# Copyright 2024 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import Callable, Dict, List, Optional, Union import PIL.Image import torch from transformers import CLIPImageProcessor, CLIPTextModelWithProjection, CLIPTokenizer, CLIPVisionModelWithProjection from ...models import PriorTransformer, UNet2DConditionModel, VQModel from ...schedulers import DDPMScheduler, UnCLIPScheduler from ...utils import deprecate, logging, replace_example_docstring from ..pipeline_utils import DiffusionPipeline from .pipeline_kandinsky2_2 import KandinskyV22Pipeline from .pipeline_kandinsky2_2_img2img import KandinskyV22Img2ImgPipeline from .pipeline_kandinsky2_2_inpainting import KandinskyV22InpaintPipeline from .pipeline_kandinsky2_2_prior import KandinskyV22PriorPipeline logger = logging.get_logger(__name__) # pylint: disable=invalid-name TEXT2IMAGE_EXAMPLE_DOC_STRING = """ Examples: ```py from diffusers import AutoPipelineForText2Image import torch pipe = AutoPipelineForText2Image.from_pretrained( "kandinsky-community/kandinsky-2-2-decoder", torch_dtype=torch.float16 ) pipe.enable_model_cpu_offload() prompt = "A lion in galaxies, spirals, nebulae, stars, smoke, iridescent, intricate detail, octane render, 8k" image = pipe(prompt=prompt, num_inference_steps=25).images[0] ``` """ IMAGE2IMAGE_EXAMPLE_DOC_STRING = """ Examples: ```py from diffusers import AutoPipelineForImage2Image import torch import requests from io import BytesIO from PIL import Image import os pipe = AutoPipelineForImage2Image.from_pretrained( "kandinsky-community/kandinsky-2-2-decoder", torch_dtype=torch.float16 ) pipe.enable_model_cpu_offload() prompt = "A fantasy landscape, Cinematic lighting" negative_prompt = "low quality, bad quality" url = "https://raw.githubusercontent.com/CompVis/stable-diffusion/main/assets/stable-samples/img2img/sketch-mountains-input.jpg" response = requests.get(url) image = Image.open(BytesIO(response.content)).convert("RGB") image.thumbnail((768, 768)) image = pipe(prompt=prompt, image=original_image, num_inference_steps=25).images[0] ``` """ INPAINT_EXAMPLE_DOC_STRING = """ Examples: ```py from diffusers import AutoPipelineForInpainting from diffusers.utils import load_image import torch import numpy as np pipe = AutoPipelineForInpainting.from_pretrained( "kandinsky-community/kandinsky-2-2-decoder-inpaint", torch_dtype=torch.float16 ) pipe.enable_model_cpu_offload() prompt = "A fantasy landscape, Cinematic lighting" negative_prompt = "low quality, bad quality" original_image = load_image( "https://huggingface.co./datasets/hf-internal-testing/diffusers-images/resolve/main" "/kandinsky/cat.png" ) mask = np.zeros((768, 768), dtype=np.float32) # Let's mask out an area above the cat's head mask[:250, 250:-250] = 1 image = pipe(prompt=prompt, image=original_image, mask_image=mask, num_inference_steps=25).images[0] ``` """ class KandinskyV22CombinedPipeline(DiffusionPipeline): """ Combined Pipeline for text-to-image generation using Kandinsky This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods the library implements for all the pipelines (such as downloading or saving, running on a particular device, etc.) Args: scheduler (Union[`DDIMScheduler`,`DDPMScheduler`]): A scheduler to be used in combination with `unet` to generate image latents. unet ([`UNet2DConditionModel`]): Conditional U-Net architecture to denoise the image embedding. movq ([`VQModel`]): MoVQ Decoder to generate the image from the latents. prior_prior ([`PriorTransformer`]): The canonical unCLIP prior to approximate the image embedding from the text embedding. prior_image_encoder ([`CLIPVisionModelWithProjection`]): Frozen image-encoder. prior_text_encoder ([`CLIPTextModelWithProjection`]): Frozen text-encoder. prior_tokenizer (`CLIPTokenizer`): Tokenizer of class [CLIPTokenizer](https://huggingface.co./docs/transformers/v4.21.0/en/model_doc/clip#transformers.CLIPTokenizer). prior_scheduler ([`UnCLIPScheduler`]): A scheduler to be used in combination with `prior` to generate image embedding. prior_image_processor ([`CLIPImageProcessor`]): A image_processor to be used to preprocess image from clip. """ model_cpu_offload_seq = "prior_text_encoder->prior_image_encoder->unet->movq" _load_connected_pipes = True _exclude_from_cpu_offload = ["prior_prior"] def __init__( self, unet: UNet2DConditionModel, scheduler: DDPMScheduler, movq: VQModel, prior_prior: PriorTransformer, prior_image_encoder: CLIPVisionModelWithProjection, prior_text_encoder: CLIPTextModelWithProjection, prior_tokenizer: CLIPTokenizer, prior_scheduler: UnCLIPScheduler, prior_image_processor: CLIPImageProcessor, ): super().