# Copyright 2024 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import Callable, Dict, List, Optional, Union import numpy as np import PIL.Image import torch from PIL import Image from ...models import UNet2DConditionModel, VQModel from ...schedulers import DDPMScheduler from ...utils import deprecate, logging from ...utils.torch_utils import randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput logger = logging.get_logger(__name__) # pylint: disable=invalid-name EXAMPLE_DOC_STRING = """ Examples: ```py >>> from diffusers import KandinskyV22Img2ImgPipeline, KandinskyV22PriorPipeline >>> from diffusers.utils import load_image >>> import torch >>> pipe_prior = KandinskyV22PriorPipeline.from_pretrained( ... "kandinsky-community/kandinsky-2-2-prior", torch_dtype=torch.float16 ... ) >>> pipe_prior.to("cuda") >>> prompt = "A red cartoon frog, 4k" >>> image_emb, zero_image_emb = pipe_prior(prompt, return_dict=False) >>> pipe = KandinskyV22Img2ImgPipeline.from_pretrained( ... "kandinsky-community/kandinsky-2-2-decoder", torch_dtype=torch.float16 ... ) >>> pipe.to("cuda") >>> init_image = load_image( ... "https://huggingface.co./datasets/hf-internal-testing/diffusers-images/resolve/main" ... "/kandinsky/frog.png" ... ) >>> image = pipe( ... image=init_image, ... image_embeds=image_emb, ... negative_image_embeds=zero_image_emb, ... height=768, ... width=768, ... num_inference_steps=100, ... strength=0.2, ... ).images >>> image[0].save("red_frog.png") ``` """ # Copied from diffusers.pipelines.kandinsky2_2.pipeline_kandinsky2_2.downscale_height_and_width def downscale_height_and_width(height, width, scale_factor=8): new_height = height // scale_factor**2 if height % scale_factor**2 != 0: new_height += 1 new_width = width // scale_factor**2 if width % scale_factor**2 != 0: new_width += 1 return new_height * scale_factor, new_width * scale_factor # Copied from diffusers.pipelines.kandinsky.pipeline_kandinsky_img2img.prepare_image def prepare_image(pil_image, w=512, h=512): pil_image = pil_image.resize((w, h), resample=Image.BICUBIC, reducing_gap=1) arr = np.array(pil_image.convert("RGB")) arr = arr.astype(np.float32) / 127.5 - 1 arr = np.transpose(arr, [2, 0, 1]) image = torch.from_numpy(arr).unsqueeze(0) return image class KandinskyV22Img2ImgPipeline(DiffusionPipeline): """ Pipeline for image-to-image generation using Kandinsky This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods the library implements for all the pipelines (such as downloading or saving, running on a particular device, etc.) Args: scheduler ([`DDIMScheduler`]): A scheduler to be used in combination with `unet` to generate image latents. unet ([`UNet2DConditionModel`]): Conditional U-Net architecture to denoise the image embedding. movq ([`VQModel`]): MoVQ Decoder to generate the image from the latents. """ model_cpu_offload_seq = "unet->movq" _callback_tensor_inputs = ["latents", "image_embeds", "negative_image_embeds"] def __init__( self, unet: UNet2DConditionModel, scheduler: DDPMScheduler, movq: VQModel, ): super().__init__() self.register_modules( unet=unet, scheduler=scheduler, movq=movq, ) self.movq_scale_factor = 2 ** (len(self.movq.config.block_out_channels) - 1) # Copied from diffusers.pipelines.kandinsky.pipeline_kandinsky_img2img.KandinskyImg2ImgPipeline.get_timesteps def get_timesteps(self, num_inference_steps, strength, device): # get the original timestep using init_timestep init_timestep = min(int(num_inference_steps * strength), num_inference_steps) t_start = max(num_inference_steps - init_timestep, 0) timesteps = self.scheduler.timesteps[t_start:] return timesteps, num_inference_steps - t_start def prepare_latents(self, image, timestep, batch_size, num_images_per_prompt, dtype, device, generator=None): if not isinstance(image, (torch.Tensor, PIL.Image.Image, list)): raise ValueError( f"`image` has to be of type `torch.Tensor`, `PIL.Image.Image` or list but is {type(image)}" ) image = image.to(device=device, dtype=dtype) batch_size = batch_size * num_images_per_prompt if image.shape[1] == 4: init_latents = image else: if isinstance(generator, list) and len(generator) != batch_size: raise ValueError( f"You have passed a list of generators of length {len(generator)}, but requested an effective batch" f" size of {batch_size}. Make sure the batch size matches the length of the generators." ) elif isinstance(generator, list): init_latents = [ self.movq.encode(image[i : i + 1]).latent_dist.sample(generator[i]) for i in range(batch_size) ] init_latents = torch.cat(init_latents, dim=0) else: init_latents = self.movq.encode(image).latent_dist.sample(generator) init_latents = self.movq.config.scaling_factor * init_latents init_latents = torch.cat([init_latents], dim=0) shape = init_latents.shape noise = randn_tensor(shape, generator=generator, device=device, dtype=dtype) # get latents init_latents = self.scheduler.add_noise(init_latents, noise, timestep) latents = init_latents return latents @property def guidance_scale(self): return self._guidance_scale @property def do_classifier_free_guidance(self): return self._guidance_scale > 1 @property def num_timesteps(self): return self._num_timesteps @torch.no_grad() def __call__( self, image_embeds: Union[torch.FloatTensor, List[torch.FloatTensor]], image: Union[torch.FloatTensor, PIL.Image.Image, List[torch.FloatTensor], List[PIL.Image.Image]], negative_image_embeds: Union[torch.FloatTensor, List[torch.FloatTensor]], height: int = 512, width: int = 512, num_inference_steps: int = 100, guidance_scale: float = 4.0, strength: float = 0.3, num_images_per_prompt: int = 1, generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None, output_type: Optional[str] = "pil", return_dict: bool = True, callback_on_step_end: Optional[Callable[[int, int, Dict], None]] = None, callback_on_step_end_tensor_inputs: List[str] = ["latents"], **kwargs, ): """ Function invoked when calling the pipeline for generation. Args: image_embeds (`torch.FloatTensor` or `List[torch.FloatTensor]`): The clip image embeddings for text prompt, that will be used to condition the image generation. image (`torch.FloatTensor`, `PIL.Image.Image`, `np.ndarray`, `List[torch.FloatTensor]`, `List[PIL.Image.Image]`, or `List[np.ndarray]`): `Image`, or tensor representing an image batch, that will be used as the starting point for the process. Can also accept image latents as `image`, if passing latents directly, it will not be encoded again. strength (`float`, *optional*, defaults to 0.8): Conceptually, indicates how much to transform the reference `image`. Must be between 0 and 1. `image` will be used as a starting point, adding more noise to it the larger the `strength`. The number of denoising steps depends on the amount of noise initially added. When `strength` is 1, added noise will be maximum and the denoising process will run for the full number of iterations specified in `num_inference_steps`. A value of 1, therefore, essentially ignores `image`. negative_image_embeds (`torch.FloatTensor` or `List[torch.FloatTensor]`): The clip image embeddings for negative text prompt, will be used to condition the image generation. height (`int`, *optional*, defaults to 512): The height in pixels of the generated image. width (`int`, *optional*, defaults to 512): The width in pixels of the generated image. num_inference_steps (`int`, *optional*, defaults to 100): The number of denoising steps. More denoising steps usually lead to a higher quality image at the expense of slower inference. guidance_scale (`float`, *optional*, defaults to 4.0): Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598). `guidance_scale` is defined as `w` of equation 2. of [Imagen Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale > 1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`, usually at the expense of lower image quality. num_images_per_prompt (`int`, *optional*, defaults to 1): The number of images to generate per prompt. generator (`torch.Generator` or `List[torch.Generator]`, *optional*): One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make generation deterministic. output_type (`str`, *optional*, defaults to `"pil"`): The output format of the generate image. Choose between: `"pil"` (`PIL.Image.Image`), `"np"` (`np.array`) or `"pt"` (`torch.Tensor`). return_dict (`bool`, *optional*, defaults to `True`): Whether or not to return a [`~pipelines.ImagePipelineOutput`] instead of a plain tuple. callback_on_step_end (`Callable`, *optional*): A function that calls at the end of each denoising steps during the inference. The function is called with the following arguments: `callback_on_step_end(self: DiffusionPipeline, step: int, timestep: int, callback_kwargs: Dict)`. `callback_kwargs` will include a list of all tensors as specified by `callback_on_step_end_tensor_inputs`. callback_on_step_end_tensor_inputs (`List`, *optional*): The list of tensor inputs for the `callback_on_step_end` function. The tensors specified in the list will be passed as `callback_kwargs` argument. You will only be able to include variables listed in the `._callback_tensor_inputs` attribute of your pipeline class. Examples: Returns: [`~pipelines.ImagePipelineOutput`] or `tuple` """ callback = kwargs.pop("callback", None) callback_steps = kwargs.pop("callback_steps", None) if callback is not None: deprecate( "callback", "1.0.0", "Passing `callback` as an input argument to `__call__` is deprecated, consider use `callback_on_step_end`", ) if callback_steps is not None: deprecate( "callback_steps", "1.0.0", "Passing `callback_steps` as an input argument to `__call__` is deprecated, consider use `callback_on_step_end`", ) if callback_on_step_end_tensor_inputs is not None and not all( k in self._callback_tensor_inputs for k in callback_on_step_end_tensor_inputs ): raise ValueError( f"`callback_on_step_end_tensor_inputs` has to be in {self._callback_tensor_inputs}, but found {[k for k in callback_on_step_end_tensor_inputs if k not in self._callback_tensor_inputs]}" ) device = self._execution_device self._guidance_scale = guidance_scale if isinstance(image_embeds, list): image_embeds = torch.cat(image_embeds, dim=0) batch_size = image_embeds.shape[0] if isinstance(negative_image_embeds, list): negative_image_embeds = torch.cat(negative_image_embeds, dim=0) if self.do_classifier_free_guidance: image_embeds = image_embeds.repeat_interleave(num_images_per_prompt, dim=0) negative_image_embeds = negative_image_embeds.repeat_interleave(num_images_per_prompt, dim=0) image_embeds = torch.cat([negative_image_embeds, image_embeds], dim=0).to( dtype=self.unet.dtype, device=device ) if not isinstance(image, list): image = [image] if not all(isinstance(i, (PIL.Image.Image, torch.Tensor)) for i in image): raise ValueError( f"Input is in incorrect format: {[type(i) for i in image]}. Currently, we only support PIL image and pytorch tensor" ) image = torch.cat([prepare_image(i, width, height) for i in image], dim=0) image = image.to(dtype=image_embeds.dtype, device=device) latents = self.movq.encode(image)["latents"] latents = latents.repeat_interleave(num_images_per_prompt, dim=0) self.scheduler.set_timesteps(num_inference_steps, device=device) timesteps, num_inference_steps = self.get_timesteps(num_inference_steps, strength, device) latent_timestep = timesteps[:1].repeat(batch_size * num_images_per_prompt) height, width = downscale_height_and_width(height, width, self.movq_scale_factor) latents = self.prepare_latents( latents, latent_timestep, batch_size, num_images_per_prompt, image_embeds.dtype, device, generator ) self._num_timesteps = len(timesteps) for i, t in enumerate(self.progress_bar(timesteps)): # expand the latents if we are doing classifier free guidance latent_model_input = torch.cat([latents] * 2) if self.do_classifier_free_guidance else latents added_cond_kwargs = {"image_embeds": image_embeds} noise_pred = self.unet( sample=latent_model_input, timestep=t, encoder_hidden_states=None, added_cond_kwargs=added_cond_kwargs, return_dict=False, )[0] if self.do_classifier_free_guidance: noise_pred, variance_pred = noise_pred.split(latents.shape[1], dim=1) noise_pred_uncond, noise_pred_text = noise_pred.chunk(2) _, variance_pred_text = variance_pred.chunk(2) noise_pred = noise_pred_uncond + self.guidance_scale * (noise_pred_text - noise_pred_uncond) noise_pred = torch.cat([noise_pred, variance_pred_text], dim=1) if not ( hasattr(self.scheduler.config, "variance_type") and self.scheduler.config.variance_type in ["learned", "learned_range"] ): noise_pred, _ = noise_pred.split(latents.shape[1], dim=1) # compute the previous noisy sample x_t -> x_t-1 latents = self.scheduler.step( noise_pred, t, latents, generator=generator, )[0] if callback_on_step_end is not None: callback_kwargs = {} for k in callback_on_step_end_tensor_inputs: callback_kwargs[k] = locals()[k] callback_outputs = callback_on_step_end(self, i, t, callback_kwargs) latents = callback_outputs.pop("latents", latents) image_embeds = callback_outputs.pop("image_embeds", image_embeds) negative_image_embeds = callback_outputs.pop("negative_image_embeds", negative_image_embeds) if callback is not None and i % callback_steps == 0: step_idx = i // getattr(self.scheduler, "order", 1) callback(step_idx, t, latents) if output_type not in ["pt", "np", "pil", "latent"]: raise ValueError( f"Only the output types `pt`, `pil` ,`np` and `latent` are supported not output_type={output_type}" ) if not output_type == "latent": # post-processing image = self.movq.decode(latents, force_not_quantize=True)["sample"] if output_type in ["np", "pil"]: image = image * 0.5 + 0.5 image = image.clamp(0, 1) image = image.cpu().permute(0, 2, 3, 1).float().numpy() if output_type == "pil": image = self.numpy_to_pil(image) else: image = latents # Offload all models self.maybe_free_model_hooks() if not return_dict: return (image,) return ImagePipelineOutput(images=image)