.Module): """SD model with image prompt""" def __init__(self, cross_attention_dim=2048, clip_embeddings_dim=1280): super().__init__() self.proj = torch.nn.Sequential( torch.nn.Linear(clip_embeddings_dim, clip_embeddings_dim), torch.nn.GELU(), torch.nn.Linear(clip_embeddings_dim, cross_attention_dim), torch.nn.LayerNorm(cross_attention_dim) ) def forward(self, image_embeds): clip_extra_context_tokens = self.proj(image_embeds) return clip_extra_context_tokens class MultiIPAdapterImageProjection(torch.nn.Module): def __init__(self, IPAdapterImageProjectionLayers): super().__init__() self.image_projection_layers = torch.nn.ModuleList(IPAdapterImageProjectionLayers) def forward(self, image_embeds: List[torch.FloatTensor]): projected_image_embeds = [] # currently, we accept `image_embeds` as # 1. a tensor (deprecated) with shape [batch_size, embed_dim] or [batch_size, sequence_length, embed_dim] # 2. list of `n` tensors where `n` is number of ip-adapters, each tensor can hae shape [batch_size, num_images, embed_dim] or [batch_size, num_images, sequence_length, embed_dim] if not isinstance(image_embeds, list): image_embeds = [image_embeds.unsqueeze(1)] if len(image_embeds) != len(self.image_projection_layers): raise ValueError( f"image_embeds must have the same length as image_projection_layers, got {len(image_embeds)} and {len(self.image_projection_layers)}" ) for image_embed, image_projection_layer in zip(image_embeds, self.image_projection_layers): batch_size, num_images = image_embed.shape[0], image_embed.shape[1] image_embed = image_embed.reshape((batch_size * num_images,) + image_embed.shape[2:]) image_embed = image_projection_layer(image_embed) # image_embed = image_embed.reshape((batch_size, num_images) + image_embed.shape[1:]) projected_image_embeds.append(image_embed) return projected_image_embeds class IPAdapter(torch.nn.Module): """IP-Adapter""" def __init__(self, unet, image_proj_model, adapter_modules, ckpt_path=None): super().__init__() self.unet = unet self.image_proj = image_proj_model self.ip_adapter = adapter_modules if ckpt_path is not None: self.load_from_checkpoint(ckpt_path) def forward(self, noisy_latents, timesteps, encoder_hidden_states, image_embeds): ip_tokens = self.image_proj(image_embeds) encoder_hidden_states = torch.cat([encoder_hidden_states, ip_tokens], dim=1) # Predict the noise residual noise_pred = self.unet(noisy_latents, timesteps, encoder_hidden_states).sample return noise_pred def load_from_checkpoint(self, ckpt_path: str): # Calculate original checksums orig_ip_proj_sum = torch.sum(torch.stack([torch.sum(p) for p in self.image_proj.parameters()])) orig_adapter_sum = torch.sum(torch.stack([torch.sum(p) for p in self.ip_adapter.parameters()])) state_dict = torch.load(ckpt_path, map_location="cpu") keys = list(state_dict.keys()) if keys != ["image_proj", "ip_adapter"]: state_dict = revise_state_dict(state_dict) # Load state dict for image_proj_model and adapter_modules self.image_proj.load_state_dict(state_dict["image_proj"], strict=True) self.ip_adapter.load_state_dict(state_dict["ip_adapter"], strict=True) # Calculate new checksums new_ip_proj_sum = torch.sum(torch.stack([torch.sum(p) for p in self.image_proj.parameters()])) new_adapter_sum = torch.sum(torch.stack([torch.sum(p) for p in self.ip_adapter.parameters()])) # Verify if the weights have changed assert orig_ip_proj_sum != new_ip_proj_sum, "Weights of image_proj_model did not change!" assert orig_adapter_sum != new_adapter_sum, "Weights of adapter_modules did not change!" class IPAdapterPlus(torch.nn.Module): """IP-Adapter""" def __init__(self, unet, image_proj_model, adapter_modules, ckpt_path=None): super().