__init__() self.register_modules( unet=unet, scheduler=scheduler, movq=movq, prior_prior=prior_prior, prior_image_encoder=prior_image_encoder, prior_text_encoder=prior_text_encoder, prior_tokenizer=prior_tokenizer, prior_scheduler=prior_scheduler, prior_image_processor=prior_image_processor, ) self.prior_pipe = KandinskyV22PriorPipeline( prior=prior_prior, image_encoder=prior_image_encoder, text_encoder=prior_text_encoder, tokenizer=prior_tokenizer, scheduler=prior_scheduler, image_processor=prior_image_processor, ) self.decoder_pipe = KandinskyV22Pipeline( unet=unet, scheduler=scheduler, movq=movq, ) def enable_xformers_memory_efficient_attention(self, attention_op: Optional[Callable] = None): self.decoder_pipe.enable_xformers_memory_efficient_attention(attention_op) def enable_sequential_cpu_offload(self, gpu_id: Optional[int] = None, device: Union[torch.device, str] = "cuda"): r""" Offloads all models to CPU using accelerate, significantly reducing memory usage. When called, unet, text_encoder, vae and safety checker have their state dicts saved to CPU and then are moved to a `torch.device('meta') and loaded to GPU only when their specific submodule has its `forward` method called. Note that offloading happens on a submodule basis. Memory savings are higher than with `enable_model_cpu_offload`, but performance is lower. """ self.prior_pipe.enable_sequential_cpu_offload(gpu_id=gpu_id, device=device) self.decoder_pipe.enable_sequential_cpu_offload(gpu_id=gpu_id, device=device) def progress_bar(self, iterable=None, total=None): self.prior_pipe.progress_bar(iterable=iterable, total=total) self.decoder_pipe.progress_bar(iterable=iterable, total=total) self.decoder_pipe.enable_model_cpu_offload() def set_progress_bar_config(self, **kwargs): self.prior_pipe.set_progress_bar_config(**kwargs) self.decoder_pipe.set_progress_bar_config(**kwargs) @torch.no_grad() @replace_example_docstring(TEXT2IMAGE_EXAMPLE_DOC_STRING) def __call__( self, prompt: Union[str, List[str]], negative_prompt: Optional[Union[str, List[str]]] = None, num_inference_steps: int = 100, guidance_scale: float = 4.0, num_images_per_prompt: int = 1, height: int = 512, width: int = 512, prior_guidance_scale: float = 4.0, prior_num_inference_steps: int = 25, generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None, latents: Optional[torch.FloatTensor] = None, output_type: Optional[str] = "pil", callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None, callback_steps: int = 1, return_dict: bool = True, prior_callback_on_step_end: Optional[Callable[[int, int, Dict], None]] = None, prior_callback_on_step_end_tensor_inputs: List[str] = ["latents"], callback_on_step_end: Optional[Callable[[int, int, Dict], None]] = None, callback_on_step_end_tensor_inputs: List[str] = ["latents"], ): """ Function invoked when calling the pipeline for generation. Args: prompt (`str` or `List[str]`): The prompt or prompts to guide the image generation. negative_prompt (`str` or `List[str]`, *optional*): The prompt or prompts not to guide the image generation. Ignored when not using guidance (i.e., ignored if `guidance_scale` is less than `1`). num_images_per_prompt (`int`, *optional*, defaults to 1): The number of images to generate per prompt. num_inference_steps (`int`, *optional*, defaults to 100): The number of denoising steps. More denoising steps usually lead to a higher quality image at the expense of slower inference. height (`int`, *optional*, defaults to 512): The height in pixels of the generated image. width (`int`, *optional*, defaults to 512): The width in pixels of the generated image. prior_guidance_scale (`float`, *optional*, defaults to 4.0): Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598). `guidance_scale` is defined as `w` of equation 2. of [Imagen Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale > 1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`, usually at the expense of lower image quality. prior_num_inference_steps (`int`, *optional*, defaults to 100): The number of denoising steps. More