# Copyright 2024 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import inspect import os from collections import defaultdict from contextlib import nullcontext from functools import partial from pathlib import Path from typing import Callable, Dict, List, Optional, Union import safetensors import torch import torch.nn.functional as F from huggingface_hub.utils import validate_hf_hub_args from torch import nn from ..models.embeddings import ( ImageProjection, IPAdapterFaceIDImageProjection, IPAdapterFaceIDPlusImageProjection, IPAdapterFullImageProjection, IPAdapterPlusImageProjection, MultiIPAdapterImageProjection, ) from ..models.modeling_utils import _LOW_CPU_MEM_USAGE_DEFAULT, load_model_dict_into_meta, load_state_dict from ..utils import ( USE_PEFT_BACKEND, _get_model_file, delete_adapter_layers, is_accelerate_available, is_torch_version, logging, set_adapter_layers, set_weights_and_activate_adapters, ) from .single_file_utils import ( convert_stable_cascade_unet_single_file_to_diffusers, infer_stable_cascade_single_file_config, load_single_file_model_checkpoint, ) from .unet_loader_utils import _maybe_expand_lora_scales from .utils import AttnProcsLayers if is_accelerate_available(): from accelerate import init_empty_weights from accelerate.hooks import AlignDevicesHook, CpuOffload, remove_hook_from_module logger = logging.get_logger(__name__) TEXT_ENCODER_NAME = "text_encoder" UNET_NAME = "unet" LORA_WEIGHT_NAME = "pytorch_lora_weights.bin" LORA_WEIGHT_NAME_SAFE = "pytorch_lora_weights.safetensors" CUSTOM_DIFFUSION_WEIGHT_NAME = "pytorch_custom_diffusion_weights.bin" CUSTOM_DIFFUSION_WEIGHT_NAME_SAFE = "pytorch_custom_diffusion_weights.safetensors" class UNet2DConditionLoadersMixin: """ Load LoRA layers into a [`UNet2DCondtionModel`]. """ text_encoder_name = TEXT_ENCODER_NAME unet_name = UNET_NAME @validate_hf_hub_args def load_attn_procs(self, pretrained_model_name_or_path_or_dict: Union[str, Dict[str, torch.Tensor]], **kwargs): r""" Load pretrained attention processor layers into [`UNet2DConditionModel`]. Attention processor layers have to be defined in [`attention_processor.py`](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py) and be a `torch.nn.Module` class. Parameters: pretrained_model_name_or_path_or_dict (`str` or `os.PathLike` or `dict`): Can be either: - A string, the model id (for example `google/ddpm-celebahq-256`) of a pretrained model hosted on the Hub. - A path to a directory (for example `./my_model_directory`) containing the model weights saved with [`ModelMixin.save_pretrained`]. - A [torch state dict](https://pytorch.org/tutorials/beginner/saving_loading_models.html#what-is-a-state-dict). cache_dir (`Union[str, os.PathLike]`, *optional*): Path to a directory where a downloaded pretrained model configuration is cached if the standard cache is not used. force_download (`bool`, *optional*, defaults to `False`): Whether or not to force the (re-)download of the model weights and configuration files, overriding the cached versions if they exist. resume_download: Deprecated and ignored. All downloads are now resumed by default when possible. Will be removed in v1 of Diffusers. proxies (`Dict[str, str]`, *optional*): A dictionary of proxy servers to use by protocol or endpoint, for example, `{'http': 'foo.bar:3128', 'http://hostname': 'foo.bar:4012'}`. The proxies are used on each request. local_files_only (`bool`, *optional*, defaults to `False`): Whether to only load local model weights and configuration files or not. If set to `True`, the model won't be downloaded from the Hub. token (`str` or *bool*, *optional*): The token to use as HTTP bearer authorization for remote files. If `True`, the token generated from `diffusers-cli login` (stored in `~/.huggingface`) is used. low_cpu_mem_usage (`bool`, *optional*, defaults to `True` if torch version >= 1.9.0 else `False`): Speed up model loading only loading the pretrained weights and not initializing the weights. This also tries to not use more than 1x model size in CPU memory (including peak memory) while loading the model. Only supported for PyTorch >= 1.9.0. If you are using an older version of PyTorch, setting this argument to `True` will raise an error. revision (`str`, *optional*, defaults to `"main"`): The specific model version to use. It can be a branch name, a tag name, a commit id, or any identifier allowed by Git. subfolder (`str`, *optional*, defaults to `""`): The subfolder location of a model file within a larger model repository on the Hub or locally. mirror (`str`, *optional*): Mirror source to resolve accessibility issues if you’re downloading a model in China. We do not guarantee the timeliness or safety of the source, and you should refer to the mirror site for more information. Example: ```py from diffusers import AutoPipelineForText2Image import torch pipeline = AutoPipelineForText2Image.from_pretrained( "stabilityai/stable-diffusion-xl-base-1.0", torch_dtype=torch.float16 ).to("cuda") pipeline.unet.load_attn_procs( "jbilcke-hf/sdxl-cinematic-1", weight_name="pytorch_lora_weights.safetensors", adapter_name="cinematic" ) ``` """ from ..models.attention_processor import CustomDiffusionAttnProcessor from ..models.lora import LoRACompatibleConv, LoRACompatibleLinear, LoRAConv2dLayer, LoRALinearLayer cache_dir = kwargs.pop("cache_dir", None) force_download = kwargs.pop("force_download", False) resume_download = kwargs.pop("resume_download", None) proxies = kwargs.pop("proxies", None) local_files_only = kwargs.pop("local_files_only", None) token = kwargs.pop("token", None) revision = kwargs.pop("revision", None) subfolder = kwargs.pop("subfolder", None) weight_name = kwargs.pop("weight_name", None) use_safetensors = kwargs.pop("use_safetensors", None) low_cpu_mem_usage = kwargs.pop("low_cpu_mem_usage", _LOW_CPU_MEM_USAGE_DEFAULT) # This value has the same meaning as the `--network_alpha` option in the kohya-ss trainer script. # See https://github.com/darkstorm2150/sd-scripts/blob/main/docs/train_network_README-en.md#execute-learning network_alphas = kwargs.pop("network_alphas", None) _pipeline = kwargs.pop("_pipeline", None) is_network_alphas_none = network_alphas is None allow_pickle = False if use_safetensors is None: use_safetensors = True allow_pickle = True user_agent = { "file_type": "attn_procs_weights", "framework": "pytorch", } model_file = None if not isinstance(pretrained_model_name_or_path_or_dict, dict): # Let's first try to load .safetensors weights if (use_safetensors and weight_name is None) or ( weight_name is not None and weight_name.endswith(".safetensors") ): try: model_file = _get_model_file( pretrained_model_name_or_path_or_dict, weights_name=weight_name or LORA_WEIGHT_NAME_SAFE, cache_dir=cache_dir, force_download=force_download, resume_download=resume_download, proxies=proxies, local_files_only=local_files_only, token=token, revision=revision, subfolder=subfolder, user_agent=user_agent, ) state_dict = safetensors.torch.load_file(model_file, device="cpu") except IOError as e: if not allow_pickle: raise e # try loading non-safetensors weights pass if model_file is None: model_file = _get_model_file( pretrained_model_name_or_path_or_dict, weights_name=weight_name or LORA_WEIGHT_NAME, cache_dir=cache_dir, force_download=force_download, resume_download=resume_download, proxies=proxies, local_files_only=local_files_only, token=token, revision=revision, subfolder=subfolder, user_agent=user_agent, ) state_dict = load_state_dict(model_file) else: state_dict = pretrained_model_name_or_path_or_dict # fill attn processors lora_layers_list = [] is_lora = all(("lora" in k or k.endswith(".alpha")) for k in state_dict.keys()) and not USE_PEFT_BACKEND is_custom_diffusion = any("custom_diffusion" in k for k in state_dict.keys()) if is_lora: # correct keys state_dict, network_alphas = self.convert_state_dict_legacy_attn_format(state_dict, network_alphas) if network_alphas is not None: network_alphas_keys = list(network_alphas.keys()) used_network_alphas_keys = set() lora_grouped_dict = defaultdict(dict) mapped_network_alphas = {} all_keys = list(state_dict.keys()) for key in all_keys: value = state_dict.pop(key) attn_processor_key, sub_key = ".".join(key.split(".")[:-3]), ".".join(key.split(".")[-3:]) lora_grouped_dict[attn_processor_key][sub_key] = value # Create another `mapped_network_alphas` dictionary so that we can properly map them. if network_alphas is not None: for k in network_alphas_keys: if k.replace(".alpha", "") in key: mapped_network_alphas.update({attn_processor_key: network_alphas.get(k)}) used_network_alphas_keys.add(k) if not is_network_alphas_none: if len(set(network_alphas_keys) - used_network_alphas_keys) > 0: raise ValueError( f"The `network_alphas` has to be empty at this point but has the following keys \n\n {', '.join(network_alphas.keys())}" ) if len(state_dict) > 0: raise ValueError( f"The `state_dict` has to be empty at this point but has the following keys \n\n {', '.join(state_dict.keys())}" ) for key, value_dict in lora_grouped_dict.items(): attn_processor = self for sub_key in key.split("."): attn_processor = getattr(attn_processor, sub_key) # Process non-attention layers, which don't have to_{k,v,q,out_proj}_lora layers # or add_{k,v,q,out_proj}_proj_lora layers. rank = value_dict["lora.down.weight"].shape[0] if isinstance(attn_processor, LoRACompatibleConv): in_features = attn_processor.in_channels out_features = attn_processor.out_channels kernel_size = attn_processor.kernel_size ctx = init_empty_weights if low_cpu_mem_usage else nullcontext with ctx(): lora = LoRAConv2dLayer( in_features=in_features, out_features=out_features, rank=rank, kernel_size=kernel_size, stride=attn_processor.stride, padding=attn_processor.padding, network_alpha=mapped_network_alphas.get(key), ) elif