__init__() self.unet = unet self.image_proj = image_proj_model self.ip_adapter = adapter_modules if ckpt_path is not None: self.load_from_checkpoint(ckpt_path) def forward(self, noisy_latents, timesteps, encoder_hidden_states, image_embeds): ip_tokens = self.image_proj(image_embeds) encoder_hidden_states = torch.cat([encoder_hidden_states, ip_tokens], dim=1) # Predict the noise residual noise_pred = self.unet(noisy_latents, timesteps, encoder_hidden_states).sample return noise_pred def load_from_checkpoint(self, ckpt_path: str): # Calculate original checksums orig_ip_proj_sum = torch.sum(torch.stack([torch.sum(p) for p in self.image_proj.parameters()])) orig_adapter_sum = torch.sum(torch.stack([torch.sum(p) for p in self.ip_adapter.parameters()])) org_unet_sum = [] for attn_name, attn_proc in self.unet.attn_processors.items(): if isinstance(attn_proc, (TA_IPAttnProcessor, IPAttnProcessor)): org_unet_sum.append(torch.sum(torch.stack([torch.sum(p) for p in attn_proc.parameters()]))) org_unet_sum = torch.sum(torch.stack(org_unet_sum)) state_dict = torch.load(ckpt_path, map_location="cpu") keys = list(state_dict.keys()) if keys != ["image_proj", "ip_adapter"]: state_dict = revise_state_dict(state_dict) # Check if 'latents' exists in both the saved state_dict and the current model's state_dict strict_load_image_proj_model = True if "latents" in state_dict["image_proj"] and "latents" in self.image_proj.state_dict(): # Check if the shapes are mismatched if state_dict["image_proj"]["latents"].shape != self.image_proj.state_dict()["latents"].shape: print(f"Shapes of 'image_proj.latents' in checkpoint {ckpt_path} and current model do not match.") print("Removing 'latents' from checkpoint and loading the rest of the weights.") del state_dict["image_proj"]["latents"] strict_load_image_proj_model = False # Load state dict for image_proj_model and adapter_modules self.image_proj.load_state_dict(state_dict["image_proj"], strict=strict_load_image_proj_model) missing_key, unexpected_key = self.ip_adapter.load_state_dict(state_dict["ip_adapter"], strict=False) if len(missing_key) > 0: for ms in missing_key: if "ln" not in ms: raise ValueError(f"Missing key in adapter_modules: {len(missing_key)}") if len(unexpected_key) > 0: raise ValueError(f"Unexpected key in adapter_modules: {len(unexpected_key)}") # Calculate new checksums new_ip_proj_sum = torch.sum(torch.stack([torch.sum(p) for p in self.image_proj.parameters()])) new_adapter_sum = torch.sum(torch.stack([torch.sum(p) for p in self.ip_adapter.parameters()])) # Verify if the weights loaded to unet unet_sum = [] for attn_name, attn_proc in self.unet.attn_processors.items(): if isinstance(attn_proc, (TA_IPAttnProcessor, IPAttnProcessor)): unet_sum.append(torch.sum(torch.stack([torch.sum(p) for p in attn_proc.parameters()]))) unet_sum = torch.sum(torch.stack(unet_sum)) assert org_unet_sum != unet_sum, "Weights of adapter_modules in unet did not change!" assert (unet_sum - new_adapter_sum < 1e-4), "Weights of adapter_modules did not load to unet!" # Verify if the weights have changed assert orig_ip_proj_sum != new_ip_proj_sum, "Weights of image_proj_model did not change!" assert orig_adapter_sum != new_adapter_sum, "Weights of adapter_mod`ules did not change!" class IPAdapterXL(IPAdapter): """SDXL""" def forward(self, noisy_latents, timesteps, encoder_hidden_states, unet_added_cond_kwargs, image_embeds): ip_tokens = self.image_proj(image_embeds) encoder_hidden_states = torch.cat([encoder_hidden_states, ip_tokens], dim=1) # Predict the noise residual noise_pred = self.unet(noisy_latents, timesteps, encoder_hidden_states, added_cond_kwargs=unet_added_cond_kwargs).sample return noise_pred class IPAdapterPlusXL(IPAdapterPlus): """IP-Adapter with fine-grained features""" def forward(self, noisy_latents, timesteps, encoder_hidden_states, unet_added_cond_kwargs, image_embeds): ip_tokens = self.image_proj(image_embeds) encoder_hidden_states = torch.cat([encoder_hidden_states, ip_tokens], dim=1) # Predict the noise residual noise_pred = self.unet(noisy_latents, timesteps, encoder_hidden_states, added_cond_kwargs=unet_added_cond_kwargs).sample return noise_pred class IPAdapterFull(IPAdapterPlus): """IP-Adapter with full features""" def init_proj(self): image_proj_model = MLPProjModel( cross_attention_dim=self.pipe.unet.config.cross_attention_dim, clip_embeddings_dim=self.image_encoder.config.hidden_size, ).to(self.device, dtype=torch.float16) return image_proj_model