denoising steps usually lead to a higher quality image at the expense of slower inference. guidance_scale (`float`, *optional*, defaults to 4.0): Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598). `guidance_scale` is defined as `w` of equation 2. of [Imagen Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale > 1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`, usually at the expense of lower image quality. generator (`torch.Generator` or `List[torch.Generator]`, *optional*): One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make generation deterministic. latents (`torch.FloatTensor`, *optional*): Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image generation. Can be used to tweak the same generation with different prompts. If not provided, a latents tensor will ge generated by sampling using the supplied random `generator`. output_type (`str`, *optional*, defaults to `"pil"`): The output format of the generate image. Choose between: `"pil"` (`PIL.Image.Image`), `"np"` (`np.array`) or `"pt"` (`torch.Tensor`). return_dict (`bool`, *optional*, defaults to `True`): Whether or not to return a [`~pipelines.ImagePipelineOutput`] instead of a plain tuple. prior_callback_on_step_end (`Callable`, *optional*): A function that calls at the end of each denoising steps during the inference of the prior pipeline. The function is called with the following arguments: `prior_callback_on_step_end(self: DiffusionPipeline, step: int, timestep: int, callback_kwargs: Dict)`. prior_callback_on_step_end_tensor_inputs (`List`, *optional*): The list of tensor inputs for the `prior_callback_on_step_end` function. The tensors specified in the list will be passed as `callback_kwargs` argument. You will only be able to include variables listed in the `._callback_tensor_inputs` attribute of your prior pipeline class. callback_on_step_end (`Callable`, *optional*): A function that calls at the end of each denoising steps during the inference of the decoder pipeline. The function is called with the following arguments: `callback_on_step_end(self: DiffusionPipeline, step: int, timestep: int, callback_kwargs: Dict)`. `callback_kwargs` will include a list of all tensors as specified by `callback_on_step_end_tensor_inputs`. callback_on_step_end_tensor_inputs (`List`, *optional*): The list of tensor inputs for the `callback_on_step_end` function. The tensors specified in the list will be passed as `callback_kwargs` argument. You will only be able to include variables listed in the `._callback_tensor_inputs` attribute of your pipeline class. Examples: Returns: [`~pipelines.ImagePipelineOutput`] or `tuple` """ prior_outputs = self.prior_pipe( prompt=prompt, negative_prompt=negative_prompt, num_images_per_prompt=num_images_per_prompt, num_inference_steps=prior_num_inference_steps, generator=generator, latents=latents, guidance_scale=prior_guidance_scale, output_type="pt", return_dict=False, callback_on_step_end=prior_callback_on_step_end, callback_on_step_end_tensor_inputs=prior_callback_on_step_end_tensor_inputs, ) image_embeds = prior_outputs[0] negative_image_embeds = prior_outputs[1] prompt = [prompt] if not isinstance(prompt, (list, tuple)) else prompt if len(prompt) < image_embeds.shape[0] and image_embeds.shape[0] % len(prompt) == 0: prompt = (image_embeds.shape[0] // len(prompt)) * prompt outputs = self.decoder_pipe( image_embeds=image_embeds, negative_image_embeds=negative_image_embeds, width=width, height=height, num_inference_steps=num_inference_steps, generator=generator, guidance_scale=guidance_scale, output_type=output_type, callback=callback, callback_steps=callback_steps, return_dict=return_dict, callback_on_step_end=callback_on_step_end, callback_on_step_end_tensor_inputs=callback_on_step_end_tensor_inputs, ) self.maybe_free_model_hooks() return outputs class KandinskyV22Img2ImgCombinedPipeline(DiffusionPipeline): """ Combined Pipeline for image-to-image generation using Kandinsky This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods the library implements for all the pipelines (such as downloading or saving, running on a particular device, etc.) Args: scheduler (Union[`DDIMScheduler`,`DDPMScheduler`]): A scheduler to be used in combination with `unet` to generate image latents. unet ([`UNet2DConditionModel`]): Conditional U-Net architecture to denoise