isinstance(attn_processor, LoRACompatibleLinear): ctx = init_empty_weights if low_cpu_mem_usage else nullcontext with ctx(): lora = LoRALinearLayer( attn_processor.in_features, attn_processor.out_features, rank, mapped_network_alphas.get(key), ) else: raise ValueError(f"Module {key} is not a LoRACompatibleConv or LoRACompatibleLinear module.") value_dict = {k.replace("lora.", ""): v for k, v in value_dict.items()} lora_layers_list.append((attn_processor, lora)) if low_cpu_mem_usage: device = next(iter(value_dict.values())).device dtype = next(iter(value_dict.values())).dtype load_model_dict_into_meta(lora, value_dict, device=device, dtype=dtype) else: lora.load_state_dict(value_dict) elif is_custom_diffusion: attn_processors = {} custom_diffusion_grouped_dict = defaultdict(dict) for key, value in state_dict.items(): if len(value) == 0: custom_diffusion_grouped_dict[key] = {} else: if "to_out" in key: attn_processor_key, sub_key = ".".join(key.split(".")[:-3]), ".".join(key.split(".")[-3:]) else: attn_processor_key, sub_key = ".".join(key.split(".")[:-2]), ".".join(key.split(".")[-2:]) custom_diffusion_grouped_dict[attn_processor_key][sub_key] = value for key, value_dict in custom_diffusion_grouped_dict.items(): if len(value_dict) == 0: attn_processors[key] = CustomDiffusionAttnProcessor( train_kv=False, train_q_out=False, hidden_size=None, cross_attention_dim=None ) else: cross_attention_dim = value_dict["to_k_custom_diffusion.weight"].shape[1] hidden_size = value_dict["to_k_custom_diffusion.weight"].shape[0] train_q_out = True if "to_q_custom_diffusion.weight" in value_dict else False attn_processors[key] = CustomDiffusionAttnProcessor( train_kv=True, train_q_out=train_q_out, hidden_size=hidden_size, cross_attention_dim=cross_attention_dim, ) attn_processors[key].load_state_dict(value_dict) elif USE_PEFT_BACKEND: # In that case we have nothing to do as loading the adapter weights is already handled above by `set_peft_model_state_dict` # on the Unet pass else: raise ValueError( f"{model_file} does not seem to be in the correct format expected by LoRA or Custom Diffusion training." ) # def convert_state_dict_legacy_attn_format(self, state_dict, network_alphas): is_new_lora_format = all( key.startswith(self.unet_name) or key.startswith(self.text_encoder_name) for key in state_dict.keys() ) if is_new_lora_format: # Strip the `"unet"` prefix. is_text_encoder_present = any(key.startswith(self.text_encoder_name) for key in state_dict.keys()) if is_text_encoder_present: warn_message = "The state_dict contains LoRA params corresponding to the text encoder which are not being used here. To use both UNet and text encoder related LoRA params, use [`pipe.load_lora_weights()`](https://huggingface.co./docs/diffusers/main/en/api/loaders#diffusers.loaders.LoraLoaderMixin.load_lora_weights)." logger.warning(warn_message) unet_keys = [k for k in state_dict.keys() if k.startswith(self.unet_name)] state_dict = {k.replace(f"{self.unet_name}.", ""): v for k, v in state_dict.items() if k in unet_keys} # change processor format to 'pure' LoRACompatibleLinear format if any("processor" in k.split(".") for k in state_dict.keys()): def format_to_lora_compatible(key): if "processor" not in key.split("."): return key return key.replace(".processor", "").replace("to_out_lora", "to_out.0.lora").replace("_lora", ".lora") state_dict = {format_to_lora_compatible(k): v for k, v in state_dict.items()} if network_alphas is not None: network_alphas = {format_to_lora_compatible(k): v for k, v in network_alphas.items()} return state_dict, network_alphas def save_attn_procs( self, save_directory: Union[str, os.PathLike], is_main_process: bool = True, weight_name: str = None, save_function: Callable = None, safe_serialization: bool = True, **kwargs, ): r""" Save attention processor layers to a directory so that it can be reloaded with the [`~loaders.UNet2DConditionLoadersMixin.load_attn_procs`] method. Arguments: save_directory (`str` or `os.PathLike`): Directory to save an attention processor to (will be created if it doesn't exist). is_main_process (`bool`, *optional*, defaults to `True`): Whether the process calling this is the main process or not. Useful during distributed training and you need to call this function on all processes. In this case, set `is_main_process=True` only on the main process to avoid race conditions. save_function (`Callable`): The function to use to save the state dictionary. Useful during distributed training when you need to replace `torch.save` with another method. Can be configured with the environment variable `DIFFUSERS_SAVE_MODE`. safe_serialization (`bool`, *optional*, defaults to `True`): Whether to save the model using `safetensors` or with `pickle`. Example: ```py import torch from diffusers import DiffusionPipeline pipeline = DiffusionPipeline.from_pretrained( "CompVis/stable-diffusion-v1-4", torch_dtype=torch.float16, ).to("cuda") pipeline.unet.load_attn_procs("path-to-save-model", weight_name="pytorch_custom_diffusion_weights.bin") pipeline.unet.save_attn_procs("path-to-save-model", weight_name="pytorch_custom_diffusion_weights.bin") ``` """ from ..models.attention_processor import ( CustomDiffusionAttnProcessor, CustomDiffusionAttnProcessor2_0, CustomDiffusionXFormersAttnProcessor, ) if os.path.isfile(save_directory): logger.error(f"Provided path ({save_directory}) should be a directory, not a file") return if save_function is None: if safe_serialization: def save_function(weights, filename): return safetensors.torch.save_file(weights, filename, metadata={"format": "pt"}) else: save_function = torch.save os.makedirs(save_directory, exist_ok=True) is_custom_diffusion = any( isinstance( x, (CustomDiffusionAttnProcessor, CustomDiffusionAttnProcessor2_0, CustomDiffusionXFormersAttnProcessor), ) for (_, x) in self.attn_processors.items() ) if is_custom_diffusion: model_to_save = AttnProcsLayers( { y: x for (y, x) in self.attn_processors.items() if isinstance( x, ( CustomDiffusionAttnProcessor, CustomDiffusionAttnProcessor2_0, CustomDiffusionXFormersAttnProcessor, ), ) } ) state_dict = model_to_save.state_dict() for name, attn in self.attn_processors.items(): if len(attn.state_dict()) == 0: state_dict[name] = {} else: model_to_save = AttnProcsLayers(self.attn_processors) state_dict = model_to_save.state_dict() if weight_name is None: if safe_serialization: weight_name = CUSTOM_DIFFUSION_WEIGHT_NAME_SAFE if is_custom_diffusion else LORA_WEIGHT_NAME_SAFE else: weight_name = CUSTOM_DIFFUSION_WEIGHT_NAME if is_custom_diffusion else LORA_WEIGHT_NAME # Save the model save_path = Path(save_directory, weight_name).as_posix() save_function(state_dict, save_path) logger.info(f"Model weights saved in {save_path}") def fuse_lora(self, lora_scale=1.0, safe_fusing=False, adapter_names=None): self.lora_scale = lora_scale self._safe_fusing = safe_fusing self.apply(partial(self._fuse_lora_apply, adapter_names=adapter_names)) def _fuse_lora_apply(self, module, adapter_names=None): if not USE_PEFT_BACKEND: if hasattr(module, "_fuse_lora"): module._fuse_lora(self.lora_scale, self._safe_fusing) if adapter_names is not None: raise ValueError( "The `adapter_names` argument is not supported in your environment. Please switch" " to PEFT backend to use this argument by installing latest PEFT and transformers." " `pip install -U peft transformers`" ) else: from peft.tuners.tuners_utils import BaseTunerLayer merge_kwargs = {"safe_merge": self._safe_fusing} if isinstance(module, BaseTunerLayer): if self.lora_scale != 1.0: module.scale_layer(self.lora_scale) # For BC with prevous PEFT versions, we need to check the signature # of the `merge` method to see if it supports the `adapter_names` argument. supported_merge_kwargs = list(inspect.signature(module.merge).parameters) if "adapter_names" in supported_merge_kwargs: merge_kwargs["adapter_names"] = adapter_names elif "adapter_names" not in supported_merge_kwargs and adapter_names is not None: raise ValueError( "The `adapter_names` argument is not supported with your PEFT version. Please upgrade" " to the latest version of PEFT. `pip install -U peft`" ) module.merge(**merge_kwargs) def unfuse_lora(self): self.apply(self._unfuse_lora_apply) def _unfuse_lora_apply(self, module): if not USE_PEFT_BACKEND: if hasattr(module, "_unfuse_lora"): module._unfuse_lora() else: from peft.tuners.tuners_utils import BaseTunerLayer if isinstance(module, BaseTunerLayer): module.unmerge() def set_adapters( self, adapter_names: Union[List[str], str], weights: Optional[Union[float, Dict, List[float], List[Dict], List[None]]] = None, ): """ Set the currently active adapters for use in the UNet. Args: adapter_names (`List[str]` or `str`): The names of the adapters to use. adapter_weights (`Union[List[float], float]`, *optional*): The adapter(s) weights to use with the UNet. If `None`, the weights are set to `1.0` for all the adapters. Example: ```py from diffusers import AutoPipelineForText2Image import torch pipeline = AutoPipelineForText2Image.from_pretrained( "stabilityai/stable-diffusion-xl-base-1.0", torch_dtype=torch.float16 ).to("cuda") pipeline.load_lora_weights( "jbilcke-hf/sdxl-cinematic-1", weight_name="pytorch_lora_weights.safetensors", adapter_name="cinematic" ) pipeline.load_lora_weights("nerijs/pixel-art-xl", weight_name="pixel-art-xl.safetensors", adapter_name="pixel") pipeline.set_adapters(["cinematic", "pixel"], adapter_weights=[0.5, 0.5]) ``` """ if not USE_PEFT_BACKEND: raise ValueError("PEFT backend is required for `set_adapters()`.") adapter_names = [adapter_names] if isinstance(adapter_names, str) else adapter_names # Expand weights into a list, one entry per adapter # examples for e.g. 2 adapters: [{...