# Copyright 2024 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from dataclasses import dataclass from math import gcd from typing import Any, Dict, List, Optional, Tuple, Union import torch import torch.utils.checkpoint from torch import FloatTensor, nn from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput, is_torch_version, logging from ..utils.torch_utils import apply_freeu from .attention_processor import ( ADDED_KV_ATTENTION_PROCESSORS, CROSS_ATTENTION_PROCESSORS, Attention, AttentionProcessor, AttnAddedKVProcessor, AttnProcessor, ) from .controlnet import ControlNetConditioningEmbedding from .embeddings import TimestepEmbedding, Timesteps from .modeling_utils import ModelMixin from .unets.unet_2d_blocks import ( CrossAttnDownBlock2D, CrossAttnUpBlock2D, Downsample2D, ResnetBlock2D, Transformer2DModel, UNetMidBlock2DCrossAttn, Upsample2D, ) from .unets.unet_2d_condition import UNet2DConditionModel logger = logging.get_logger(__name__) # pylint: disable=invalid-name @dataclass class ControlNetXSOutput(BaseOutput): """ The output of [`UNetControlNetXSModel`]. Args: sample (`FloatTensor` of shape `(batch_size, num_channels, height, width)`): The output of the `UNetControlNetXSModel`. Unlike `ControlNetOutput` this is NOT to be added to the base model output, but is already the final output. """ sample: FloatTensor = None class DownBlockControlNetXSAdapter(nn.Module): """Components that together with corresponding components from the base model will form a `ControlNetXSCrossAttnDownBlock2D`""" def __init__( self, resnets: nn.ModuleList, base_to_ctrl: nn.ModuleList, ctrl_to_base: nn.ModuleList, attentions: Optional[nn.ModuleList] = None, downsampler: Optional[nn.Conv2d] = None, ): super().__init__() self.resnets = resnets self.base_to_ctrl = base_to_ctrl self.ctrl_to_base = ctrl_to_base self.attentions = attentions self.downsamplers = downsampler class MidBlockControlNetXSAdapter(nn.Module): """Components that together with corresponding components from the base model will form a `ControlNetXSCrossAttnMidBlock2D`""" def __init__(self, midblock: UNetMidBlock2DCrossAttn, base_to_ctrl: nn.ModuleList, ctrl_to_base: nn.ModuleList): super().__init__() self.midblock = midblock self.base_to_ctrl = base_to_ctrl self.ctrl_to_base = ctrl_to_base class UpBlockControlNetXSAdapter(nn.Module): """Components that together with corresponding components from the base model will form a `ControlNetXSCrossAttnUpBlock2D`""" def __init__(self, ctrl_to_base: nn.ModuleList): super().__init__() self.ctrl_to_base = ctrl_to_base def get_down_block_adapter( base_in_channels: int, base_out_channels: int, ctrl_in_channels: int, ctrl_out_channels: int, temb_channels: int, max_norm_num_groups: Optional[int] = 32, has_crossattn=True, transformer_layers_per_block: Optional[Union[int, Tuple[int]]] = 1, num_attention_heads: Optional[int] = 1, cross_attention_dim: Optional[int] = 1024, add_downsample: bool = True, upcast_attention: Optional[bool] = False, ): num_layers = 2 # only support sd + sdxl resnets = [] attentions = [] ctrl_to_base = [] base_to_ctrl = [] if isinstance(transformer_layers_per_block, int): transformer_layers_per_block = [transformer_layers_per_block] * num_layers for i in range(num_layers): base_in_channels = base_in_channels if i == 0 else base_out_channels ctrl_in_channels = ctrl_in_channels if i == 0 else ctrl_out_channels # Before the resnet/attention application, information is concatted from base to control. # Concat doesn't require change in number of channels base_to_ctrl.append(make_zero_conv(base_in_channels, base_in_channels)) resnets.append( ResnetBlock2D( in_channels=ctrl_in_channels + base_in_channels, # information from base is concatted to ctrl out_channels=ctrl_out_channels, temb_channels=temb_channels, groups=find_largest_factor(ctrl_in_channels + base_in_channels, max_factor=max_norm_num_groups), groups_out=find_largest_factor(ctrl_out_channels, max_factor=max_norm_num_groups), eps=1e-5, ) ) if has_crossattn: attentions.append( Transformer2DModel( num_attention_heads, ctrl_out_channels // num_attention_heads, in_channels=ctrl_out_channels, num_layers=transformer_layers_per_block[i], cross_attention_dim=cross_attention_dim, use_linear_projection=True, upcast_attention=upcast_attention, norm_num_groups=find_largest_factor(ctrl_out_channels, max_factor=max_norm_num_groups), ) ) # After the resnet/attention application, information is added from control to base # Addition requires change in number of channels ctrl_to_base.append(make_zero_conv(ctrl_out_channels, base_out_channels)) if add_downsample: # Before the downsampler application, information is concatted from base to control # Concat doesn't require change in number of channels base_to_ctrl.append(make_zero_conv(base_out_channels, base_out_channels)) downsamplers = Downsample2D( ctrl_out_channels + base_out_channels, use_conv=True, out_channels=ctrl_out_channels, name="op" ) # After the downsampler application, information is added from control to base # Addition requires change in number of channels ctrl_to_base.append(make_zero_conv(ctrl_out_channels, base_out_channels)) else: downsamplers = None down_block_components = DownBlockControlNetXSAdapter( resnets=nn.ModuleList(resnets), base_to_ctrl=nn.ModuleList(base_to_ctrl), ctrl_to_base=nn.ModuleList(ctrl_to_base), ) if has_crossattn: down_block_components.attentions = nn.ModuleList(attentions) if downsamplers is not None: down_block_components.downsamplers = downsamplers return down_block_components def get_mid_block_adapter( base_channels: int, ctrl_channels: int, temb_channels: Optional[int] = None, max_norm_num_groups: Optional[int] = 32, transformer_layers_per_block: int = 1, num_attention_heads: Optional[int] = 1, cross_attention_dim: Optional[int] = 1024, upcast_attention: bool = False, ): # Before the midblock application, information is concatted from base to control. # Concat doesn't require change in number of channels base_to_ctrl = make_zero_conv(base_channels, base_channels) midblock = UNetMidBlock2DCrossAttn( transformer_layers_per_block=transformer_layers_per_block, in_channels=ctrl_channels + base_channels, out_channels=ctrl_channels, temb_channels=temb_channels, # number or norm groups must divide both in_channels and out_channels resnet_groups=find_largest_factor(gcd(ctrl_channels, ctrl_channels + base_channels), max_norm_num_groups), cross_attention_dim=cross_attention_dim, num_attention_heads=num_attention_heads, use_linear_projection=True, upcast_attention=upcast_attention, ) # After the midblock application, information is added from control to base # Addition requires change in number of channels ctrl_to_base = make_zero_conv(ctrl_channels, base_channels) return MidBlockControlNetXSAdapter(base_to_ctrl=base_to_ctrl, midblock=midblock, ctrl_to_base=ctrl_to_base) def get_up_block_adapter( out_channels: int, prev_output_channel: int, ctrl_skip_channels: List[int], ): ctrl_to_base = [] num_layers = 3 # only support sd + sdxl for i in range(num_layers): resnet_in_channels = prev_output_channel if i == 0 else out_channels ctrl_to_base.append(make_zero_conv(ctrl_skip_channels[i], resnet_in_channels)) return UpBlockControlNetXSAdapter(ctrl_to_base=nn.ModuleList(ctrl_to_base)) class ControlNetXSAdapter(ModelMixin, ConfigMixin): r""" A `ControlNetXSAdapter` model. To use it, pass it into a `UNetControlNetXSModel` (together with a `UNet2DConditionModel` base model). This model inherits from [`ModelMixin`] and [`ConfigMixin`]. Check the superclass documentation for it's generic methods implemented for all models (such as downloading or saving). Like `UNetControlNetXSModel`, `ControlNetXSAdapter` is compatible with StableDiffusion and StableDiffusion-XL. It's default parameters are compatible with StableDiffusion. Parameters: conditioning_channels (`int`, defaults to 3): Number of channels of conditioning input (e.g. an image) conditioning_channel_order (`str`, defaults to `"rgb"`): The channel order of conditional image. Will convert to `rgb` if it's `bgr`. conditioning_embedding_out_channels (`tuple[int]`, defaults to `(16, 32, 96, 256)`): The tuple of output channels for each block in the `controlnet_cond_embedding` layer. time_embedding_mix (`float`, defaults to 1.0): If 0, then only the control adapters's time embedding is used. If 1, then only the base unet's time embedding is