the image embedding. movq ([`VQModel`]): MoVQ Decoder to generate the image from the latents. prior_prior ([`PriorTransformer`]): The canonical unCLIP prior to approximate the image embedding from the text embedding. prior_image_encoder ([`CLIPVisionModelWithProjection`]): Frozen image-encoder. prior_text_encoder ([`CLIPTextModelWithProjection`]): Frozen text-encoder. prior_tokenizer (`CLIPTokenizer`): Tokenizer of class [CLIPTokenizer](https://huggingface.co./docs/transformers/v4.21.0/en/model_doc/clip#transformers.CLIPTokenizer). prior_scheduler ([`UnCLIPScheduler`]): A scheduler to be used in combination with `prior` to generate image embedding. prior_image_processor ([`CLIPImageProcessor`]): A image_processor to be used to preprocess image from clip. """ model_cpu_offload_seq = "prior_text_encoder->prior_image_encoder->unet->movq" _load_connected_pipes = True _exclude_from_cpu_offload = ["prior_prior"] def __init__( self, unet: UNet2DConditionModel, scheduler: DDPMScheduler, movq: VQModel, prior_prior: PriorTransformer, prior_image_encoder: CLIPVisionModelWithProjection, prior_text_encoder: CLIPTextModelWithProjection, prior_tokenizer: CLIPTokenizer, prior_scheduler: UnCLIPScheduler, prior_image_processor: CLIPImageProcessor, ): super().__init__() self.register_modules( unet=unet, scheduler=scheduler, movq=movq, prior_prior=prior_prior, prior_image_encoder=prior_image_encoder, prior_text_encoder=prior_text_encoder, prior_tokenizer=prior_tokenizer, prior_scheduler=prior_scheduler, prior_image_processor=prior_image_processor, ) self.prior_pipe = KandinskyV22PriorPipeline( prior=prior_prior, image_encoder=prior_image_encoder, text_encoder=prior_text_encoder, tokenizer=prior_tokenizer, scheduler=prior_scheduler, image_processor=prior_image_processor, ) self.decoder_pipe = KandinskyV22Img2ImgPipeline( unet=unet, scheduler=scheduler, movq=movq, ) def enable_xformers_memory_efficient_attention(self, attention_op: Optional[Callable] = None): self.decoder_pipe.enable_xformers_memory_efficient_attention(attention_op) def enable_model_cpu_offload(self, gpu_id: Optional[int] = None, device: Union[torch.device, str] = "cuda"): r""" Offloads all models to CPU using accelerate, reducing memory usage with a low impact on performance. Compared to `enable_sequential_cpu_offload`, this method moves one whole model at a time to the GPU when its `forward` method is called, and the model remains in GPU until the next model runs. Memory savings are lower than with `enable_sequential_cpu_offload`, but performance is much better due to the iterative execution of the `unet`. """ self.prior_pipe.enable_model_cpu_offload(gpu_id=gpu_id, device=device) self.decoder_pipe.enable_model_cpu_offload(gpu_id=gpu_id, device=device) def enable_sequential_cpu_offload(self, gpu_id: Optional[int] = None, device: Union[torch.device, str] = "cuda"): r""" Offloads all models to CPU using accelerate, significantly reducing memory usage. When called, unet, text_encoder, vae and safety checker have their state dicts saved to CPU and then are moved to a `torch.device('meta') and loaded to GPU only when their specific submodule has its `forward` method called. Note that offloading happens on a submodule basis. Memory savings are higher than with `enable_model_cpu_offload`, but performance is lower. """ self.prior_pipe.enable_sequential_cpu_offload(gpu_id=gpu_id, device=device) self.decoder_pipe.enable_sequential_cpu_offload(gpu_id=gpu_id, device=device) def progress_bar(self, iterable=None, total=None): self.prior_pipe.progress_bar(iterable=iterable, total=total) self.decoder_pipe.progress_bar(iterable=iterable, total=total) self.decoder_pipe.enable_model_cpu_offload() def set_progress_bar_config(self, **kwargs): self.prior_pipe.set_progress_bar_config(**kwargs) self.decoder_pipe.set_progress_bar_config(**kwargs) @torch.no_grad() @replace_example_docstring(IMAGE2IMAGE_EXAMPLE_DOC_STRING) def __call__( self, prompt: Union[str, List[str]], image: Union[torch.FloatTensor, PIL.Image.Image, List[torch.FloatTensor], List[PIL.Image.Image]], negative_prompt: Optional[Union[str, List[str]]] = None, num_inference_steps: int = 100, guidance_scale: float = 4.0, strength: float = 0.3, num_images_per_prompt: int = 1, height: int = 512, width: int = 512, prior_guidance_scale: float = 4.0, prior_num_inference_steps: int = 25, generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None, latents: Optional[torch.FloatTensor] = None, output_type: Optional[str] = "pil", callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None, callback_steps: int = 1, return_dict: bool = True, prior_callback_on_step_end: Optional[Callable[[int, int, Dict], None]] = None, prior_callback_on_step_end_tensor_inputs: List[str] = ["latents"], callback_on_step_end: Optional[Callable[[int, int, Dict], None]] = None, callback_on_step_end_tensor_inputs: List[str] = ["latents"], ): """ Function invoked when calling the pipeline for generation. Args: prompt (`str` or `List[str]`): The prompt or prompts to guide the image generation. image (`torch.FloatTensor`, `PIL.Image.Image`, `np.ndarray`, `List[torch.FloatTensor]`, `List[PIL.Image.Image]`, or `List[np.ndarray]`): `Image`, or tensor representing an image batch, that will be used as the starting point for the process. Can also accept image latents as `image`, if passing latents directly, it will not be encoded again. negative_prompt (`str` or `List[str]`, *optional*): The prompt or prompts not to guide the image generation. Ignored when not using guidance (i.e., ignored if `guidance_scale` is less than `1`). num_images_per_prompt (`int`, *optional*, defaults to 1): The number of images to generate per prompt. guidance_scale (`float`, *optional*, defaults to 4.0): Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598). `guidance_scale` is defined as `w` of equation 2. of [Imagen Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale > 1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`, usually at the expense of lower image quality. strength (`float`, *optional*, defaults to 0.3): Conceptually, indicates how much to transform the reference `image`. Must be between 0 and 1. `image` will be used as a starting point, adding more noise to it the larger the `strength`. The number of denoising steps depends on the amount of noise initially added. When `strength` is 1, added noise will be maximum and the denoising process will run for the full number of iterations specified in `num_inference_steps`. A value of 1, therefore, essentially ignores `image`. num_inference_steps (`int`, *optional*, defaults to 100): The number of denoising steps. More denoising steps usually lead to a higher quality image at the expense of slower inference. height (`int`, *optional*, defaults to 512): The height in pixels of the generated image. width (`int`, *optional*, defaults to 512): The width in pixels of the generated image. prior_guidance_scale (`float`, *optional*, defaults to 4.0): Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598). `guidance_scale` is defined as `w` of equation 2. of [Imagen Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale > 1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`, usually at the expense of lower image quality. prior_num_inference_steps (`int`, *optional*, defaults to 100): The number of denoising steps. More denoising steps usually lead to a higher quality image at the expense of slower inference. generator (`torch.Generator` or `List[torch.Generator]`, *optional*): One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make generation deterministic. latents (`torch.FloatTensor`, *optional*): Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image generation. Can be used to tweak the same generation with different prompts. If not provided, a latents tensor will ge generated by sampling using the supplied random `generator`. output_type (`str`, *optional*, defaults to `"pil"`): The output format of the generate image. Choose between: `"pil"` (`PIL.Image.Image`), `"np"` (`np.array`) or `"pt"` (`torch.Tensor`). callback (`Callable`, *optional*): A function that calls every `callback_steps` steps during inference. The function is called with the following arguments: `callback(step: int, timestep: int, latents: torch.FloatTensor)`. callback_steps (`int`, *optional*, defaults to 1): The frequency at which the `callback` function is called. If not specified, the callback is called at every step. return_dict (`bool`, *optional*, defaults to `True`): Whether or not to return a [`~pipelines.ImagePipelineOutput`] instead of a plain tuple. Examples: Returns: [`~pipelines.ImagePipelineOutput`] or `tuple` """ prior_outputs = self.prior_pipe( prompt=prompt, negative_prompt=negative_prompt, num_images_per_prompt=num_images_per_prompt, num_inference_steps=prior_num_inference_steps, generator=generator, latents=latents, guidance_scale=prior_guidance_scale, output_type="pt", return_dict=False, callback_on_step_end=prior_callback_on_step_end, callback_on_step_end_tensor_inputs=prior_callback_on_step_end_tensor_inputs, ) image_embeds = prior_outputs[0] negative_image_embeds = prior_outputs[1] prompt = [prompt] if not isinstance(prompt, (list, tuple)) else prompt image = [image] if isinstance(prompt, PIL.Image.Image) else image if len(prompt) < image_embeds.shape[0] and image_embeds.shape[0] % len(prompt) == 0: prompt = (image_embeds.shape[0] // len(prompt)) * prompt if ( isinstance(image, (list, tuple)) and len(image) < image_embeds.shape[0] and image_embeds.shape[0] % len(image) == 0 ): image = (image_embeds.shape[0] // len(image)) * image outputs = self.decoder_pipe( image=image, image_embeds=image_embeds, negative_image_embeds=negative_image_embeds, width=width, height=height, strength=strength, num_inference_steps=num_inference_steps, generator=generator, guidance_scale=guidance_scale, output_type=output_type, callback=callback, callback_steps=callback_steps, return_dict=return_dict, callback_on_step_end=callback_on_step_end, callback_on_step_end_tensor_inputs=callback_on_step_end_tensor_inputs, ) self.maybe_free_model_hooks() return outputs class KandinskyV22InpaintCombinedPipeline(DiffusionPipeline): """ Combined Pipeline for inpainting generation using Kandinsky This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods the library implements for all the pipelines (such as downloading or saving, running on a particular device, etc.) Args: scheduler (Union[`DDIMScheduler`,`DDPMScheduler`]): A scheduler to be used in combination with `unet` to generate image latents. unet ([`UNet2DConditionModel`]): Conditional U-Net architecture to denoise the image embedding. movq ([`VQModel`]): MoVQ Decoder to generate the image from the latents. prior_prior ([`PriorTransformer`]): The canonical unCLIP prior to approximate the image embedding from the text embedding. prior_image_encoder ([`CLIPVisionModelWithProjection`]): Frozen image-encoder. prior_text_encoder ([`CLIPTextModelWithProjection`]): Frozen text-encoder. prior_tokenizer (`CLIPTokenizer`): Tokenizer of class [CLIPTokenizer](https://huggingface.co./docs/transformers/v4.21.0/en/model_doc/clip#transformers.CLIPTokenizer). prior_scheduler ([`UnCLIPScheduler`]): A scheduler to be used in combination with `prior` to generate image embedding. prior_image_processor ([`CLIPImageProcessor`]): A image_processor to be used to preprocess image from clip. """ model_cpu_offload_seq = "prior_text_encoder->prior_image_encoder->unet->movq" _load_connected_pipes = True _exclude_from_cpu_offload = ["prior_prior"] def __init__( self, unet: UNet2DConditionModel, scheduler: DDPMScheduler, movq: VQModel, prior_prior: PriorTransformer, prior_image_encoder: CLIPVisionModelWithProjection, prior_text_encoder: CLIPTextModelWithProjection, prior_tokenizer: CLIPTokenizer, prior_scheduler: UnCLIPScheduler, prior_image_processor: CLIPImageProcessor, ): super().__init__() self.register_modules( unet=unet, scheduler=scheduler, movq=movq, prior_prior=prior_prior, prior_image_encoder=prior_image_encoder, prior_text_encoder=prior_text_encoder, prior_tokenizer=prior_tokenizer, prior_scheduler=prior_scheduler, prior_image_processor=prior_image_processor, ) self.prior_pipe = KandinskyV22PriorPipeline( prior=prior_prior, image_encoder=prior_image_encoder, text_encoder=prior_text_encoder, tokenizer=prior_tokenizer, scheduler=prior_scheduler, image_processor=prior_image_processor, ) self.decoder_pipe = KandinskyV22InpaintPipeline( unet=unet, scheduler=scheduler, movq=movq, ) def enable_xformers_memory_efficient_attention(self, attention_op: Optional[Callable] = None): self.decoder_pipe.enable_xformers_memory_efficient_attention(attention_op) def enable_sequential_cpu_offload(self, gpu_id: Optional[int] = None, device: Union[torch.device, str] = "cuda"): r""" Offloads all models to CPU using accelerate, significantly reducing memory usage. When called, unet, text_encoder, vae and safety checker have their state dicts saved to CPU and then are moved to a `torch.device('meta') and