}, 7] -> [7,7] ; None -> [None, None] if not isinstance(weights, list): weights = [weights] * len(adapter_names) if len(adapter_names) != len(weights): raise ValueError( f"Length of adapter names {len(adapter_names)} is not equal to the length of their weights {len(weights)}." ) # Set None values to default of 1.0 # e.g. [{...}, 7] -> [{...}, 7] ; [None, None] -> [1.0, 1.0] weights = [w if w is not None else 1.0 for w in weights] # e.g. [{...}, 7] -> [{expanded dict...}, 7] weights = _maybe_expand_lora_scales(self, weights) set_weights_and_activate_adapters(self, adapter_names, weights) def disable_lora(self): """ Disable the UNet's active LoRA layers. Example: ```py from diffusers import AutoPipelineForText2Image import torch pipeline = AutoPipelineForText2Image.from_pretrained( "stabilityai/stable-diffusion-xl-base-1.0", torch_dtype=torch.float16 ).to("cuda") pipeline.load_lora_weights( "jbilcke-hf/sdxl-cinematic-1", weight_name="pytorch_lora_weights.safetensors", adapter_name="cinematic" ) pipeline.disable_lora() ``` """ if not USE_PEFT_BACKEND: raise ValueError("PEFT backend is required for this method.") set_adapter_layers(self, enabled=False) def enable_lora(self): """ Enable the UNet's active LoRA layers. Example: ```py from diffusers import AutoPipelineForText2Image import torch pipeline = AutoPipelineForText2Image.from_pretrained( "stabilityai/stable-diffusion-xl-base-1.0", torch_dtype=torch.float16 ).to("cuda") pipeline.load_lora_weights( "jbilcke-hf/sdxl-cinematic-1", weight_name="pytorch_lora_weights.safetensors", adapter_name="cinematic" ) pipeline.enable_lora() ``` """ if not USE_PEFT_BACKEND: raise ValueError("PEFT backend is required for this method.") set_adapter_layers(self, enabled=True) def delete_adapters(self, adapter_names: Union[List[str], str]): """ Delete an adapter's LoRA layers from the UNet. Args: adapter_names (`Union[List[str], str]`): The names (single string or list of strings) of the adapter to delete. Example: ```py from diffusers import AutoPipelineForText2Image import torch pipeline = AutoPipelineForText2Image.from_pretrained( "stabilityai/stable-diffusion-xl-base-1.0", torch_dtype=torch.float16 ).to("cuda") pipeline.load_lora_weights( "jbilcke-hf/sdxl-cinematic-1", weight_name="pytorch_lora_weights.safetensors", adapter_names="cinematic" ) pipeline.delete_adapters("cinematic") ``` """ if not USE_PEFT_BACKEND: raise ValueError("PEFT backend is required for this method.") if isinstance(adapter_names, str): adapter_names = [adapter_names] for adapter_name in adapter_names: delete_adapter_layers(self, adapter_name) # Pop also the corresponding adapter from the config if hasattr(self, "peft_config"): self.peft_config.pop(adapter_name, None) def _convert_ip_adapter_image_proj_to_diffusers(self, state_dict, low_cpu_mem_usage=False): if low_cpu_mem_usage: if is_accelerate_available(): from accelerate import init_empty_weights else: low_cpu_mem_usage = False logger.warning( "Cannot initialize model with low cpu memory usage because `accelerate` was not found in the" " environment. Defaulting to `low_cpu_mem_usage=False`. It is strongly recommended to install" " `accelerate` for faster and less memory-intense model loading. You can do so with: \n```\npip" " install accelerate\n```\n." ) if low_cpu_mem_usage is True and not is_torch_version(">=", "1.9.0"): raise NotImplementedError( "Low memory initialization requires torch >= 1.9.0. Please either update your PyTorch version or set" " `low_cpu_mem_usage=False`." ) updated_state_dict = {} image_projection = None init_context = init_empty_weights if low_cpu_mem_usage else nullcontext if "proj.weight" in state_dict: # IP-Adapter num_image_text_embeds = 4 clip_embeddings_dim = state_dict["proj.weight"].shape[-1] cross_attention_dim = state_dict["proj.weight"].shape[0] // 4 with init_context(): image_projection = ImageProjection( cross_attention_dim=cross_attention_dim, image_embed_dim=clip_embeddings_dim, num_image_text_embeds=num_image_text_embeds, ) for key, value in state_dict.items(): diffusers_name = key.replace("proj", "image_embeds") updated_state_dict[diffusers_name] = value elif "proj.3.weight" in state_dict: # IP-Adapter Full clip_embeddings_dim = state_dict["proj.0.weight"].shape[0] cross_attention_dim = state_dict["proj.3.weight"].shape[0] with init_context(): image_projection = IPAdapterFullImageProjection( cross_attention_dim=cross_attention_dim, image_embed_dim=clip_embeddings_dim ) for key, value in state_dict.items(): diffusers_name = key.replace("proj.0", "ff.net.0.proj") diffusers_name = diffusers_name.replace("proj.2", "ff.net.2") diffusers_name = diffusers_name.replace("proj.3", "norm") updated_state_dict[diffusers_name] = value elif "perceiver_resampler.proj_in.weight" in state_dict: # IP-Adapter Face ID Plus id_embeddings_dim = state_dict["proj.0.weight"].shape[1] embed_dims = state_dict["perceiver_resampler.proj_in.weight"].shape[0] hidden_dims = state_dict["perceiver_resampler.proj_in.weight"].shape[1] output_dims = state_dict["perceiver_resampler.proj_out.weight"].shape[0] heads = state_dict["perceiver_resampler.layers.0.0.to_q.weight"].shape[0] // 64 with init_context(): image_projection = IPAdapterFaceIDPlusImageProjection( embed_dims=embed_dims, output_dims=output_dims, hidden_dims=hidden_dims, heads=heads, id_embeddings_dim=id_embeddings_dim, ) for key, value in state_dict.items(): diffusers_name = key.replace("perceiver_resampler.", "") diffusers_name = diffusers_name.replace("0.to", "attn.to") diffusers_name = diffusers_name.replace("0.1.0.", "0.ff.0.") diffusers_name = diffusers_name.replace("0.1.1.weight", "0.ff.1.net.0.proj.weight") diffusers_name = diffusers_name.replace("0.1.3.weight", "0.ff.1.net.2.weight") diffusers_name = diffusers_name.replace("1.1.0.", "1.ff.0.") diffusers_name = diffusers_name.replace("1.1.1.weight", "1.ff.1.net.0.proj.weight") diffusers_name = diffusers_name.replace("1.1.3.weight", "1.ff.1.net.2.weight") diffusers_name = diffusers_name.replace("2.1.0.", "2.ff.0.") diffusers_name = diffusers_name.replace("2.1.1.weight", "2.ff.1.net.0.proj.weight") diffusers_name = diffusers_name.replace("2.1.3.weight", "2.ff.1.net.2.weight") diffusers_name = diffusers_name.replace("3.1.0.", "3.ff.0.") diffusers_name = diffusers_name.replace("3.1.1.weight", "3.ff.1.net.0.proj.weight") diffusers_name = diffusers_name.replace("3.1.3.weight", "3.ff.1.net.2.weight") diffusers_name = diffusers_name.replace("layers.0.0", "layers.0.ln0") diffusers_name = diffusers_name.replace("layers.0.1", "layers.0.ln1") diffusers_name = diffusers_name.replace("layers.1.0", "layers.1.ln0") diffusers_name = diffusers_name.replace("layers.1.1", "layers.1.ln1") diffusers_name = diffusers_name.replace("layers.2.0", "layers.2.ln0") diffusers_name = diffusers_name.replace("layers.2.1", "layers.2.ln1") diffusers_name = diffusers_name.replace("layers.3.0", "layers.3.ln0") diffusers_name = diffusers_name.replace("layers.3.1", "layers.3.ln1") if "norm1" in diffusers_name: updated_state_dict[diffusers_name.replace("0.norm1", "0")] = value elif "norm2" in diffusers_name: updated_state_dict[diffusers_name.replace("0.norm2", "1")] = value elif "to_kv" in diffusers_name: v_chunk = value.chunk(2, dim=0) updated_state_dict[diffusers_name.replace("to_kv", "to_k")] = v_chunk[0] updated_state_dict[diffusers_name.replace("to_kv", "to_v")] = v_chunk[1] elif "to_out" in diffusers_name: updated_state_dict[diffusers_name.replace("to_out", "to_out.0")] = value elif "proj.0.weight" == diffusers_name: updated_state_dict["proj.net.0.proj.weight"] = value elif "proj.0.bias" == diffusers_name: updated_state_dict["proj.net.0.proj.bias"] = value elif "proj.2.weight" == diffusers_name: updated_state_dict["proj.net.2.weight"] = value elif "proj.2.bias" == diffusers_name: updated_state_dict["proj.net.2.bias"] = value else: updated_state_dict[diffusers_name] = value elif "norm.weight" in state_dict: # IP-Adapter Face ID id_embeddings_dim_in = state_dict["proj.0.weight"].shape[1] id_embeddings_dim_out = state_dict["proj.0.weight"].shape[0] multiplier = id_embeddings_dim_out // id_embeddings_dim_in norm_layer = "norm.weight" cross_attention_dim = state_dict[norm_layer].shape[0] num_tokens = state_dict["proj.2.weight"].shape[0] // cross_attention_dim with init_context(): image_projection = IPAdapterFaceIDImageProjection( cross_attention_dim=cross_attention_dim, image_embed_dim=id_embeddings_dim_in, mult=multiplier, num_tokens=num_tokens, ) for key, value in state_dict.items(): diffusers_name = key.replace("proj.0", "ff.net.0.proj") diffusers_name = diffusers_name.replace("proj.2", "ff.net.2") updated_state_dict[diffusers_name] = value else: # IP-Adapter Plus num_image_text_embeds = state_dict["latents"].shape[1] embed_dims = state_dict["proj_in.weight"].shape[1] output_dims = state_dict["proj_out.weight"].shape[0] hidden_dims = state_dict["latents"].shape[2] heads = state_dict["layers.0.0.to_q.weight"].shape[0] // 64 with init_context(): image_projection = IPAdapterPlusImageProjection( embed_dims=embed_dims, output_dims=output_dims, hidden_dims=hidden_dims, heads=heads, num_queries=num_image_text_embeds, ) for key, value in state_dict.items(): diffusers_name = key.replace("0.to", "2.to") diffusers_name = diffusers_name.replace("1.0.weight", "3.0.weight") diffusers_name = diffusers_name.replace("1.0.bias", "3.0.bias") diffusers_name = diffusers_name.replace("1.1.weight", "3.1.net.0.proj.weight") diffusers_name = diffusers_name.replace("1.3.weight", "3.1.net.2.weight") if "norm1" in diffusers_name: updated_state_dict[diffusers_name.replace("0.norm1", "0")] = value elif "norm2" in diffusers_name: updated_state_dict[diffusers_name.replace("0.norm2", "1")] = value elif "to_kv" in diffusers_name: v_chunk = value.chunk(2, dim=0) updated_state_dict[diffusers_name.replace("to_kv", "to_k")] = v_chunk[0] updated_state_dict[diffusers_name.replace("to_kv", "to_v")] = v_chunk[1] elif "to_out" in