# Copyright 2024 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import warnings from functools import partial from typing import Dict, List, Optional, Union import jax import jax.numpy as jnp import numpy as np from flax.core.frozen_dict import FrozenDict from flax.jax_utils import unreplicate from flax.training.common_utils import shard from PIL import Image from transformers import CLIPFeatureExtractor, CLIPTokenizer, FlaxCLIPTextModel from ...models import FlaxAutoencoderKL, FlaxControlNetModel, FlaxUNet2DConditionModel from ...schedulers import ( FlaxDDIMScheduler, FlaxDPMSolverMultistepScheduler, FlaxLMSDiscreteScheduler, FlaxPNDMScheduler, ) from ...utils import PIL_INTERPOLATION, logging, replace_example_docstring from ..pipeline_flax_utils import FlaxDiffusionPipeline from ..stable_diffusion import FlaxStableDiffusionPipelineOutput from ..stable_diffusion.safety_checker_flax import FlaxStableDiffusionSafetyChecker logger = logging.get_logger(__name__) # pylint: disable=invalid-name # Set to True to use python for loop instead of jax.fori_loop for easier debugging DEBUG = False EXAMPLE_DOC_STRING = """ Examples: ```py >>> import jax >>> import numpy as np >>> import jax.numpy as jnp >>> from flax.jax_utils import replicate >>> from flax.training.common_utils import shard >>> from diffusers.utils import load_image, make_image_grid >>> from PIL import Image >>> from diffusers import FlaxStableDiffusionControlNetPipeline, FlaxControlNetModel >>> def create_key(seed=0): ... return jax.random.PRNGKey(seed) >>> rng = create_key(0) >>> # get canny image >>> canny_image = load_image( ... "https://huggingface.co./datasets/YiYiXu/test-doc-assets/resolve/main/blog_post_cell_10_output_0.jpeg" ... ) >>> prompts = "best quality, extremely detailed" >>> negative_prompts = "monochrome, lowres, bad anatomy, worst quality, low quality" >>> # load control net and stable diffusion v1-5 >>> controlnet, controlnet_params = FlaxControlNetModel.from_pretrained( ... "lllyasviel/sd-controlnet-canny", from_pt=True, dtype=jnp.float32 ... ) >>> pipe, params = FlaxStableDiffusionControlNetPipeline.from_pretrained( ... "runwayml/stable-diffusion-v1-5", controlnet=controlnet, revision="flax", dtype=jnp.float32 ... ) >>> params["controlnet"] = controlnet_params >>> num_samples = jax.device_count() >>> rng = jax.random.split(rng, jax.device_count()) >>> prompt_ids = pipe.prepare_text_inputs([prompts] * num_samples) >>> negative_prompt_ids = pipe.prepare_text_inputs([negative_prompts] * num_samples) >>> processed_image = pipe.prepare_image_inputs([canny_image] * num_samples) >>> p_params = replicate(params) >>> prompt_ids = shard(prompt_ids) >>> negative_prompt_ids = shard(negative_prompt_ids) >>> processed_image = shard(processed_image) >>> output = pipe( ... prompt_ids=prompt_ids, ... image=processed_image, ... params=p_params, ... prng_seed=rng, ... num_inference_steps=50, ... neg_prompt_ids=negative_prompt_ids, ... jit=True, ... ).images >>> output_images = pipe.numpy_to_pil(np.asarray(output.reshape((num_samples,) + output.shape[-3:]))) >>> output_images = make_image_grid(output_images, num_samples // 4, 4) >>> output_images.save("generated_image.png") ``` """ class FlaxStableDiffusionControlNetPipeline(FlaxDiffusionPipeline): r""" Flax-based pipeline for text-to-image generation using Stable Diffusion with ControlNet Guidance. This model inherits from [`FlaxDiffusionPipeline`]. Check the superclass documentation for the generic methods implemented for all pipelines (downloading, saving, running on a particular device, etc.). Args: vae ([`FlaxAutoencoderKL`]): Variational Auto-Encoder (VAE) model to encode and decode images to and from latent representations. text_encoder ([`~transformers.FlaxCLIPTextModel`]): Frozen text-encoder ([clip-vit-large-patch14](https://huggingface.co./openai/clip-vit-large-patch14)). tokenizer ([`~transformers.CLIPTokenizer`]): A `CLIPTokenizer` to tokenize text. unet ([`FlaxUNet2DConditionModel`]): A `FlaxUNet2DConditionModel` to denoise the encoded image latents. controlnet ([`FlaxControlNetModel`]: Provides additional conditioning to the `unet` during the denoising process. scheduler ([`SchedulerMixin`]): A scheduler to be used in combination with `unet` to denoise the encoded image latents. Can be one of [`FlaxDDIMScheduler`], [`FlaxLMSDiscreteScheduler`], [`FlaxPNDMScheduler`], or [`FlaxDPMSolverMultistepScheduler`]. safety_checker ([`FlaxStableDiffusionSafetyChecker`]): Classification module that estimates whether generated images could be considered offensive or harmful. Please refer to the [model card](https://huggingface.co./runwayml/stable-diffusion-v1-5) for more details about a model's potential harms. feature_extractor ([`~transformers.CLIPImageProcessor`]): A `CLIPImageProcessor` to extract features from generated images; used as inputs to the `safety_checker`. """ def __init__( self, vae: FlaxAutoencoderKL, text_encoder: FlaxCLIPTextModel, tokenizer: CLIPTokenizer, unet: FlaxUNet2DConditionModel, controlnet: FlaxControlNetModel, scheduler: Union[ FlaxDDIMScheduler, FlaxPNDMScheduler, FlaxLMSDiscreteScheduler, FlaxDPMSolverMultistepScheduler ], safety_checker: FlaxStableDiffusionSafetyChecker, feature_extractor: CLIPFeatureExtractor, dtype: jnp.dtype = jnp.float32, ): super().__init__() self.dtype = dtype if safety_checker is None: logger.warning( f"You have disabled the safety checker for {self.__class__} by passing `safety_checker=None`. Ensure" " that you abide to the conditions of the Stable Diffusion license and do not expose unfiltered" " results in services or applications open to the public. Both the diffusers team and Hugging Face" " strongly recommend to keep the safety filter enabled in all public facing circumstances, disabling" " it only for use-cases that involve analyzing network behavior or auditing its results. For more" " information, please have a look at https://github.com/huggingface/diffusers/pull/254 ." ) self.register_modules( vae=vae, text_encoder=text_encoder, tokenizer=tokenizer, unet=unet, controlnet=controlnet, scheduler=scheduler, safety_checker=safety_checker, feature_extractor=feature_extractor, ) self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1) def prepare_text_inputs(self, prompt: Union[str, List[str]]): if not isinstance(prompt, (str, list)): raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}") text_input = self.tokenizer( prompt, padding="max_length", max_length=self.tokenizer.model_max_length, truncation=True, return_tensors="np", ) return text_input.input_ids def prepare_image_inputs(self, image: Union[Image.Image, List[Image.Image]]): if not isinstance(image, (Image.Image, list)): raise ValueError(f"image has to be of type `PIL.Image.Image` or list but is {type(image)}") if isinstance(image, Image.Image): image = [image] processed_images = jnp.concatenate([preprocess(img, jnp.float32) for img in image]) return processed_images def _get_has_nsfw_concepts(self, features, params): has_nsfw_concepts = self.safety_checker(features, params) return has_nsfw_concepts def _run_safety_checker(self, images, safety_model_params, jit=False): # safety_model_params should already be replicated when jit is True pil_images = [Image.fromarray(image) for image in images] features = self.feature_extractor(pil_images, return_tensors="np").pixel_values if jit: features = shard(features) has_nsfw_concepts = _p_get_has_nsfw_concepts(self, features, safety_model_params) has_nsfw_concepts = unshard(has_nsfw_concepts) safety_model_params = unreplicate(safety_model_params) else: has_nsfw_concepts = self._get_has_nsfw_concepts(features, safety_model_params) images_was_copied = False for idx, has_nsfw_concept in enumerate(has_nsfw_concepts): if has_nsfw_concept: if not images_was_copied: images_was_copied = True images = images.copy() images[idx] = np.zeros(images[idx].shape, dtype=np.uint8) # black image if any(has_nsfw_concepts): warnings.warn( "Potential NSFW content was detected in one or more images. A black image will be returned" " instead. Try again with a different prompt and/or seed." ) return images, has_nsfw_concepts def _generate( self, prompt_ids: jnp.ndarray, image: jnp.ndarray, params: Union[Dict, FrozenDict], prng_seed: jax.Array, num_inference_steps: int, guidance_scale: float, latents: Optional[jnp.ndarray] = None, neg_prompt_ids: Optional[jnp.ndarray] = None, controlnet_conditioning_scale: float = 1.0, ): height, width = image.shape[-2:] if height % 64 != 0 or width % 64 != 0: raise ValueError(f"`height` and `width` have to be divisible by 64 but are {height} and {width}.") # get prompt text embeddings prompt_embeds = self.text_encoder(prompt_ids, params=params["text_encoder"])[0] # TODO: currently it is assumed `do_classifier_free_guidance = guidance_scale > 1.0` # implement this conditional `do_classifier_free_guidance = guidance_scale > 1.0` batch_size = prompt_ids.shape[0] max_length = prompt_ids.shape[-1] if neg_prompt_ids is None: uncond_input = self.tokenizer( [""] * batch_size, padding="max_length", max_length=max_length, return_tensors="np" ).input_ids else: uncond_input = neg_prompt_ids negative_prompt_embeds = self.text_encoder(uncond_input, params=params["text_encoder"])[0] context = jnp.concatenate([negative_prompt_embeds, prompt_embeds]) image = jnp.concatenate([image] * 2) latents_shape = ( batch_size, self.unet.config.in_channels, height // self.vae_scale_factor, width // self.vae_scale_factor, ) if latents is None: latents = jax.random.normal(prng_seed, shape=latents_shape, dtype=jnp.float32) else: if latents.shape != latents_shape: raise ValueError(f"Unexpected latents shape, got {latents.shape}, expected {latents_shape}") def loop_body(step, args): latents, scheduler_state = args # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes latents_input = jnp.concatenate([latents] * 2) t = jnp.array(scheduler_state.timesteps, dtype=jnp.int32)[step] timestep = jnp.broadcast_to(t, latents_input.shape[0]) latents_input = self.scheduler.scale_model_input(scheduler_state, latents_input, t) down_block_res_samples, mid_block_res_sample = self.controlnet.apply( {"params": params["controlnet"]}, jnp.array(latents_input), jnp.array(timestep, dtype=jnp.int32), encoder_hidden_states=context, controlnet_cond=image, conditioning_scale=controlnet_conditioning_scale, return_dict=False, ) # predict the noise residual noise_pred = self.unet.apply( {"params": params["unet"]}, jnp.array(latents_input), jnp.array(timestep, dtype=jnp.int32), encoder_hidden_states=context, down_block_additional_residuals=down_block_res_samples, mid_block_additional_residual=mid_block_res_sample, ).sample # perform guidance noise_pred_uncond, noise_prediction_text = jnp.split(noise_pred, 2, axis=0) noise_pred = noise_pred_uncond + guidance_scale * (noise_prediction_text - noise_pred_uncond) # compute the previous noisy sample x_t -> x_t-1 latents, scheduler_state = self.scheduler.step(scheduler_state, noise_pred, t, latents).to_tuple() return latents, scheduler_state scheduler_state = self.scheduler.set_timesteps( params["scheduler"], num_inference_steps=num_inference_steps, shape=latents_shape ) # scale the initial noise by the standard deviation required by the scheduler latents = latents * params["scheduler"].init_noise_sigma if DEBUG: # run with python for loop for i in range(num_inference_steps): latents, scheduler_state = loop_body(i, (latents, scheduler_state)) else: latents, _ = jax.lax.fori_loop(0, num_inference_steps, loop_body, (latents, scheduler_state)) # scale and decode the image latents with vae latents = 1 / self.vae.config.scaling_factor * latents image = self.vae.apply({"params": params["vae"]}, latents, method=self.vae.decode).sample image = (image / 2 + 0.5).clip(0, 1).transpose(0, 2, 3, 1) return image @replace_example_docstring(EXAMPLE_DOC_STRING) def __call__( self, prompt_ids: jnp.ndarray, image: jnp.ndarray, params: Union[Dict, FrozenDict], prng_seed: jax.Array, num_inference_steps: int = 50, guidance_scale: Union[float, jnp.ndarray] = 7.5, latents: jnp.ndarray = None, neg_prompt_ids: jnp.ndarray = None, controlnet_conditioning_scale: Union[float, jnp.ndarray] = 1.0, return_dict: bool = True, jit: bool = False, ): r""" The call function to the pipeline for generation. Args: prompt_ids (`jnp.ndarray`): The prompt or prompts to guide the image generation. image (`jnp.ndarray`): Array representing the ControlNet input condition to provide guidance to the `unet` for generation. params (`Dict` or `FrozenDict`): Dictionary containing the model parameters/weights. prng_seed (`jax.Array`): Array containing random number generator key. num_inference_steps (`int`, *optional*, defaults to 50): The number of denoising steps. More denoising steps usually lead to a higher quality image at the expense of slower inference. guidance_scale (`float`, *optional*, defaults to 7.5): A higher guidance scale value encourages the model to generate images closely linked to the text `prompt` at the expense of lower image quality. Guidance scale is enabled when `guidance_scale > 1`. latents (`jnp.ndarray`, *optional*): Pre-generated noisy latents sampled from a Gaussian distribution, to be used as inputs for image generation. Can be used to tweak the same generation