# Copyright 2024 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import Callable, List, Optional, Union import numpy as np import PIL.Image import torch from PIL import Image from transformers import ( XLMRobertaTokenizer, ) from ...models import UNet2DConditionModel, VQModel from ...schedulers import DDIMScheduler from ...utils import ( logging, replace_example_docstring, ) from ...utils.torch_utils import randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput from .text_encoder import MultilingualCLIP logger = logging.get_logger(__name__) # pylint: disable=invalid-name EXAMPLE_DOC_STRING = """ Examples: ```py >>> from diffusers import KandinskyImg2ImgPipeline, KandinskyPriorPipeline >>> from diffusers.utils import load_image >>> import torch >>> pipe_prior = KandinskyPriorPipeline.from_pretrained( ... "kandinsky-community/kandinsky-2-1-prior", torch_dtype=torch.float16 ... ) >>> pipe_prior.to("cuda") >>> prompt = "A red cartoon frog, 4k" >>> image_emb, zero_image_emb = pipe_prior(prompt, return_dict=False) >>> pipe = KandinskyImg2ImgPipeline.from_pretrained( ... "kandinsky-community/kandinsky-2-1", torch_dtype=torch.float16 ... ) >>> pipe.to("cuda") >>> init_image = load_image( ... "https://huggingface.co./datasets/hf-internal-testing/diffusers-images/resolve/main" ... "/kandinsky/frog.png" ... ) >>> image = pipe( ... prompt, ... image=init_image, ... image_embeds=image_emb, ... negative_image_embeds=zero_image_emb, ... height=768, ... width=768, ... num_inference_steps=100, ... strength=0.2, ... ).images >>> image[0].save("red_frog.png") ``` """ def get_new_h_w(h, w, scale_factor=8): new_h = h // scale_factor**2 if h % scale_factor**2 != 0: new_h += 1 new_w = w // scale_factor**2 if w % scale_factor**2 != 0: new_w += 1 return new_h * scale_factor, new_w * scale_factor def prepare_image(pil_image, w=512, h=512): pil_image = pil_image.resize((w, h), resample=Image.BICUBIC, reducing_gap=1) arr = np.array(pil_image.convert("RGB")) arr = arr.astype(np.float32) / 127.5 - 1 arr = np.transpose(arr, [2, 0, 1]) image = torch.from_numpy(arr).unsqueeze(0) return image class KandinskyImg2ImgPipeline(DiffusionPipeline): """ Pipeline for image-to-image generation using Kandinsky This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods the library implements for all the pipelines (such as downloading or saving, running on a particular device, etc.) Args: text_encoder ([`MultilingualCLIP`]): Frozen text-encoder. tokenizer ([`XLMRobertaTokenizer`]): Tokenizer of class scheduler ([`DDIMScheduler`]): A scheduler to be used in combination with `unet` to generate image latents. unet ([`UNet2DConditionModel`]): Conditional U-Net architecture to denoise the image embedding. movq ([`VQModel`]): MoVQ image encoder and decoder """ model_cpu_offload_seq = "text_encoder->unet->movq" def __init__( self, text_encoder: MultilingualCLIP, movq: VQModel, tokenizer: XLMRobertaTokenizer, unet: UNet2DConditionModel, scheduler: DDIMScheduler, ): super().__init__() self.register_modules( text_encoder=text_encoder, tokenizer=tokenizer, unet=unet, scheduler=scheduler, movq=movq, ) self.movq_scale_factor = 2 ** (len(self.movq.config.block_out_channels) - 1) def get_timesteps(self, num_inference_steps, strength, device): # get the original timestep using init_timestep init_timestep = min(int(num_inference_steps * strength), num_inference_steps) t_start = max(num_inference_steps - init_timestep, 0) timesteps = self.scheduler.timesteps[t_start:] return timesteps, num_inference_steps - t_start def prepare_latents(self, latents, latent_timestep, shape, dtype, device, generator, scheduler): if latents is None: latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype) else: if latents.shape != shape: raise ValueError(f"Unexpected latents shape, got {latents.shape}, expected {shape}") latents = latents.to(device) latents = latents * scheduler.init_noise_sigma shape = latents.shape noise = randn_tensor(shape, generator=generator, device=device, dtype=dtype) latents = self.add_noise(latents, noise, latent_timestep) return latents def _encode_prompt( self, prompt, device, num_images_per_prompt, do_classifier_free_guidance, negative_prompt=None, ): batch_size = len(prompt) if isinstance(prompt, list) else 1 # get prompt text embeddings text_inputs = self.tokenizer( prompt, padding="max_length", max_length=77, truncation=True, return_attention_mask=True, add_special_tokens=True, return_tensors="pt", ) text_input_ids = text_inputs.input_ids untruncated_ids = self.tokenizer(prompt, padding="longest", return_tensors="pt").input_ids if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(text_input_ids, untruncated_ids): removed_text = self.tokenizer.batch_decode(untruncated_ids[:, self.tokenizer.model_max_length - 1 : -1]) logger.warning( "The following part of your input was truncated because CLIP can only handle sequences up to" f" {self.tokenizer.model_max_length} tokens: {removed_text}" ) text_input_ids = text_input_ids.to(device) text_mask = text_inputs.attention_mask.to(device) prompt_embeds, text_encoder_hidden_states = self.text_encoder( input_ids=text_input_ids, attention_mask=text_mask ) prompt_embeds = prompt_embeds.repeat_interleave(num_images_per_prompt, dim=0) text_encoder_hidden_states = text_encoder_hidden_states.repeat_interleave(num_images_per_prompt, dim=0) text_mask = text_mask.repeat_interleave(num_images_per_prompt, dim=0) if do_classifier_free_guidance: uncond_tokens: List[str] if negative_prompt is None: uncond_tokens = [""] * batch_size elif type(prompt) is not type(negative_prompt): raise TypeError( f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !=" f" {type(prompt)}." ) elif isinstance(negative_prompt, str): uncond_tokens = [negative_prompt] elif batch_size != len(negative_prompt): raise ValueError( f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:" f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches" " the batch size of `prompt`." ) else: uncond_tokens = negative_prompt uncond_input = self.tokenizer( uncond_tokens, padding="max_length", max_length=77, truncation=True, return_attention_mask=True, add_special_tokens=True, return_tensors="pt", ) uncond_text_input_ids = uncond_input.input_ids.to(device) uncond_text_mask = uncond_input.attention_mask.to(device) negative_prompt_embeds, uncond_text_encoder_hidden_states = self.text_encoder( input_ids=uncond_text_input_ids, attention_mask=uncond_text_mask ) # duplicate unconditional embeddings for each generation per prompt, using mps friendly method seq_len = negative_prompt_embeds.shape[1] negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt) negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_images_per_prompt, seq_len) seq_len = uncond_text_encoder_hidden_states.shape[1] uncond_text_encoder_hidden_states = uncond_text_encoder_hidden_states.repeat(1, num_images_per_prompt, 1) uncond_text_encoder_hidden_states = uncond_text_encoder_hidden_states.view( batch_size * num_images_per_prompt, seq_len, -1 ) uncond_text_mask = uncond_text_mask.repeat_interleave(num_images_per_prompt, dim=0) # done duplicates # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds]) text_encoder_hidden_states = torch.cat([uncond_text_encoder_hidden_states, text_encoder_hidden_states]) text_mask = torch.cat([uncond_text_mask, text_mask]) return prompt_embeds, text_encoder_hidden_states, text_mask # add_noise method to overwrite the one in schedule because it use a different beta schedule for adding noise vs sampling def add_noise( self, original_samples: torch.FloatTensor, noise: torch.FloatTensor, timesteps: torch.IntTensor, ) -> torch.FloatTensor: betas = torch.linspace(0.0001, 0.02, 1000, dtype=torch.float32) alphas = 1.0 - betas alphas_cumprod = torch.cumprod(alphas, dim=0) alphas_cumprod = alphas_cumprod.to(device=original_samples.device, dtype=original_samples.dtype) timesteps = timesteps.to(original_samples.device) sqrt_alpha_prod = alphas_cumprod[timesteps] ** 0.5 sqrt_alpha_prod = sqrt_alpha_prod.flatten() while len(sqrt_alpha_prod.shape) < len(original_samples.shape): sqrt_alpha_prod = sqrt_alpha_prod.unsqueeze(-1) sqrt_one_minus_alpha_prod = (1 - alphas_cumprod[timesteps]) ** 0.5 sqrt_one_minus_alpha_prod = sqrt_one_minus_alpha_prod.flatten() while len(sqrt_one_minus_alpha_prod.shape) < len(original_samples.shape): sqrt_one_minus_alpha_prod = sqrt_one_minus_alpha_prod.unsqueeze(-1) noisy_samples = sqrt_alpha_prod * original_samples + sqrt_one_minus_alpha_prod * noise return noisy_samples @torch.no_grad() @replace_example_docstring(EXAMPLE_DOC_STRING) def __call__( self, prompt: Union[str, List[str]], image: Union[torch.FloatTensor, PIL.Image.Image, List[torch.FloatTensor], List[PIL.Image.Image]], image_embeds: torch.FloatTensor, negative_image_embeds: torch.FloatTensor, negative_prompt: Optional[Union[str, List[str]]] = None, height: int = 512, width: int = 512, num_inference_steps: int = 100, strength: float = 0.3, guidance_scale: float = 7.0, num_images_per_prompt: int = 1, generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None, output_type: Optional[str] = "pil", callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None, callback_steps: int = 1, return_dict: bool = True, ): """ Function invoked when calling the pipeline for generation. Args: prompt (`str` or `List[str]`): The prompt or prompts to guide the image generation. image (`torch.FloatTensor`, `PIL.Image.Image`): `Image`, or tensor representing an image batch, that will be used as the starting point for the process. image_embeds (`torch.FloatTensor` or `List[torch.FloatTensor]`): The clip image embeddings for text prompt, that will be used to condition the image generation. negative_image_embeds (`torch.FloatTensor` or `List[torch.FloatTensor]`): The clip image embeddings for negative text prompt, will be used to condition the image generation. negative_prompt (`str` or `List[str]`, *optional*): The prompt or prompts not to guide the image generation. Ignored when not using guidance (i.e., ignored if `guidance_scale` is less than `1`). height (`int`, *optional*, defaults to 512): The height in pixels of the generated image. width (`int`, *optional*, defaults to 512): The width in pixels of the generated image. num_inference_steps (`int`, *optional*, defaults to 100): The number of denoising steps. More denoising steps usually lead to a higher quality image at the expense of slower inference. strength (`float`, *optional*, defaults to 0.3): Conceptually, indicates how much to transform the reference `image`. Must be between 0 and 1. `image` will be used as a starting point, adding more noise to it the larger the `strength`. The number of denoising steps depends on the amount of noise initially added. When `strength` is 1, added noise will be maximum and the denoising process will run for the full number of iterations specified in `num_inference_steps`. A value of 1, therefore, essentially ignores `image`. guidance_scale (`float`, *optional*, defaults to 4.0): Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598). `guidance_scale` is defined as `w` of equation 2. of [Imagen Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale > 1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`, usually at the expense of lower image quality. num_images_per_prompt (`int`, *optional*, defaults to 1): The number of images to generate per prompt. generator (`torch.Generator` or `List[torch.Generator]`, *optional*): One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make generation deterministic. output_type (`str`, *optional*, defaults to `"pil"`): The output format of the generate image. Choose between: `"pil"` (`PIL.Image.Image`), `"np"` (`np.array`) or `"pt"` (`torch.Tensor`). callback (`Callable`, *optional*): A function that calls every `callback_steps` steps during inference. The function is called with the following arguments: `callback(step: int, timestep: int, latents: torch.FloatTensor)`. callback_steps (`int`, *optional*, defaults to 1): The frequency at which the `callback` function is called. If not specified, the callback is called at every step. return_dict (`bool`, *optional*, defaults to `True`): Whether or not to return a [`~pipelines.ImagePipelineOutput`] instead of a plain tuple. Examples: Returns: [`~pipelines.ImagePipelineOutput`] or `tuple` """ # 1. Define call parameters