diffusers_name: updated_state_dict[diffusers_name.replace("to_out", "to_out.0")] = value else: updated_state_dict[diffusers_name] = value if not low_cpu_mem_usage: image_projection.load_state_dict(updated_state_dict) else: load_model_dict_into_meta(image_projection, updated_state_dict, device=self.device, dtype=self.dtype) return image_projection def _convert_ip_adapter_attn_to_diffusers(self, state_dicts, low_cpu_mem_usage=False): from ..models.attention_processor import ( AttnProcessor, AttnProcessor2_0, IPAdapterAttnProcessor, IPAdapterAttnProcessor2_0, ) if low_cpu_mem_usage: if is_accelerate_available(): from accelerate import init_empty_weights else: low_cpu_mem_usage = False logger.warning( "Cannot initialize model with low cpu memory usage because `accelerate` was not found in the" " environment. Defaulting to `low_cpu_mem_usage=False`. It is strongly recommended to install" " `accelerate` for faster and less memory-intense model loading. You can do so with: \n```\npip" " install accelerate\n```\n." ) if low_cpu_mem_usage is True and not is_torch_version(">=", "1.9.0"): raise NotImplementedError( "Low memory initialization requires torch >= 1.9.0. Please either update your PyTorch version or set" " `low_cpu_mem_usage=False`." ) # set ip-adapter cross-attention processors & load state_dict attn_procs = {} key_id = 1 init_context = init_empty_weights if low_cpu_mem_usage else nullcontext for name in self.attn_processors.keys(): cross_attention_dim = None if name.endswith("attn1.processor") else self.config.cross_attention_dim if name.startswith("mid_block"): hidden_size = self.config.block_out_channels[-1] elif name.startswith("up_blocks"): block_id = int(name[len("up_blocks.")]) hidden_size = list(reversed(self.config.block_out_channels))[block_id] elif name.startswith("down_blocks"): block_id = int(name[len("down_blocks.")]) hidden_size = self.config.block_out_channels[block_id] if cross_attention_dim is None or "motion_modules" in name: attn_processor_class = ( AttnProcessor2_0 if hasattr(F, "scaled_dot_product_attention") else AttnProcessor ) attn_procs[name] = attn_processor_class() else: attn_processor_class = ( IPAdapterAttnProcessor2_0 if hasattr(F, "scaled_dot_product_attention") else IPAdapterAttnProcessor ) num_image_text_embeds = [] for state_dict in state_dicts: if "proj.weight" in state_dict["image_proj"]: # IP-Adapter num_image_text_embeds += [4] elif "proj.3.weight" in state_dict["image_proj"]: # IP-Adapter Full Face num_image_text_embeds += [257] # 256 CLIP tokens + 1 CLS token elif "perceiver_resampler.proj_in.weight" in state_dict["image_proj"]: # IP-Adapter Face ID Plus num_image_text_embeds += [4] elif "norm.weight" in state_dict["image_proj"]: # IP-Adapter Face ID num_image_text_embeds += [4] else: # IP-Adapter Plus num_image_text_embeds += [state_dict["image_proj"]["latents"].shape[1]] with init_context(): attn_procs[name] = attn_processor_class( hidden_size=hidden_size, cross_attention_dim=cross_attention_dim, scale=1.0, num_tokens=num_image_text_embeds, ) value_dict = {} for i, state_dict in enumerate(state_dicts): value_dict.update({f"to_k_ip.{i}.weight": state_dict["ip_adapter"][f"{key_id}.to_k_ip.weight"]}) value_dict.update({f"to_v_ip.{i}.weight": state_dict["ip_adapter"][f"{key_id}.to_v_ip.weight"]}) if not low_cpu_mem_usage: attn_procs[name].load_state_dict(value_dict) else: device = next(iter(value_dict.values())).device dtype = next(iter(value_dict.values())).dtype load_model_dict_into_meta(attn_procs[name], value_dict, device=device, dtype=dtype) key_id += 2 return attn_procs def _load_ip_adapter_weights(self, state_dicts, low_cpu_mem_usage=False): if not isinstance(state_dicts, list): state_dicts = [state_dicts] # Set encoder_hid_proj after loading ip_adapter weights, # because `IPAdapterPlusImageProjection` also has `attn_processors`. self.encoder_hid_proj = None attn_procs = self._convert_ip_adapter_attn_to_diffusers(state_dicts, low_cpu_mem_usage=low_cpu_mem_usage) self.set_attn_processor(attn_procs) # convert IP-Adapter Image Projection layers to diffusers image_projection_layers = [] for state_dict in state_dicts: image_projection_layer = self._convert_ip_adapter_image_proj_to_diffusers( state_dict["image_proj"], low_cpu_mem_usage=low_cpu_mem_usage ) image_projection_layers.append(image_projection_layer) self.encoder_hid_proj = MultiIPAdapterImageProjection(image_projection_layers) self.config.encoder_hid_dim_type = "ip_image_proj" self.to(dtype=self.dtype, device=self.device) def _load_ip_adapter_loras(self, state_dicts): lora_dicts = {} for key_id, name in enumerate(self.attn_processors.keys()): for i, state_dict in enumerate(state_dicts): if f"{key_id}.to_k_lora.down.weight" in state_dict["ip_adapter"]: if i not in lora_dicts: lora_dicts[i] = {} lora_dicts[i].update( { f"unet.{name}.to_k_lora.down.weight": state_dict["ip_adapter"][ f"{key_id}.to_k_lora.down.weight" ] } ) lora_dicts[i].update( { f"unet.