used. Otherwise, both are combined. learn_time_embedding (`bool`, defaults to `False`): Whether a time embedding should be learned. If yes, `UNetControlNetXSModel` will combine the time embeddings of the base model and the control adapter. If no, `UNetControlNetXSModel` will use the base model's time embedding. num_attention_heads (`list[int]`, defaults to `[4]`): The number of attention heads. block_out_channels (`list[int]`, defaults to `[4, 8, 16, 16]`): The tuple of output channels for each block. base_block_out_channels (`list[int]`, defaults to `[320, 640, 1280, 1280]`): The tuple of output channels for each block in the base unet. cross_attention_dim (`int`, defaults to 1024): The dimension of the cross attention features. down_block_types (`list[str]`, defaults to `["CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "DownBlock2D"]`): The tuple of downsample blocks to use. sample_size (`int`, defaults to 96): Height and width of input/output sample. transformer_layers_per_block (`Union[int, Tuple[int]]`, defaults to 1): The number of transformer blocks of type [`~models.attention.BasicTransformerBlock`]. Only relevant for [`~models.unet_2d_blocks.CrossAttnDownBlock2D`], [`~models.unet_2d_blocks.UNetMidBlock2DCrossAttn`]. upcast_attention (`bool`, defaults to `True`): Whether the attention computation should always be upcasted. max_norm_num_groups (`int`, defaults to 32): Maximum number of groups in group normal. The actual number will the the largest divisor of the respective channels, that is <= max_norm_num_groups. """ @register_to_config def __init__( self, conditioning_channels: int = 3, conditioning_channel_order: str = "rgb", conditioning_embedding_out_channels: Tuple[int] = (16, 32, 96, 256), time_embedding_mix: float = 1.0, learn_time_embedding: bool = False, num_attention_heads: Union[int, Tuple[int]] = 4, block_out_channels: Tuple[int] = (4, 8, 16, 16), base_block_out_channels: Tuple[int] = (320, 640, 1280, 1280), cross_attention_dim: int = 1024, down_block_types: Tuple[str] = ( "CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "DownBlock2D", ), sample_size: Optional[int] = 96, transformer_layers_per_block: Union[int, Tuple[int]] = 1, upcast_attention: bool = True, max_norm_num_groups: int = 32, ): super().__init__() time_embedding_input_dim = base_block_out_channels[0] time_embedding_dim = base_block_out_channels[0] * 4 # Check inputs if conditioning_channel_order not in ["rgb", "bgr"]: raise ValueError(f"unknown `conditioning_channel_order`: {conditioning_channel_order}") if len(block_out_channels) != len(down_block_types): raise ValueError( f"Must provide the same number of `block_out_channels` as `down_block_types`. `block_out_channels`: {block_out_channels}. `down_block_types`: {down_block_types}." ) if not isinstance(transformer_layers_per_block, (list, tuple)): transformer_layers_per_block = [transformer_layers_per_block] * len(down_block_types) if not isinstance(cross_attention_dim, (list, tuple)): cross_attention_dim = [cross_attention_dim] * len(down_block_types) # see https://github.com/huggingface/diffusers/issues/2011#issuecomment-1547958131 for why `ControlNetXSAdapter` takes `num_attention_heads` instead of `attention_head_dim` if not isinstance(num_attention_heads, (list, tuple)): num_attention_heads = [num_attention_heads] * len(down_block_types) if len(num_attention_heads) != len(down_block_types): raise ValueError( f"Must provide the same number of `num_attention_heads` as `down_block_types`. `num_attention_heads`: {num_attention_heads}. `down_block_types`: {down_block_types}." ) # 5 - Create conditioning hint embedding self.controlnet_cond_embedding = ControlNetConditioningEmbedding( conditioning_embedding_channels=block_out_channels[0], block_out_channels=conditioning_embedding_out_channels, conditioning_channels=conditioning_channels, ) # time if learn_time_embedding: self.time_embedding = TimestepEmbedding(time_embedding_input_dim, time_embedding_dim) else: self.time_embedding = None self.down_blocks = nn.ModuleList([]) self.up_connections = nn.ModuleList([]) # input self.conv_in = nn.Conv2d(4, block_out_channels[0], kernel_size=3, padding=1) self.control_to_base_for_conv_in = make_zero_conv(block_out_channels[0], base_block_out_channels[0]) # down base_out_channels = base_block_out_channels[0] ctrl_out_channels = block_out_channels[0] for i, down_block_type in enumerate(down_block_types): base_in_channels = base_out_channels base_out_channels = base_block_out_channels[i] ctrl_in_channels = ctrl_out_channels ctrl_out_channels = block_out_channels[i] has_crossattn = "CrossAttn" in down_block_type is_final_block = i == len(down_block_types) - 1 self.down_blocks.append( get_down_block_adapter( base_in_channels=base_in_channels, base_out_channels=base_out_channels, ctrl_in_channels=ctrl_in_channels, ctrl_out_channels=ctrl_out_channels, temb_channels=time_embedding_dim, max_norm_num_groups=max_norm_num_groups, has_crossattn=has_crossattn, transformer_layers_per_block=transformer_layers_per_block[i], num_attention_heads=num_attention_heads[i], cross_attention_dim=cross_attention_dim[i], add_downsample=not is_final_block, upcast_attention=upcast_attention, ) ) # mid self.mid_block = get_mid_block_adapter( base_channels=base_block_out_channels[-1], ctrl_channels=block_out_channels[-1], temb_channels=time_embedding_dim, transformer_layers_per_block=transformer_layers_per_block[-1], num_attention_heads=num_attention_heads[-1], cross_attention_dim=cross_attention_dim[-1], upcast_attention=upcast_attention, ) # up # The skip connection channels are the output of the conv_in and of all the down subblocks ctrl_skip_channels = [block_out_channels[0]] for i, out_channels in enumerate(block_out_channels): number_of_subblocks = ( 3 if i < len(block_out_channels) - 1 else 2 ) # every block has 3 subblocks, except last one, which has 2 as it has no downsampler ctrl_skip_channels.extend([out_channels] * number_of_subblocks) reversed_base_block_out_channels = list(reversed(base_block_out_channels)) base_out_channels = reversed_base_block_out_channels[0] for i in range(len(down_block_types)): prev_base_output_channel = base_out_channels base_out_channels = reversed_base_block_out_channels[i] ctrl_skip_channels_ = [ctrl_skip_channels.pop() for _ in range(3)] self.up_connections.append( get_up_block_adapter( out_channels=base_out_channels, prev_output_channel=prev_base_output_channel, ctrl_skip_channels=ctrl_skip_channels_, ) ) @classmethod def from_unet( cls, unet: UNet2DConditionModel, size_ratio: Optional[float] = None, block_out_channels: Optional[List[int]] = None, num_attention_heads: Optional[List[int]] = None, learn_time_embedding: bool = False, time_embedding_mix: int = 1.0, conditioning_channels: int = 3, conditioning_channel_order: str = "rgb", conditioning_embedding_out_channels: Tuple[int] = (16, 32, 96, 256), ): r""" Instantiate a [`ControlNetXSAdapter`] from a [`UNet2DConditionModel`]. Parameters: unet (`UNet2DConditionModel`): The UNet model we want to control. The dimensions of the ControlNetXSAdapter will be adapted to it. size_ratio (float, *optional*, defaults to `None`): When given, block_out_channels is set to a fraction of the base model's block_out_channels. Either this or `block_out_channels` must be given. block_out_channels (`List[int]`, *optional*, defaults to `None`): Down blocks output channels in control model. Either this or `size_ratio` must be given. num_attention_heads (`List[int]`, *optional*, defaults to `None`): The dimension of the attention heads. The naming seems a bit confusing and it is, see https://github.com/huggingface/diffusers/issues/2011#issuecomment-1547958131 for why. learn_time_embedding (`bool`, defaults to `False`): Whether the `ControlNetXSAdapter` should learn a time embedding. time_embedding_mix (`float`, defaults to 1.0): If 0, then only the control adapter's time embedding is used. If 1, then only the base unet's time embedding is used. Otherwise, both are combined. conditioning_channels (`int`, defaults to 3): Number of channels of conditioning input (e.g. an image) conditioning_channel_order (`str`, defaults to `"rgb"`): The channel order of conditional image. Will convert to `rgb` if it's `bgr`. conditioning_embedding_out_channels (`Tuple[int]`, defaults to `(16, 32, 96, 256)`): The tuple of output channel for each block in the `controlnet_cond_embedding` layer. """ # Check input fixed_size = block_out_channels is not None relative_size = size_ratio is not None if not (fixed_size ^ relative_size): raise ValueError( "Pass exactly one of `block_out_channels` (for absolute sizing) or `size_ratio` (for relative sizing)." ) # Create model block_out_channels = block_out_channels or [int(b * size_ratio) for b in unet.config.block_out_channels] if num_attention_heads is None: # The naming seems a bit confusing and it is, see https://github.com/huggingface/diffusers/issues/2011#issuecomment-1547958131 for why. num_attention_heads = unet.config.attention_head_dim model = cls( conditioning_channels=conditioning_channels, conditioning_channel_order=conditioning_channel_order, conditioning_embedding_out_channels=conditioning_embedding_out_channels, time_embedding_mix=time_embedding_mix, learn_time_embedding=learn_time_embedding, num_attention_heads=num_attention_heads, block_out_channels=block_out_channels, base_block_out_channels=unet.config.block_out_channels, cross_attention_dim=unet.config.cross_attention_dim, down_block_types=unet.config.down_block_types, sample_size=unet.config.sample_size, transformer_layers_per_block=unet.config.transformer_layers_per_block, upcast_attention=unet.config.upcast_attention, max_norm_num_groups=unet.config.norm_num_groups, ) # ensure that the ControlNetXSAdapter is the same dtype as the UNet2DConditionModel model.to(unet.dtype) return model def forward(self, *args, **kwargs): raise ValueError( "A ControlNetXSAdapter cannot be run by itself. Use it together with a UNet2DConditionModel to instantiate a UNetControlNetXSModel." ) class UNetControlNetXSModel(ModelMixin, ConfigMixin): r""" A UNet fused with a ControlNet-XS adapter model This model inherits from [`ModelMixin`] and [`ConfigMixin`]. Check the superclass documentation for it's generic methods implemented for all models (such as downloading or saving). `UNetControlNetXSModel` is compatible with StableDiffusion and StableDiffusion-XL. It's default parameters are compatible with StableDiffusion. It's parameters are either passed to the underlying `UNet2DConditionModel` or used exactly like in `ControlNetXSAdapter` . See their documentation for details. """ _supports_gradient_checkpointing = True @register_to_config def __init__( self, # unet configs sample_size: Optional[int] = 96, down_block_types: Tuple[str] = ( "CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "DownBlock2D", ), up_block_types: Tuple[str] = ("UpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D"), block_out_channels: Tuple[int] = (320, 640, 1280, 1280), norm_num_groups: Optional[int] = 32, cross_attention_dim: Union[int, Tuple[int]] = 1024, transformer_layers_per_block: Union[int, Tuple[int]] = 1, num_attention_heads: Union[int, Tuple[int]] = 8, addition_embed_type: Optional[str] = None, addition_time_embed_dim: Optional[int] = None, upcast_attention: bool = True, time_cond_proj_dim: Optional[int] = None, projection_class_embeddings_input_dim: Optional[int] = None, # additional controlnet configs time_embedding_mix: float = 1.0, ctrl_conditioning_channels: int = 3, ctrl_conditioning_embedding_out_channels: Tuple[int] = (16, 32, 96, 256), ctrl_conditioning_channel_order: str = "rgb", ctrl_learn_time_embedding: bool = False, ctrl_block_out_channels: Tuple[int] = (4, 8, 16, 16), ctrl_num_attention_heads: Union[int, Tuple[int]] = 4, ctrl_max_norm_num_groups: int = 32, ): super().__init__() if time_embedding_mix < 0 or time_embedding_mix > 1: raise ValueError("`time_embedding_mix` needs to be between 0 and 1.") if time_embedding_mix < 1 and not ctrl_learn_time_embedding: raise ValueError("To use `time_embedding_mix` < 1, `ctrl_learn_time_embedding` must be `True`") if addition_embed_type is not None and addition_embed_type != "text_time": raise ValueError( "As `UNetControlNetXSModel` currently only supports StableDiffusion and StableDiffusion-XL, `addition_embed_type` must be `None` or `'text_time'`." ) if not isinstance(transformer_layers_per_block, (list, tuple)): transformer_layers_per_block = [transformer_layers_per_block] * len(down_block_types) if not isinstance(cross_attention_dim, (list, tuple)): cross_attention_dim = [cross_attention_dim] * len(down_block_types) if not isinstance(num_attention_heads, (list, tuple)): num_attention_heads = [num_attention_heads] * len(down_block_types) if not isinstance(ctrl_num_attention_heads, (list, tuple)): ctrl_num_attention_heads = [ctrl_num_attention_heads] * len(down_block_types) base_num_attention_heads = num_attention_heads self.in_channels = 4 # # Input self.base_conv_in = nn.Conv2d(4, block_out_channels[0], kernel_size=3, padding=1) self.controlnet_cond_embedding = ControlNetConditioningEmbedding( conditioning_embedding_channels=ctrl_block_out_channels[0], block_out_channels=ctrl_conditioning_embedding_out_channels, conditioning_channels=ctrl_conditioning_channels, ) self.ctrl_conv_in = nn.Conv2d(4, ctrl_block_out_channels[0], kernel_size=3, padding=1) self.control_to_base_for_conv_in = make_zero_conv(ctrl_block_out_channels[0], block_out_channels[0]) # # Time time_embed_input_dim = block_out_channels[0] time_embed_dim = block_out_channels[0] * 4 self.base_time_proj = Timesteps(block_out_channels[0], flip_sin_to_cos=True, downscale_freq_shift=0) self.base_time_embedding = TimestepEmbedding( time_embed_input_dim, time_embed_dim, cond_proj_dim=time_cond_proj_dim, ) self.ctrl_time_embedding = TimestepEmbedding(in_channels=time_embed_input_dim, time_embed_dim=time_embed_dim) if addition_embed_type is None: self.base_add_time_proj = None self.base_add_embedding = None else: self.base_add_time_proj = Timesteps(addition_time_embed_dim, flip_sin_to_cos=True, downscale_freq_shift=0) self.base_add_embedding = TimestepEmbedding(projection_class_embeddings_input_dim, time_embed_dim) # # Create down blocks down_blocks = [] base_out_channels = block_out_channels[0] ctrl_out_channels = ctrl_block_out_channels[0] for i, down_block_type in enumerate(down_block_types): base_in_channels = base_out_channels base_out_channels = block_out_channels[i] ctrl_in_channels = ctrl_out_channels ctrl_out_channels = ctrl_block_out_channels[i] has_crossattn = "CrossAttn" in down_block_type is_final_block = i == len(down_block_types) - 1 down_blocks.append( ControlNetXSCrossAttnDownBlock2D( base_in_channels=base_in_channels, base_out_channels=base_out_channels, ctrl_in_channels=ctrl_in_channels, ctrl_out_channels=ctrl_out_channels, temb_channels=time_embed_dim, norm_num_groups=norm_num_groups, ctrl_max_norm_num_groups=ctrl_max_norm_num_groups, has_crossattn=has_crossattn, transformer_layers_per_block=transformer_layers_per_block[i], base_num_attention_heads=base_num_attention_heads[i], ctrl_num_attention_heads=ctrl_num_attention_heads[i], cross_attention_dim=cross_attention_dim[i], add_downsample=not is_final_block, upcast_attention=upcast_attention, ) ) # # Create mid block self.mid_block = ControlNetXSCrossAttnMidBlock2D( base_channels=block_out_channels[-1], ctrl_channels=ctrl_block_out_channels[-1], temb_channels=time_embed_dim, norm_num_groups=norm_num_groups, ctrl_max_norm_num_groups=ctrl_max_norm_num_groups, transformer_layers_per_block=transformer_layers_per_block[-1], base_num_attention_heads=base_num_attention_heads[-1], ctrl_num_attention_heads=ctrl_num_attention_heads[-1], cross_attention_dim=cross_attention_dim[-1], upcast_attention=upcast_attention, ) # # Create up blocks up_blocks = [] rev_transformer_layers_per_block = list(reversed(transformer_layers_per_block)) rev_num_attention_heads = list(reversed(base_num_attention_heads)) rev_cross_attention_dim = list(reversed(cross_attention_dim)) # The skip connection channels are the output of the conv_in and of all the down subblocks ctrl_skip_channels = [ctrl_block_out_channels[0]] for i, out_channels in enumerate(ctrl_block_out_channels): number_of_subblocks = ( 3 if i < len(ctrl_block_out_channels) - 1 else 2 ) # every block has 3 subblocks, except last one, which has 2 as it has no downsampler ctrl_skip_channels.extend([out_channels] * number_of_subblocks) reversed_block_out_channels = list(reversed(block_out_channels)) out_channels = reversed_block_out_channels[0] for i, up_block_type in enumerate(up_block_types): prev_output_channel = out_channels out_channels = reversed_block_out_channels[i] in_channels = reversed_block_out_channels[min(i + 1, len(block_out_channels) - 1)] ctrl_skip_channels_ = [ctrl_skip_channels.pop() for _ in range(3)] has_crossattn = "CrossAttn" in up_block_type is_final_block = i == len(block_out_channels) - 1 up_blocks.append( ControlNetXSCrossAttnUpBlock2D( in_channels=in_channels, out_channels=out_channels, prev_output_channel=prev_output_channel, ctrl_skip_channels=ctrl_skip_channels_, temb_channels=time_embed_dim, resolution_idx=i, has_crossattn=has_crossattn, transformer_layers_per_block=rev_transformer_layers_per_block[i], num_attention_heads=rev_num_attention_heads[i], cross_attention_dim=rev_cross_attention_dim[i], add_upsample=not is_final_block, upcast_attention=upcast_attention, norm_num_groups=norm_num_groups, ) ) self.down_blocks = nn.ModuleList(down_blocks) self.up_blocks = nn.ModuleList(up_blocks) self.base_conv_norm_out = nn.GroupNorm(num_channels=block_out_channels[0], num_groups=norm_num_groups) self.base_conv_act = nn.SiLU() self.base_conv_out = nn.Conv2d(block_out_channels[0], 4, kernel_size=3, padding=1) @classmethod def from_unet( cls, unet: UNet2DConditionModel, controlnet: Optional[ControlNetXSAdapter] = None, size_ratio: Optional[float] = None, ctrl_block_out_channels: Optional[List[float]] = None, time_embedding_mix: Optional[float] = None, ctrl_optional_kwargs: Optional[Dict] = None, ): r""" Instantiate a [`UNetControlNetXSModel`] from a [`UNet2DConditionModel`] and an optional [`ControlNetXSAdapter`] . Parameters: unet (`UNet2DConditionModel`): The UNet model we want to control. controlnet (`ControlNetXSAdapter`): The ConntrolNet-XS adapter with which the UNet will be fused. If none is given, a new ConntrolNet-XS adapter will be created. size_ratio (float, *optional*, defaults to `None`): Used to contruct the controlnet if none is given. See [`ControlNetXSAdapter.from_unet`] for details. ctrl_block_out_channels (`List[int]`, *optional*, defaults to `None`): Used to contruct the controlnet if none is given. See [`ControlNetXSAdapter.from_unet`] for details, where this parameter is called `block_out_channels`. time_embedding_mix (`float`, *optional*, defaults to None): Used to contruct the controlnet if none is given. See [`ControlNetXSAdapter.from_unet`] for details. ctrl_optional_kwargs (`Dict`, *optional*, defaults to `None`): Passed to the `init` of the new controlent if no controlent was given. """ if controlnet is None: controlnet = ControlNetXSAdapter.from_unet( unet, size_ratio, ctrl_block_out_channels, **ctrl_optional_kwargs ) else: if any( o is not None for o in (size_ratio, ctrl_block_out_channels, time_embedding_mix, ctrl_optional_kwargs) ): raise ValueError( "When a controlnet is passed, none of these parameters should be passed: size_ratio, ctrl_block_out_channels, time_embedding_mix, ctrl_optional_kwargs." ) # # get params params_for_unet = [ "sample_size", "down_block_types", "up_block_types", "block_out_channels", "norm_num_groups", "cross_attention_dim", "transformer_layers_per_block", "addition_embed_type", "addition_time_embed_dim", "upcast_attention", "time_cond_proj_dim", "projection_class_embeddings_input_dim", ] params_for_unet = {k: v for k, v in unet.config.items() if k in params_for_unet} # The naming seems a bit confusing and it is, see https://github.com/huggingface/diffusers/issues/2011#issuecomment-1547958131 for why. params_for_unet["num_attention_heads"] = unet.config.attention_head_dim params_for_controlnet = [ "conditioning_channels", "conditioning_embedding_out_channels", "conditioning_channel_order", "learn_time_embedding", "block_out_channels", "num_attention_heads", "max_norm_num_groups", ] params_for_controlnet = {"ctrl_" + k: v for k, v in controlnet.config.items() if k in params_for_controlnet} params_for_controlnet["time_embedding_mix"] = controlnet.config.time_embedding_mix # # create model model = cls.from_config({**params_for_unet, **params_for_controlnet}) # # load weights # from unet modules_from_unet = [ "time_embedding", "conv_in", "conv_norm_out", "conv_out", ] for m in modules_from_unet: getattr(model, "base_" + m).load_state_dict(getattr(unet, m).state_dict()) optional_modules_from_unet = [ "add_time_proj", "add_embedding", ] for m in optional_modules_from_unet: if hasattr(unet, m) and getattr(unet, m) is not None: getattr(model, "base_" + m).load_state_dict(getattr(unet, m).state_dict()) # from controlnet model.controlnet_cond_embedding.load_state_dict(controlnet.controlnet_cond_embedding.state_dict()) model.ctrl_conv_in.load_state_dict(controlnet.conv_in.state_dict()) if controlnet.time_embedding is not None: model.ctrl_time_embedding.load_state_dict(controlnet.time_embedding.state_dict()) model.control_to_base_for_conv_in.load_state_dict(controlnet.control_to_base_for_conv_in.state_dict()) # from both model.down_blocks = nn.ModuleList( ControlNetXSCrossAttnDownBlock2D.from_modules(b, c) for b, c in zip(unet.down_blocks, controlnet.down_blocks) ) model.mid_block = ControlNetXSCrossAttnMidBlock2D.from_modules(unet.mid_block, controlnet.mid_block) model.up_blocks = nn.ModuleList( ControlNetXSCrossAttnUpBlock2D.from_modules(b, c) for b, c in zip(unet.up_blocks, controlnet.up_connections) ) # ensure that the UNetControlNetXSModel is the same dtype as the UNet2DConditionModel model.to(unet.dtype) return model def freeze_unet_params(self) -> None: """Freeze the weights of the parts belonging to the base UNet2DConditionModel, and leave everything else unfrozen for fine tuning.""" # Freeze everything for param in self.parameters(): param.requires_grad = True # Unfreeze ControlNetXSAdapter base_parts = [ "base_time_proj", "base_time_embedding", "base_add_time_proj", "base_add_embedding", "base_conv_in", "base_conv_norm_out", "base_conv_act", "base_conv_out", ] base_parts = [getattr(self, part) for part in base_parts if getattr(self, part) is not None] for part in base_parts: for param in part.parameters(): param.requires_grad = False for d in self.down_blocks: d.freeze_base_params() self.mid_block.freeze_base_params() for u in self.up_blocks: u.freeze_base_params() def _set_gradient_checkpointing(self, module, value=False): if hasattr(module, "gradient_checkpointing"): module.gradient_checkpointing = value # copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel @property def attn_processors(self) -> Dict[str, AttentionProcessor]: r""" Returns: `dict` of attention processors: A dictionary containing all attention processors used in the model with indexed by its weight name. """ # set recursively processors = {} def fn_recursive_add_processors(name: str, module: torch.nn.Module, processors: Dict[str, AttentionProcessor]): if hasattr(module, "get_processor"): processors[f"{name}.processor"] = module.get_processor(return_deprecated_lora=True) for sub_name, child in module.named_children(): fn_recursive_add_processors(f"{name}.{sub_name}", child, processors) return processors for name, module in self.named_children(): fn_recursive_add_processors(name, module, processors) return processors # Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.set_attn_processor def set_attn_processor(self, processor: Union[AttentionProcessor, Dict[str, AttentionProcessor]]): r""" Sets the attention processor to use to compute attention. Parameters: processor (`dict` of `AttentionProcessor` or only `AttentionProcessor`): The instantiated processor class or a dictionary of processor classes that will be set as the processor for **all** `Attention` layers. If `processor` is a dict, the key needs to define the path to the corresponding cross attention processor. This is strongly recommended when setting trainable attention processors. """ count = len(self.attn_processors.keys()) if isinstance(processor, dict) and len(processor) != count: raise ValueError( f"A dict of processors was passed, but the number of processors {len(processor)} does not match the" f" number of attention layers: {count}. Please make sure to pass {count} processor classes." ) def fn_recursive_attn_processor(name: str, module: torch.nn.Module, processor): if hasattr(module, "set_processor"): if not isinstance(processor, dict): module.set_processor(processor) else: module.set_processor(processor.pop(f"{name}.processor")) for sub_name, child in module.named_children(): fn_recursive_attn_processor(f"{name}.