loaded to GPU only when their specific submodule has its `forward` method called. Note that offloading happens on a submodule basis. Memory savings are higher than with `enable_model_cpu_offload`, but performance is lower. """ self.prior_pipe.enable_sequential_cpu_offload(gpu_id=gpu_id, device=device) self.decoder_pipe.enable_sequential_cpu_offload(gpu_id=gpu_id, device=device) def progress_bar(self, iterable=None, total=None): self.prior_pipe.progress_bar(iterable=iterable, total=total) self.decoder_pipe.progress_bar(iterable=iterable, total=total) self.decoder_pipe.enable_model_cpu_offload() def set_progress_bar_config(self, **kwargs): self.prior_pipe.set_progress_bar_config(**kwargs) self.decoder_pipe.set_progress_bar_config(**kwargs) @torch.no_grad() @replace_example_docstring(INPAINT_EXAMPLE_DOC_STRING) def __call__( self, prompt: Union[str, List[str]], image: Union[torch.FloatTensor, PIL.Image.Image, List[torch.FloatTensor], List[PIL.Image.Image]], mask_image: Union[torch.FloatTensor, PIL.Image.Image, List[torch.FloatTensor], List[PIL.Image.Image]], negative_prompt: Optional[Union[str, List[str]]] = None, num_inference_steps: int = 100, guidance_scale: float = 4.0, num_images_per_prompt: int = 1, height: int = 512, width: int = 512, prior_guidance_scale: float = 4.0, prior_num_inference_steps: int = 25, generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None, latents: Optional[torch.FloatTensor] = None, output_type: Optional[str] = "pil", return_dict: bool = True, prior_callback_on_step_end: Optional[Callable[[int, int, Dict], None]] = None, prior_callback_on_step_end_tensor_inputs: List[str] = ["latents"], callback_on_step_end: Optional[Callable[[int, int, Dict], None]] = None, callback_on_step_end_tensor_inputs: List[str] = ["latents"], **kwargs, ): """ Function invoked when calling the pipeline for generation. Args: prompt (`str` or `List[str]`): The prompt or prompts to guide the image generation. image (`torch.FloatTensor`, `PIL.Image.Image`, `np.ndarray`, `List[torch.FloatTensor]`, `List[PIL.Image.Image]`, or `List[np.ndarray]`): `Image`, or tensor representing an image batch, that will be used as the starting point for the process. Can also accept image latents as `image`, if passing latents directly, it will not be encoded again. mask_image (`np.array`): Tensor representing an image batch, to mask `image`. White pixels in the mask will be repainted, while black pixels will be preserved. If `mask_image` is a PIL image, it will be converted to a single channel (luminance) before use. If it's a tensor, it should contain one color channel (L) instead of 3, so the expected shape would be `(B, H, W, 1)`. negative_prompt (`str` or `List[str]`, *optional*): The prompt or prompts not to guide the image generation. Ignored when not using guidance (i.e., ignored if `guidance_scale` is less than `1`). num_images_per_prompt (`int`, *optional*, defaults to 1): The number of images to generate per prompt. guidance_scale (`float`, *optional*, defaults to 4.0): Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598). `guidance_scale` is defined as `w` of equation 2. of [Imagen Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale > 1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`, usually at the expense of lower image quality. num_inference_steps (`int`, *optional*, defaults to 100): The number of denoising steps. More denoising steps usually lead to a higher quality image at the expense of slower inference. height (`int`, *optional*, defaults to 512): The height in pixels of the generated image. width (`int`, *optional*, defaults to 512): The width in pixels of the generated image. prior_guidance_scale (`float`, *optional*, defaults to 4.0): Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598). `guidance_scale` is defined as `w` of equation 2. of [Imagen Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale > 1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`, usually at the expense of lower image quality. prior_num_inference_steps (`int`, *optional*, defaults to 100): The number of denoising steps. More denoising steps usually lead to a higher quality image at the expense of slower inference. generator (`torch.Generator` or `List[torch.Generator]`, *optional*): One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make generation