{name}.to_q_lora.down.weight": state_dict["ip_adapter"][ f"{key_id}.to_q_lora.down.weight" ] } ) lora_dicts[i].update( { f"unet.{name}.to_v_lora.down.weight": state_dict["ip_adapter"][ f"{key_id}.to_v_lora.down.weight" ] } ) lora_dicts[i].update( { f"unet.{name}.to_out_lora.down.weight": state_dict["ip_adapter"][ f"{key_id}.to_out_lora.down.weight" ] } ) lora_dicts[i].update( {f"unet.{name}.to_k_lora.up.weight": state_dict["ip_adapter"][f"{key_id}.to_k_lora.up.weight"]} ) lora_dicts[i].update( {f"unet.{name}.to_q_lora.up.weight": state_dict["ip_adapter"][f"{key_id}.to_q_lora.up.weight"]} ) lora_dicts[i].update( {f"unet.{name}.to_v_lora.up.weight": state_dict["ip_adapter"][f"{key_id}.to_v_lora.up.weight"]} ) lora_dicts[i].update( { f"unet.{name}.to_out_lora.up.weight": state_dict["ip_adapter"][ f"{key_id}.to_out_lora.up.weight" ] } ) return lora_dicts class FromOriginalUNetMixin: """ Load pretrained UNet model weights saved in the `.ckpt` or `.safetensors` format into a [`StableCascadeUNet`]. """ @classmethod @validate_hf_hub_args def from_single_file(cls, pretrained_model_link_or_path, **kwargs): r""" Instantiate a [`StableCascadeUNet`] from pretrained StableCascadeUNet weights saved in the original `.ckpt` or `.safetensors` format. The pipeline is set in evaluation mode (`model.eval()`) by default. Parameters: pretrained_model_link_or_path (`str` or `os.PathLike`, *optional*): Can be either: - A link to the `.ckpt` file (for example `"https://huggingface.co.//blob/main/.ckpt"`) on the Hub. - A path to a *file* containing all pipeline weights. config: (`dict`, *optional*): Dictionary containing the configuration of the model: torch_dtype (`str` or `torch.dtype`, *optional*): Override the default `torch.dtype` and load the model with another dtype. If `"auto"` is passed, the dtype is automatically derived from the model's weights. force_download (`bool`, *optional*, defaults to `False`): Whether or not to force the (re-)download of the model weights and configuration files, overriding the cached versions if they exist. cache_dir (`Union[str, os.PathLike]`, *optional*): Path to a directory where a downloaded pretrained model configuration is cached if the standard cache is not used. resume_download: Deprecated and ignored. All downloads are now resumed by default when possible. Will be removed in v1 of Diffusers. proxies (`Dict[str, str]`, *optional*): A dictionary of proxy servers to use by protocol or endpoint, for example, `{'http': 'foo.bar:3128', 'http://hostname': 'foo.bar:4012'}`. The proxies are used on each request. local_files_only (`bool`, *optional*, defaults to `False`): Whether to only load local model weights and configuration files or not. If set to True, the model won't be downloaded from the Hub. token (`str` or *bool*, *optional*): The token to use as HTTP bearer authorization for remote files. If `True`, the token generated from `diffusers-cli login` (stored in `~/.huggingface`) is used. revision (`str`, *optional*, defaults to `"main"`): The specific model version to use. It can be a branch name, a tag name, a commit id, or any identifier allowed by Git. kwargs (remaining dictionary of keyword arguments, *optional*): Can be used to overwrite load and saveable variables of the model. """ class_name = cls.__name__ if class_name != "StableCascadeUNet": raise ValueError("FromOriginalUNetMixin is currently only compatible with StableCascadeUNet") config = kwargs.pop("config", None) resume_download = kwargs.pop("resume_download", None) force_download = kwargs.pop("force_download", False) proxies = kwargs.pop("proxies", None) token = kwargs.pop("token", None) cache_dir = kwargs.pop("cache_dir", None) local_files_only = kwargs.pop("local_files_only", None) revision = kwargs.pop("revision", None) torch_dtype = kwargs.pop("torch_dtype", None) checkpoint = load_single_file_model_checkpoint( pretrained_model_link_or_path, resume_download=resume_download, force_download=force_download, proxies=proxies, token=token, cache_dir=cache_dir, local_files_only=local_files_only, revision=revision, ) if config is None: config = infer_stable_cascade_single_file_config(checkpoint) model_config = cls.load_config(**config, **kwargs) else: model_config = config ctx = init_empty_weights if is_accelerate_available() else nullcontext with ctx(): model = cls.from_config(model_config, **kwargs) diffusers_format_checkpoint = convert_stable_cascade_unet_single_file_to_diffusers(checkpoint) if is_accelerate_available(): unexpected_keys = load_model_dict_into_meta(model, diffusers_format_checkpoint, dtype=torch_dtype) if len(unexpected_keys) > 0: logger.warning( f"Some weights of the model checkpoint were not used when initializing {cls.__name__}: \n {[', '.join(unexpected_keys)]}" ) else: model.load_state_dict(diffusers_format_checkpoint) if torch_dtype is not None: model.to(torch_dtype) return model