with different prompts. If not provided, a latents array is generated by sampling using the supplied random `generator`. controlnet_conditioning_scale (`float` or `jnp.ndarray`, *optional*, defaults to 1.0): The outputs of the ControlNet are multiplied by `controlnet_conditioning_scale` before they are added to the residual in the original `unet`. return_dict (`bool`, *optional*, defaults to `True`): Whether or not to return a [`~pipelines.stable_diffusion.FlaxStableDiffusionPipelineOutput`] instead of a plain tuple. jit (`bool`, defaults to `False`): Whether to run `pmap` versions of the generation and safety scoring functions. This argument exists because `__call__` is not yet end-to-end pmap-able. It will be removed in a future release. Examples: Returns: [`~pipelines.stable_diffusion.FlaxStableDiffusionPipelineOutput`] or `tuple`: If `return_dict` is `True`, [`~pipelines.stable_diffusion.FlaxStableDiffusionPipelineOutput`] is returned, otherwise a `tuple` is returned where the first element is a list with the generated images and the second element is a list of `bool`s indicating whether the corresponding generated image contains "not-safe-for-work" (nsfw) content. """ height, width = image.shape[-2:] if isinstance(guidance_scale, float): # Convert to a tensor so each device gets a copy. Follow the prompt_ids for # shape information, as they may be sharded (when `jit` is `True`), or not. guidance_scale = jnp.array([guidance_scale] * prompt_ids.shape[0]) if len(prompt_ids.shape) > 2: # Assume sharded guidance_scale = guidance_scale[:, None] if isinstance(controlnet_conditioning_scale, float): # Convert to a tensor so each device gets a copy. Follow the prompt_ids for # shape information, as they may be sharded (when `jit` is `True`), or not. controlnet_conditioning_scale = jnp.array([controlnet_conditioning_scale] * prompt_ids.shape[0]) if len(prompt_ids.shape) > 2: # Assume sharded controlnet_conditioning_scale = controlnet_conditioning_scale[:, None] if jit: images = _p_generate( self, prompt_ids, image, params, prng_seed, num_inference_steps, guidance_scale, latents, neg_prompt_ids, controlnet_conditioning_scale, ) else: images = self._generate( prompt_ids, image, params, prng_seed, num_inference_steps, guidance_scale, latents, neg_prompt_ids, controlnet_conditioning_scale, ) if self.safety_checker is not None: safety_params = params["safety_checker"] images_uint8_casted = (images * 255).round().astype("uint8") num_devices, batch_size = images.shape[:2] images_uint8_casted = np.asarray(images_uint8_casted).reshape(num_devices * batch_size, height, width, 3) images_uint8_casted, has_nsfw_concept = self._run_safety_checker(images_uint8_casted, safety_params, jit) images = np.array(images) # block images if any(has_nsfw_concept): for i, is_nsfw in enumerate(has_nsfw_concept): if is_nsfw: images[i] = np.asarray(images_uint8_casted[i]) images = images.reshape(num_devices, batch_size, height, width, 3) else: images = np.asarray(images) has_nsfw_concept = False if not return_dict: return (images, has_nsfw_concept) return FlaxStableDiffusionPipelineOutput(images=images, nsfw_content_detected=has_nsfw_concept) # Static argnums are pipe, num_inference_steps. A change would trigger recompilation. # Non-static args are (sharded) input tensors mapped over their first dimension (hence, `0`). @partial( jax.pmap, in_axes=(None, 0, 0, 0, 0, None, 0, 0, 0, 0), static_broadcasted_argnums=(0, 5), ) def _p_generate( pipe, prompt_ids, image, params, prng_seed, num_inference_steps, guidance_scale, latents, neg_prompt_ids, controlnet_conditioning_scale, ): return pipe._generate( prompt_ids, image, params, prng_seed, num_inference_steps, guidance_scale, latents, neg_prompt_ids, controlnet_conditioning_scale, ) @partial(jax.pmap, static_broadcasted_argnums=(0,)) def _p_get_has_nsfw_concepts(pipe, features, params): return pipe._get_has_nsfw_concepts(features, params) def unshard(x: jnp.ndarray): # einops.rearrange(x, 'd b ... -> (d b) ...') num_devices, batch_size = x.shape[:2] rest = x.shape[2:] return x.reshape(num_devices * batch_size, *rest) def preprocess(image, dtype): image = image.convert("RGB") w, h = image.size w, h = (x - x % 64 for x in (w, h)) # resize to integer multiple of 64 image = image.resize((w, h), resample=PIL_INTERPOLATION["lanczos"]) image = jnp.array(image).astype(dtype) / 255.0 image = image[None].transpose(0, 3, 1, 2) return image