{sub_name}", child, processor) for name, module in self.named_children(): fn_recursive_attn_processor(name, module, processor) # copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.set_default_attn_processor def set_default_attn_processor(self): """ Disables custom attention processors and sets the default attention implementation. """ if all(proc.__class__ in ADDED_KV_ATTENTION_PROCESSORS for proc in self.attn_processors.values()): processor = AttnAddedKVProcessor() elif all(proc.__class__ in CROSS_ATTENTION_PROCESSORS for proc in self.attn_processors.values()): processor = AttnProcessor() else: raise ValueError( f"Cannot call `set_default_attn_processor` when attention processors are of type {next(iter(self.attn_processors.values()))}" ) self.set_attn_processor(processor) # copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.enable_freeu def enable_freeu(self, s1: float, s2: float, b1: float, b2: float): r"""Enables the FreeU mechanism from https://arxiv.org/abs/2309.11497. The suffixes after the scaling factors represent the stage blocks where they are being applied. Please refer to the [official repository](https://github.com/ChenyangSi/FreeU) for combinations of values that are known to work well for different pipelines such as Stable Diffusion v1, v2, and Stable Diffusion XL. Args: s1 (`float`): Scaling factor for stage 1 to attenuate the contributions of the skip features. This is done to mitigate the "oversmoothing effect" in the enhanced denoising process. s2 (`float`): Scaling factor for stage 2 to attenuate the contributions of the skip features. This is done to mitigate the "oversmoothing effect" in the enhanced denoising process. b1 (`float`): Scaling factor for stage 1 to amplify the contributions of backbone features. b2 (`float`): Scaling factor for stage 2 to amplify the contributions of backbone features. """ for i, upsample_block in enumerate(self.up_blocks): setattr(upsample_block, "s1", s1) setattr(upsample_block, "s2", s2) setattr(upsample_block, "b1", b1) setattr(upsample_block, "b2", b2) # copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.disable_freeu def disable_freeu(self): """Disables the FreeU mechanism.""" freeu_keys = {"s1", "s2", "b1", "b2"} for i, upsample_block in enumerate(self.up_blocks): for k in freeu_keys: if hasattr(upsample_block, k) or getattr(upsample_block, k, None) is not None: setattr(upsample_block, k, None) # copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.fuse_qkv_projections def fuse_qkv_projections(self): """ Enables fused QKV projections. For self-attention modules, all projection matrices (i.e., query, key, value) are fused. For cross-attention modules, key and value projection matrices are fused. This API is 🧪 experimental. """ self.original_attn_processors = None for _, attn_processor in self.attn_processors.items(): if "Added" in str(attn_processor.__class__.__name__): raise ValueError("`fuse_qkv_projections()` is not supported for models having added KV projections.") self.original_attn_processors = self.attn_processors for module in self.modules(): if isinstance(module, Attention): module.fuse_projections(fuse=True) # copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.unfuse_qkv_projections def unfuse_qkv_projections(self): """Disables the fused QKV projection if enabled. This API is 🧪 experimental. """ if self.original_attn_processors is not None: self.set_attn_processor(self.original_attn_processors) def forward( self, sample: FloatTensor, timestep: Union[torch.Tensor, float, int], encoder_hidden_states: torch.Tensor, controlnet_cond: Optional[torch.Tensor] = None, conditioning_scale: Optional[float] = 1.0, class_labels: Optional[torch.Tensor] = None, timestep_cond: Optional[torch.Tensor] = None, attention_mask: Optional[torch.Tensor] = None, cross_attention_kwargs: Optional[Dict[str, Any]] = None, added_cond_kwargs: Optional[Dict[str, torch.Tensor]] = None, return_dict: bool = True, apply_control: bool = True, ) -> Union[ControlNetXSOutput, Tuple]: """ The [`ControlNetXSModel`] forward method. Args: sample (`FloatTensor`): The noisy input tensor. timestep (`Union[torch.Tensor, float, int]`): The number of timesteps to denoise an input. encoder_hidden_states (`torch.Tensor`): The encoder hidden states. controlnet_cond (`FloatTensor`): The conditional input tensor of shape `(batch_size, sequence_length, hidden_size)`. conditioning_scale (`float`, defaults to `1.0`): How much the control model affects the base model outputs. class_labels (`torch.Tensor`, *optional*, defaults to `None`): Optional class labels for conditioning. Their embeddings will be summed with the timestep embeddings. timestep_cond (`torch.Tensor`, *optional*, defaults to `None`): Additional conditional embeddings for timestep. If provided, the embeddings will be summed with the timestep_embedding passed through the `self.time_embedding` layer to obtain the final timestep embeddings. attention_mask (`torch.Tensor`, *optional*, defaults to `None`): An attention mask of shape `(batch, key_tokens)` is applied to `encoder_hidden_states`. If `1` the mask is kept, otherwise if `0` it is discarded. Mask will be converted into a bias, which adds large negative values to the attention scores corresponding to "discard" tokens. cross_attention_kwargs (`dict[str]`, *optional*, defaults to `None`): A kwargs dictionary that if specified is passed along to the `AttnProcessor`. added_cond_kwargs (`dict`): Additional conditions for the Stable Diffusion XL UNet. return_dict (`bool`, defaults to `True`): Whether or not to return a [`~models.controlnet.ControlNetOutput`] instead of a plain tuple. apply_control (`bool`, defaults to `True`): If `False`, the input is run only through the base model. Returns: [`~models.controlnetxs.ControlNetXSOutput`] **or** `tuple`: If `return_dict` is `True`, a [`~models.controlnetxs.ControlNetXSOutput`] is returned, otherwise a tuple is returned where the first element is the sample tensor. """ # check channel order if self.config.ctrl_conditioning_channel_order == "bgr": controlnet_cond = torch.flip(controlnet_cond, dims=[1]) # prepare attention_mask if attention_mask is not None: attention_mask = (1 - attention_mask.to(sample.dtype)) * -10000.0 attention_mask = attention_mask.unsqueeze(1) # 1. time timesteps = timestep if not torch.is_tensor(timesteps): # TODO: this requires sync between CPU and GPU. So try to pass timesteps as tensors if you can # This would be a good case for the `match` statement (Python 3.10+) is_mps = sample.device.type == "mps" if isinstance(timestep, float): dtype = torch.float32 if is_mps else torch.float64 else: dtype = torch.int32 if is_mps else torch.int64 timesteps = torch.tensor([timesteps], dtype=dtype, device=sample.device) elif len(timesteps.shape) == 0: timesteps = timesteps[None].to(sample.device) # broadcast to batch dimension in a way that's compatible with ONNX/Core ML timesteps = timesteps.expand(sample.shape[0]) t_emb = self.base_time_proj(timesteps) # timesteps does not contain any weights and will always return f32 tensors # but time_embedding might actually be running in fp16. so we need to cast here. # there might be better ways to encapsulate this. t_emb = t_emb.to(dtype=sample.dtype) if self.config.ctrl_learn_time_embedding and apply_control: ctrl_temb = self.ctrl_time_embedding(t_emb, timestep_cond) base_temb = self.base_time_embedding(t_emb, timestep_cond) interpolation_param = self.config.time_embedding_mix**0.3 temb = ctrl_temb * interpolation_param + base_temb * (1 - interpolation_param) else: temb = self.base_time_embedding(t_emb) # added time & text embeddings aug_emb = None if self.config.addition_embed_type is None: pass elif self.config.addition_embed_type == "text_time": # SDXL - style if "text_embeds" not in added_cond_kwargs: raise ValueError( f"{self.__class__} has the config param `addition_embed_type` set to 'text_time' which requires the keyword argument `text_embeds` to be passed in `added_cond_kwargs`" ) text_embeds = added_cond_kwargs.get("text_embeds") if "time_ids" not in added_cond_kwargs: raise ValueError( f"{self.