if isinstance(prompt, str): batch_size = 1 elif isinstance(prompt, list): batch_size = len(prompt) else: raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}") device = self._execution_device batch_size = batch_size * num_images_per_prompt do_classifier_free_guidance = guidance_scale > 1.0 # 2. get text and image embeddings prompt_embeds, text_encoder_hidden_states, _ = self._encode_prompt( prompt, device, num_images_per_prompt, do_classifier_free_guidance, negative_prompt ) if isinstance(image_embeds, list): image_embeds = torch.cat(image_embeds, dim=0) if isinstance(negative_image_embeds, list): negative_image_embeds = torch.cat(negative_image_embeds, dim=0) if do_classifier_free_guidance: image_embeds = image_embeds.repeat_interleave(num_images_per_prompt, dim=0) negative_image_embeds = negative_image_embeds.repeat_interleave(num_images_per_prompt, dim=0) image_embeds = torch.cat([negative_image_embeds, image_embeds], dim=0).to( dtype=prompt_embeds.dtype, device=device ) # 3. pre-processing initial image if not isinstance(image, list): image = [image] if not all(isinstance(i, (PIL.Image.Image, torch.Tensor)) for i in image): raise ValueError( f"Input is in incorrect format: {[type(i) for i in image]}. Currently, we only support PIL image and pytorch tensor" ) image = torch.cat([prepare_image(i, width, height) for i in image], dim=0) image = image.to(dtype=prompt_embeds.dtype, device=device) latents = self.movq.encode(image)["latents"] latents = latents.repeat_interleave(num_images_per_prompt, dim=0) # 4. set timesteps self.scheduler.set_timesteps(num_inference_steps, device=device) timesteps_tensor, num_inference_steps = self.get_timesteps(num_inference_steps, strength, device) # the formular to calculate timestep for add_noise is taken from the original kandinsky repo latent_timestep = int(self.scheduler.config.num_train_timesteps * strength) - 2 latent_timestep = torch.tensor([latent_timestep] * batch_size, dtype=timesteps_tensor.dtype, device=device) num_channels_latents = self.unet.config.in_channels height, width = get_new_h_w(height, width, self.movq_scale_factor) # 5. Create initial latent latents = self.prepare_latents( latents, latent_timestep, (batch_size, num_channels_latents, height, width), text_encoder_hidden_states.dtype, device, generator, self.scheduler, ) # 6. Denoising loop for i, t in enumerate(self.progress_bar(timesteps_tensor)): # expand the latents if we are doing classifier free guidance latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents added_cond_kwargs = {"text_embeds": prompt_embeds, "image_embeds": image_embeds} noise_pred = self.unet( sample=latent_model_input, timestep=t, encoder_hidden_states=text_encoder_hidden_states, added_cond_kwargs=added_cond_kwargs, return_dict=False, )[0] if do_classifier_free_guidance: noise_pred, variance_pred = noise_pred.split(latents.shape[1], dim=1) noise_pred_uncond, noise_pred_text = noise_pred.chunk(2) _, variance_pred_text = variance_pred.chunk(2) noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) noise_pred = torch.cat([noise_pred, variance_pred_text], dim=1) if not ( hasattr(self.scheduler.config, "variance_type") and self.scheduler.config.variance_type in ["learned", "learned_range"] ): noise_pred, _ = noise_pred.split(latents.shape[1], dim=1) # compute the previous noisy sample x_t -> x_t-1 latents = self.scheduler.step( noise_pred, t, latents, generator=generator, ).prev_sample if callback is not None and i % callback_steps == 0: step_idx = i // getattr(self.scheduler, "order", 1) callback(step_idx, t, latents) # 7. post-processing image = self.movq.decode(latents, force_not_quantize=True)["sample"] self.maybe_free_model_hooks() if output_type not in ["pt", "np", "pil"]: raise ValueError(f"Only the output types `pt`, `pil` and `np` are supported not output_type={output_type}") if output_type in ["np", "pil"]: image = image * 0.5 + 0.5 image = image.clamp(0, 1) image = image.cpu().permute(0, 2, 3, 1).float().numpy() if output_type == "pil": image = self.numpy_to_pil(image) if not return_dict: return (image,) return ImagePipelineOutput(images=image)