deterministic. latents (`torch.FloatTensor`, *optional*): Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image generation. Can be used to tweak the same generation with different prompts. If not provided, a latents tensor will ge generated by sampling using the supplied random `generator`. output_type (`str`, *optional*, defaults to `"pil"`): The output format of the generate image. Choose between: `"pil"` (`PIL.Image.Image`), `"np"` (`np.array`) or `"pt"` (`torch.Tensor`). return_dict (`bool`, *optional*, defaults to `True`): Whether or not to return a [`~pipelines.ImagePipelineOutput`] instead of a plain tuple. prior_callback_on_step_end (`Callable`, *optional*): A function that calls at the end of each denoising steps during the inference. The function is called with the following arguments: `prior_callback_on_step_end(self: DiffusionPipeline, step: int, timestep: int, callback_kwargs: Dict)`. prior_callback_on_step_end_tensor_inputs (`List`, *optional*): The list of tensor inputs for the `prior_callback_on_step_end` function. The tensors specified in the list will be passed as `callback_kwargs` argument. You will only be able to include variables listed in the `._callback_tensor_inputs` attribute of your pipeline class. callback_on_step_end (`Callable`, *optional*): A function that calls at the end of each denoising steps during the inference. The function is called with the following arguments: `callback_on_step_end(self: DiffusionPipeline, step: int, timestep: int, callback_kwargs: Dict)`. `callback_kwargs` will include a list of all tensors as specified by `callback_on_step_end_tensor_inputs`. callback_on_step_end_tensor_inputs (`List`, *optional*): The list of tensor inputs for the `callback_on_step_end` function. The tensors specified in the list will be passed as `callback_kwargs` argument. You will only be able to include variables listed in the `._callback_tensor_inputs` attribute of your pipeline class. Examples: Returns: [`~pipelines.ImagePipelineOutput`] or `tuple` """ prior_kwargs = {} if kwargs.get("prior_callback", None) is not None: prior_kwargs["callback"] = kwargs.pop("prior_callback") deprecate( "prior_callback", "1.0.0", "Passing `prior_callback` as an input argument to `__call__` is deprecated, consider use `prior_callback_on_step_end`", ) if kwargs.get("prior_callback_steps", None) is not None: deprecate( "prior_callback_steps", "1.0.0", "Passing `prior_callback_steps` as an input argument to `__call__` is deprecated, consider use `prior_callback_on_step_end`", ) prior_kwargs["callback_steps"] = kwargs.pop("prior_callback_steps") prior_outputs = self.prior_pipe( prompt=prompt, negative_prompt=negative_prompt, num_images_per_prompt=num_images_per_prompt, num_inference_steps=prior_num_inference_steps, generator=generator, latents=latents, guidance_scale=prior_guidance_scale, output_type="pt", return_dict=False, callback_on_step_end=prior_callback_on_step_end, callback_on_step_end_tensor_inputs=prior_callback_on_step_end_tensor_inputs, **prior_kwargs, ) image_embeds = prior_outputs[0] negative_image_embeds = prior_outputs[1] prompt = [prompt] if not isinstance(prompt, (list, tuple)) else prompt image = [image] if isinstance(prompt, PIL.Image.Image) else image mask_image = [mask_image] if isinstance(mask_image, PIL.Image.Image) else mask_image if len(prompt) < image_embeds.shape[0] and image_embeds.shape[0] % len(prompt) == 0: prompt = (image_embeds.shape[0] // len(prompt)) * prompt if ( isinstance(image, (list, tuple)) and len(image) < image_embeds.shape[0] and image_embeds.shape[0] % len(image) == 0 ): image = (image_embeds.shape[0] // len(image)) * image if ( isinstance(mask_image, (list, tuple)) and len(mask_image) < image_embeds.shape[0] and image_embeds.shape[0] % len(mask_image) == 0 ): mask_image = (image_embeds.shape[0] // len(mask_image)) * mask_image outputs = self.decoder_pipe( image=image, mask_image=mask_image, image_embeds=image_embeds, negative_image_embeds=negative_image_embeds, width=width, height=height, num_inference_steps=num_inference_steps, generator=generator, guidance_scale=guidance_scale, output_type=output_type, return_dict=return_dict, callback_on_step_end=callback_on_step_end, callback_on_step_end_tensor_inputs=callback_on_step_end_tensor_inputs, **kwargs, ) self.maybe_free_model_hooks() return outputs