__class__} has the config param `addition_embed_type` set to 'text_time' which requires the keyword argument `time_ids` to be passed in `added_cond_kwargs`" ) time_ids = added_cond_kwargs.get("time_ids") time_embeds = self.base_add_time_proj(time_ids.flatten()) time_embeds = time_embeds.reshape((text_embeds.shape[0], -1)) add_embeds = torch.concat([text_embeds, time_embeds], dim=-1) add_embeds = add_embeds.to(temb.dtype) aug_emb = self.base_add_embedding(add_embeds) else: raise ValueError( f"ControlNet-XS currently only supports StableDiffusion and StableDiffusion-XL, so addition_embed_type = {self.config.addition_embed_type} is currently not supported." ) temb = temb + aug_emb if aug_emb is not None else temb # text embeddings cemb = encoder_hidden_states # Preparation h_ctrl = h_base = sample hs_base, hs_ctrl = [], [] # Cross Control guided_hint = self.controlnet_cond_embedding(controlnet_cond) # 1 - conv in & down h_base = self.base_conv_in(h_base) h_ctrl = self.ctrl_conv_in(h_ctrl) if guided_hint is not None: h_ctrl += guided_hint if apply_control: h_base = h_base + self.control_to_base_for_conv_in(h_ctrl) * conditioning_scale # add ctrl -> base hs_base.append(h_base) hs_ctrl.append(h_ctrl) for down in self.down_blocks: h_base, h_ctrl, residual_hb, residual_hc = down( hidden_states_base=h_base, hidden_states_ctrl=h_ctrl, temb=temb, encoder_hidden_states=cemb, conditioning_scale=conditioning_scale, cross_attention_kwargs=cross_attention_kwargs, attention_mask=attention_mask, apply_control=apply_control, ) hs_base.extend(residual_hb) hs_ctrl.extend(residual_hc) # 2 - mid h_base, h_ctrl = self.mid_block( hidden_states_base=h_base, hidden_states_ctrl=h_ctrl, temb=temb, encoder_hidden_states=cemb, conditioning_scale=conditioning_scale, cross_attention_kwargs=cross_attention_kwargs, attention_mask=attention_mask, apply_control=apply_control, ) # 3 - up for up in self.up_blocks: n_resnets = len(up.resnets) skips_hb = hs_base[-n_resnets:] skips_hc = hs_ctrl[-n_resnets:] hs_base = hs_base[:-n_resnets] hs_ctrl = hs_ctrl[:-n_resnets] h_base = up( hidden_states=h_base, res_hidden_states_tuple_base=skips_hb, res_hidden_states_tuple_ctrl=skips_hc, temb=temb, encoder_hidden_states=cemb, conditioning_scale=conditioning_scale, cross_attention_kwargs=cross_attention_kwargs, attention_mask=attention_mask, apply_control=apply_control, ) # 4 - conv out h_base = self.base_conv_norm_out(h_base) h_base = self.base_conv_act(h_base) h_base = self.base_conv_out(h_base) if not return_dict: return (h_base,) return ControlNetXSOutput(sample=h_base) class ControlNetXSCrossAttnDownBlock2D(nn.Module): def __init__( self, base_in_channels: int, base_out_channels: int, ctrl_in_channels: int, ctrl_out_channels: int, temb_channels: int, norm_num_groups: int = 32, ctrl_max_norm_num_groups: int = 32, has_crossattn=True, transformer_layers_per_block: Optional[Union[int, Tuple[int]]] = 1, base_num_attention_heads: Optional[int] = 1, ctrl_num_attention_heads: Optional[int] = 1, cross_attention_dim: Optional[int] = 1024, add_downsample: bool = True, upcast_attention: Optional[bool] = False, ): super().__init__() base_resnets = [] base_attentions = [] ctrl_resnets = [] ctrl_attentions = [] ctrl_to_base = [] base_to_ctrl = [] num_layers = 2 # only support sd + sdxl if isinstance(transformer_layers_per_block, int): transformer_layers_per_block = [transformer_layers_per_block] * num_layers for i in range(num_layers): base_in_channels = base_in_channels if i == 0 else base_out_channels ctrl_in_channels = ctrl_in_channels if i == 0 else ctrl_out_channels # Before the resnet/attention application, information is concatted from base to control. # Concat doesn't require change in number of channels base_to_ctrl.append(make_zero_conv(base_in_channels, base_in_channels)) base_resnets.append( ResnetBlock2D( in_channels=base_in_channels, out_channels=base_out_channels, temb_channels=temb_channels, groups=norm_num_groups, ) ) ctrl_resnets.append( ResnetBlock2D( in_channels=ctrl_in_channels + base_in_channels, # information from base is concatted to ctrl out_channels=ctrl_out_channels, temb_channels=temb_channels, groups=find_largest_factor( ctrl_in_channels + base_in_channels, max_factor=ctrl_max_norm_num_groups ), groups_out=find_largest_factor(ctrl_out_channels, max_factor=ctrl_max_norm_num_groups), eps=1e-5, ) ) if has_crossattn: base_attentions.append( Transformer2DModel( base_num_attention_heads, base_out_channels // base_num_attention_heads, in_channels=base_out_channels, num_layers=transformer_layers_per_block[i], cross_attention_dim=cross_attention_dim, use_linear_projection=True, upcast_attention=upcast_attention, norm_num_groups=norm_num_groups, ) ) ctrl_attentions.append( Transformer2DModel( ctrl_num_attention_heads, ctrl_out_channels // ctrl_num_attention_heads, in_channels=ctrl_out_channels, num_layers=transformer_layers_per_block[i], cross_attention_dim=cross_attention_dim, use_linear_projection=True, upcast_attention=upcast_attention, norm_num_groups=find_largest_factor(ctrl_out_channels, max_factor=ctrl_max_norm_num_groups), ) ) # After the resnet/attention application, information is added from control to base # Addition requires change in number of channels ctrl_to_base.append(make_zero_conv(ctrl_out_channels, base_out_channels)) if add_downsample: # Before the downsampler application, information is concatted from base to control # Concat doesn't require change in number of channels base_to_ctrl.append(make_zero_conv(base_out_channels, base_out_channels)) self.base_downsamplers = Downsample2D( base_out_channels, use_conv=True, out_channels=base_out_channels, name="op" ) self.ctrl_downsamplers = Downsample2D( ctrl_out_channels + base_out_channels, use_conv=True, out_channels=ctrl_out_channels, name="op" ) # After the downsampler application, information is added from control to base # Addition requires change in number of channels ctrl_to_base.append(make_zero_conv(ctrl_out_channels, base_out_channels)) else: self.base_downsamplers = None self.ctrl_downsamplers = None self.base_resnets = nn.ModuleList(base_resnets) self.ctrl_resnets = nn.ModuleList(ctrl_resnets) self.base_attentions = nn.ModuleList(base_attentions) if has_crossattn else [None] * num_layers self.ctrl_attentions = nn.ModuleList(ctrl_attentions) if has_crossattn else [None] * num_layers self.base_to_ctrl = nn.ModuleList(base_to_ctrl) self.ctrl_to_base = nn.ModuleList(ctrl_to_base) self.gradient_checkpointing = False @classmethod def from_modules(cls, base_downblock: CrossAttnDownBlock2D, ctrl_downblock: DownBlockControlNetXSAdapter): # get params def get_first_cross_attention(block): return block.attentions[0].transformer_blocks[0].attn2 base_in_channels = base_downblock.resnets[0].in_channels base_out_channels = base_downblock.resnets[0].out_channels ctrl_in_channels = ( ctrl_downblock.resnets[0].in_channels - base_in_channels ) # base channels are concatted to ctrl channels in init ctrl_out_channels = ctrl_downblock.resnets[0].out_channels temb_channels = base_downblock.resnets[0].time_emb_proj.in_features num_groups = base_downblock.resnets[0].norm1.num_groups ctrl_num_groups = ctrl_downblock.resnets[0].norm1.num_groups if hasattr(base_downblock, "attentions"): has_crossattn = True transformer_layers_per_block = len(base_downblock.attentions[0].transformer_blocks) base_num_attention_heads = get_first_cross_attention(base_downblock).heads ctrl_num_attention_heads = get_first_cross_attention(ctrl_downblock).heads cross_attention_dim = get_first_cross_attention(base_downblock).cross_attention_dim upcast_attention = get_first_cross_attention(base_downblock).upcast_attention else: has_crossattn = False transformer_layers_per_block = None base_num_attention_heads = None ctrl_num_attention_heads = None cross_attention_dim = None upcast_attention = None add_downsample = base_downblock.downsamplers is not None # create model model = cls( base_in_channels=base_in_channels, base_out_channels=base_out_channels, ctrl_in_channels=ctrl_in_channels, ctrl_out_channels=ctrl_out_channels, temb_channels=temb_channels, norm_num_groups=num_groups, ctrl_max_norm_num_groups=ctrl_num_groups, has_crossattn=has_crossattn, transformer_layers_per_block=transformer_layers_per_block, base_num_attention_heads=base_num_attention_heads, ctrl_num_attention_heads=ctrl_num_attention_heads, cross_attention_dim=cross_attention_dim, add_downsample=add_downsample, upcast_attention=upcast_attention, ) # # load weights model.base_resnets.load_state_dict(base_downblock.resnets.state_dict()) model.ctrl_resnets.load_state_dict(ctrl_downblock.resnets.state_dict()) if has_crossattn: model.base_attentions.load_state_dict(base_downblock.attentions.state_dict()) model.ctrl_attentions.load_state_dict(ctrl_downblock.attentions.state_dict()) if add_downsample: model.base_downsamplers.load_state_dict(base_downblock.downsamplers[0].state_dict()) model.ctrl_downsamplers.load_state_dict(ctrl_downblock.downsamplers.state_dict()) model.base_to_ctrl.load_state_dict(ctrl_downblock.base_to_ctrl.state_dict()) model.ctrl_to_base.load_state_dict(ctrl_downblock.ctrl_to_base.state_dict()) return model def freeze_base_params(self) -> None: """Freeze the weights of the parts belonging to the base UNet2DConditionModel, and leave everything else unfrozen for fine tuning.""" # Unfreeze everything for param in self.parameters(): param.requires_grad = True # Freeze base part base_parts = [self.base_resnets] if isinstance(self.base_attentions, nn.ModuleList): # attentions can be a list of Nones base_parts.append(self.base_attentions) if self.base_downsamplers is not None: base_parts.append(self.base_downsamplers) for part in base_parts: for param in part.parameters(): param.requires_grad = False def forward( self, hidden_states_base: FloatTensor, temb: FloatTensor, encoder_hidden_states: Optional[FloatTensor] = None, hidden_states_ctrl: Optional[FloatTensor] = None, conditioning_scale: Optional[float] = 1.0, attention_mask: Optional[FloatTensor] = None, cross_attention_kwargs: Optional[Dict[str, Any]] = None, encoder_attention_mask: Optional[FloatTensor] = None, apply_control: bool = True, ) -> Tuple[FloatTensor, FloatTensor, Tuple[FloatTensor, ...], Tuple[FloatTensor, ...]]: if cross_attention_kwargs is not None: if cross_attention_kwargs.get("scale", None) is not None: logger.warning("Passing `scale` to `cross_attention_kwargs` is deprecated. `scale` will be ignored.") h_base = hidden_states_base h_ctrl = hidden_states_ctrl base_output_states = () ctrl_output_states = () base_blocks = list(zip(self.base_resnets, self.base_attentions)) ctrl_blocks = list(zip(self.ctrl_resnets, self.ctrl_attentions)) def create_custom_forward(module, return_dict=None): def custom_forward(*inputs): if return_dict is not None: return module(*inputs, return_dict=return_dict) else: return module(*inputs) return custom_forward for (b_res, b_attn), (c_res, c_attn), b2c, c2b in zip( base_blocks, ctrl_blocks, self.base_to_ctrl, self.ctrl_to_base ): # concat base -> ctrl if apply_control: h_ctrl = torch.cat([h_ctrl, b2c(h_base)], dim=1) # apply base subblock if self.training and self.gradient_checkpointing: ckpt_kwargs: Dict[str, Any] = {"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {} h_base = torch.utils.checkpoint.checkpoint( create_custom_forward(b_res), h_base, temb, **ckpt_kwargs, ) else: h_base = b_res(h_base, temb) if b_attn is not None: h_base = b_attn( h_base, encoder_hidden_states=encoder_hidden_states, cross_attention_kwargs=cross_attention_kwargs, attention_mask=attention_mask, encoder_attention_mask=encoder_attention_mask, return_dict=False, )[0] # apply ctrl subblock if apply_control: if self.training and self.gradient_checkpointing: ckpt_kwargs: Dict[str, Any] = {"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {} h_ctrl = torch.utils.checkpoint.checkpoint( create_custom_forward(c_res), h_ctrl, temb, **ckpt_kwargs, ) else: h_ctrl = c_res(h_ctrl, temb) if c_attn is not None: h_ctrl = c_attn( h_ctrl, encoder_hidden_states=encoder_hidden_states, cross_attention_kwargs=cross_attention_kwargs, attention_mask=attention_mask, encoder_attention_mask=encoder_attention_mask, return_dict=False, )[0] # add ctrl -> base if apply_control: h_base = h_base + c2b(h_ctrl) * conditioning_scale base_output_states = base_output_states + (h_base,) ctrl_output_states = ctrl_output_states + (h_ctrl,) if self.base_downsamplers is not None: # if we have a base_downsampler, then also a ctrl_downsampler b2c = self.base_to_ctrl[-1] c2b = self.ctrl_to_base[-1] # concat base -> ctrl if apply_control: h_ctrl = torch.cat([h_ctrl, b2c(h_base)], dim=1) # apply base subblock h_base = self.base_downsamplers(h_base) # apply ctrl subblock if apply_control: h_ctrl = self.ctrl_downsamplers(h_ctrl) # add ctrl -> base if apply_control: h_base = h_base + c2b(h_ctrl) * conditioning_scale base_output_states = base_output_states + (h_base,) ctrl_output_states = ctrl_output_states + (h_ctrl,) return h_base, h_ctrl, base_output_states, ctrl_output_states class ControlNetXSCrossAttnMidBlock2D(nn.Module): def __init__( self, base_channels: int, ctrl_channels: int, temb_channels: Optional[int] = None, norm_num_groups: int = 32, ctrl_max_norm_num_groups: int = 32, transformer_layers_per_block: int = 1, base_num_attention_heads: Optional[int] = 1, ctrl_num_attention_heads: Optional[int] = 1, cross_attention_dim: Optional[int] = 1024, upcast_attention: bool = False, ): super().__init__() # Before the midblock application, information is concatted from base to control. # Concat doesn't require change in number of channels self.base_to_ctrl = make_zero_conv(base_channels, base_channels) self.base_midblock = UNetMidBlock2DCrossAttn( transformer_layers_per_block=transformer_layers_per_block, in_channels=base_channels, temb_channels=temb_channels, resnet_groups=norm_num_groups, cross_attention_dim=cross_attention_dim, num_attention_heads=base_num_attention_heads, use_linear_projection=True, upcast_attention=upcast_attention, ) self.ctrl_midblock = UNetMidBlock2DCrossAttn( transformer_layers_per_block=transformer_layers_per_block, in_channels=ctrl_channels + base_channels, out_channels=ctrl_channels, temb_channels=temb_channels, # number or norm groups must divide both in_channels and out_channels resnet_groups=find_largest_factor( gcd(ctrl_channels, ctrl_channels + base_channels), ctrl_max_norm_num_groups ), cross_attention_dim=cross_attention_dim, num_attention_heads=ctrl_num_attention_heads, use_linear_projection=True, upcast_attention=upcast_attention, ) # After the midblock application, information is added from control to base # Addition requires change in number of channels self.ctrl_to_base = make_zero_conv(ctrl_channels, base_channels) self.gradient_checkpointing = False @classmethod def from_modules( cls, base_midblock: UNetMidBlock2DCrossAttn, ctrl_midblock: MidBlockControlNetXSAdapter, ): base_to_ctrl = ctrl_midblock.base_to_ctrl ctrl_to_base = ctrl_midblock.ctrl_to_base ctrl_midblock = ctrl_midblock.midblock # get params def get_first_cross_attention(midblock): return midblock.attentions[0].transformer_blocks[0].attn2 base_channels = ctrl_to_base.out_channels ctrl_channels = ctrl_to_base.in_channels transformer_layers_per_block = len(base_midblock.attentions[0].transformer_blocks) temb_channels = base_midblock.resnets[0].time_emb_proj.in_features num_groups = base_midblock.resnets[0].norm1.num_groups ctrl_num_groups = ctrl_midblock.resnets[0].norm1.num_groups base_num_attention_heads = get_first_cross_attention(base_midblock).heads ctrl_num_attention_heads = get_first_cross_attention(ctrl_midblock).heads cross_attention_dim = get_first_cross_attention(base_midblock).cross_attention_dim upcast_attention = get_first_cross_attention(base_midblock).upcast_attention # create model model = cls( base_channels=base_channels, ctrl_channels=ctrl_channels, temb_channels=temb_channels, norm_num_groups=num_groups, ctrl_max_norm_num_groups=ctrl_num_groups, transformer_layers_per_block=transformer_layers_per_block, base_num_attention_heads=base_num_attention_heads, ctrl_num_attention_heads=ctrl_num_attention_heads, cross_attention_dim=cross_attention_dim, upcast_attention=upcast_attention, ) # load weights model.base_to_ctrl.load_state_dict(base_to_ctrl.state_dict()) model.base_midblock.load_state_dict(base_midblock.state_dict()) model.ctrl_midblock.load_state_dict(ctrl_midblock.state_dict()) model.ctrl_to_base.load_state_dict(ctrl_to_base.state_dict()) return model def freeze_base_params(self) -> None: """Freeze the weights of the parts belonging to the base UNet2DConditionModel, and leave everything else unfrozen for fine tuning.""" # Unfreeze everything for param in self.parameters(): param.requires_grad = True # Freeze base part for param in self.base_midblock.parameters(): param.requires_grad = False def forward( self, hidden_states_base: FloatTensor, temb: FloatTensor, encoder_hidden_states: FloatTensor, hidden_states_ctrl: Optional[FloatTensor] = None, conditioning_scale: Optional[float] = 1.0, cross_attention_kwargs: Optional[Dict[str, Any]] = None, attention_mask: Optional[FloatTensor] = None, encoder_attention_mask: Optional[FloatTensor] = None, apply_control: bool = True, ) -> Tuple[FloatTensor, FloatTensor]: if cross_attention_kwargs is not None: if cross_attention_kwargs.get("scale", None) is not None: logger.warning("Passing `scale` to `cross_attention_kwargs` is deprecated. `scale` will be ignored.") h_base = hidden_states_base h_ctrl = hidden_states_ctrl joint_args = { "temb": temb, "encoder_hidden_states": encoder_hidden_states, "attention_mask": attention_mask, "cross_attention_kwargs": cross_attention_kwargs, "encoder_attention_mask": encoder_attention_mask, } if apply_control: h_ctrl = torch.cat([h_ctrl, self.base_to_ctrl(h_base)], dim=1) # concat base -> ctrl h_base = self.base_midblock(h_base, **joint_args) # apply base mid block if apply_control: h_ctrl = self.ctrl_midblock(h_ctrl, **joint_args) # apply ctrl mid block h_base = h_base + self.ctrl_to_base(h_ctrl) * conditioning_scale # add ctrl -> base return h_base, h_ctrl class ControlNetXSCrossAttnUpBlock2D(nn.Module): def __init__( self, in_channels: int, out_channels: int, prev_output_channel: int, ctrl_skip_channels: List[int], temb_channels: int, norm_num_groups: int = 32, resolution_idx: Optional[int] = None, has_crossattn=True, transformer_layers_per_block: int = 1, num_attention_heads: int = 1, cross_attention_dim: int = 1024, add_upsample: bool = True, upcast_attention: bool = False, ): super().__init__() resnets = [] attentions = [] ctrl_to_base = [] num_layers = 3 # only support sd + sdxl self.has_cross_attention = has_crossattn self.num_attention_heads = num_attention_heads if isinstance(transformer_layers_per_block, int): transformer_layers_per_block = [transformer_layers_per_block] * num_layers for i in range(num_layers): res_skip_channels = in_channels if (i == num_layers - 1) else out_channels resnet_in_channels = prev_output_channel if i == 0 else out_channels ctrl_to_base.append(make_zero_conv(ctrl_skip_channels[i], resnet_in_channels)) resnets.append( ResnetBlock2D( in_channels=resnet_in_channels + res_skip_channels, out_channels=out_channels, temb_channels=temb_channels, groups=norm_num_groups, ) ) if has_crossattn: attentions.append( Transformer2DModel( num_attention_heads, out_channels // num_attention_heads, in_channels=out_channels, num_layers=transformer_layers_per_block[i], cross_attention_dim=cross_attention_dim, use_linear_projection=True, upcast_attention=upcast_attention, norm_num_groups=norm_num_groups, ) ) self.resnets = nn.ModuleList(resnets) self.attentions = nn.ModuleList(attentions) if has_crossattn else [None] * num_layers self.ctrl_to_base = nn.ModuleList(ctrl_to_base) if add_upsample: self.upsamplers = Upsample2D(out_channels, use_conv=True, out_channels=out_channels) else: self.upsamplers = None self.gradient_checkpointing = False self.resolution_idx = resolution_idx @classmethod def from_modules(cls, base_upblock: CrossAttnUpBlock2D, ctrl_upblock: UpBlockControlNetXSAdapter): ctrl_to_base_skip_connections = ctrl_upblock.ctrl_to_base # get params def get_first_cross_attention(block): return block.attentions[0].transformer_blocks[0].attn2 out_channels = base_upblock.resnets[0].out_channels in_channels = base_upblock.resnets[-1].in_channels - out_channels prev_output_channels = base_upblock.resnets[0].in_channels - out_channels ctrl_skip_channelss = [c.in_channels for c in ctrl_to_base_skip_connections] temb_channels = base_upblock.resnets[0].time_emb_proj.in_features num_groups = base_upblock.resnets[0].norm1.num_groups resolution_idx = base_upblock.resolution_idx if hasattr(base_upblock, "attentions"): has_crossattn = True transformer_layers_per_block = len(base_upblock.attentions[0].transformer_blocks) num_attention_heads = get_first_cross_attention(base_upblock).heads cross_attention_dim = get_first_cross_attention(base_upblock).cross_attention_dim upcast_attention = get_first_cross_attention(base_upblock).upcast_attention else: has_crossattn = False transformer_layers_per_block = None num_attention_heads = None cross_attention_dim = None upcast_attention = None add_upsample = base_upblock.upsamplers is not None # create model model = cls( in_channels=in_channels, out_channels=out_channels, prev_output_channel=prev_output_channels, ctrl_skip_channels=ctrl_skip_channelss, temb_channels=temb_channels, norm_num_groups=num_groups, resolution_idx=resolution_idx, has_crossattn=has_crossattn, transformer_layers_per_block=transformer_layers_per_block, num_attention_heads=num_attention_heads, cross_attention_dim=cross_attention_dim, add_upsample=add_upsample, upcast_attention=upcast_attention, ) # load weights model.resnets.load_state_dict(base_upblock.resnets.state_dict()) if has_crossattn: model.attentions.load_state_dict(base_upblock.attentions.state_dict()) if add_upsample: model.upsamplers.load_state_dict(base_upblock.upsamplers[0].state_dict()) model.ctrl_to_base.load_state_dict(ctrl_to_base_skip_connections.state_dict()) return model def freeze_base_params(self) -> None: """Freeze the weights of the parts belonging to the base UNet2DConditionModel, and leave everything else unfrozen for fine tuning.""" # Unfreeze everything for param in self.parameters(): param.requires_grad = True # Freeze base part base_parts = [self.resnets] if isinstance(self.attentions, nn.ModuleList): # attentions can be a list of Nones base_parts.append(self.attentions) if self.upsamplers is not None: base_parts.append(self.upsamplers) for part in base_parts: for param in part.parameters(): param.requires_grad = False def forward( self, hidden_states: FloatTensor, res_hidden_states_tuple_base: Tuple[FloatTensor, ...], res_hidden_states_tuple_ctrl: Tuple[FloatTensor, ...], temb: FloatTensor, encoder_hidden_states: Optional[FloatTensor] = None, conditioning_scale: Optional[float] = 1.0, cross_attention_kwargs: Optional[Dict[str, Any]] = None, attention_mask: Optional[FloatTensor] = None, upsample_size: Optional[int] = None, encoder_attention_mask: Optional[FloatTensor] = None, apply_control: bool = True, ) -> FloatTensor: if cross_attention_kwargs is not None: if cross_attention_kwargs.get("scale", None) is not None: logger.warning("Passing `scale` to `cross_attention_kwargs` is deprecated. `scale` will be ignored.") is_freeu_enabled = ( getattr(self, "s1", None) and getattr(self, "s2", None) and getattr(self, "b1", None) and getattr(self, "b2", None) ) def create_custom_forward(module, return_dict=None): def custom_forward(*inputs): if return_dict is not None: return module(*inputs, return_dict=return_dict) else: return module(*inputs) return custom_forward def maybe_apply_freeu_to_subblock(hidden_states, res_h_base): # FreeU: Only operate on the first two stages if is_freeu_enabled: return apply_freeu( self.resolution_idx, hidden_states, res_h_base, s1=self.s1, s2=self.s2, b1=self.b1, b2=self.b2, ) else: return hidden_states, res_h_base for resnet, attn, c2b, res_h_base, res_h_ctrl in zip( self.resnets, self.attentions, self.ctrl_to_base, reversed(res_hidden_states_tuple_base), reversed(res_hidden_states_tuple_ctrl), ): if apply_control: hidden_states += c2b(res_h_ctrl) * conditioning_scale hidden_states, res_h_base = maybe_apply_freeu_to_subblock(hidden_states, res_h_base) hidden_states = torch.cat([hidden_states, res_h_base], dim=1) if self.training and self.gradient_checkpointing: ckpt_kwargs: Dict[str, Any] = {"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {} hidden_states = torch.utils.checkpoint.checkpoint( create_custom_forward(resnet), hidden_states, temb, **ckpt_kwargs, ) else: hidden_states = resnet(hidden_states, temb) if attn is not None: hidden_states = attn( hidden_states, encoder_hidden_states=encoder_hidden_states, cross_attention_kwargs=cross_attention_kwargs, attention_mask=attention_mask, encoder_attention_mask=encoder_attention_mask, return_dict=False, )[0] if self.upsamplers is not None: hidden_states = self.upsamplers(hidden_states, upsample_size) return hidden_states def make_zero_conv(in_channels, out_channels=None): return zero_module(nn.Conv2d(in_channels, out_channels, 1, padding=0)) def zero_module(module): for p in module.parameters(): nn.init.zeros_(p) return module def find_largest_factor(number, max_factor): factor = max_factor if factor >= number: return number while factor != 0: residual = number % factor if residual == 0: return factor factor -= 1