# Copy from diffusers.models.attention.py # Copyright 2024 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import Any, Dict, Optional import torch import torch.nn.functional as F from torch import nn from diffusers.utils import deprecate, logging from diffusers.utils.torch_utils import maybe_allow_in_graph from diffusers.models.activations import GEGLU, GELU, ApproximateGELU from diffusers.models.attention_processor import Attention from diffusers.models.embeddings import SinusoidalPositionalEmbedding from diffusers.models.normalization import AdaLayerNorm, AdaLayerNormContinuous, AdaLayerNormZero, RMSNorm from module.min_sdxl import LoRACompatibleLinear, LoRALinearLayer logger = logging.get_logger(__name__) def create_custom_forward(module): def custom_forward(*inputs): return module(*inputs) return custom_forward def maybe_grad_checkpoint(resnet, attn, hidden_states, temb, encoder_hidden_states, adapter_hidden_states, do_ckpt=True): if do_ckpt: hidden_states = torch.utils.checkpoint.checkpoint(create_custom_forward(resnet), hidden_states, temb) hidden_states, extracted_kv = torch.utils.checkpoint.checkpoint( create_custom_forward(attn), hidden_states, encoder_hidden_states, adapter_hidden_states, use_reentrant=False ) else: hidden_states = resnet(hidden_states, temb) hidden_states, extracted_kv = attn( hidden_states, encoder_hidden_states=encoder_hidden_states, adapter_hidden_states=adapter_hidden_states, ) return hidden_states, extracted_kv def init_lora_in_attn(attn_module, rank: int = 4, is_kvcopy=False): # Set the `lora_layer` attribute of the attention-related matrices. attn_module.to_k.set_lora_layer( LoRALinearLayer( in_features=attn_module.to_k.in_features, out_features=attn_module.to_k.out_features, rank=rank ) ) attn_module.to_v.set_lora_layer( LoRALinearLayer( in_features=attn_module.to_v.in_features, out_features=attn_module.to_v.out_features, rank=rank ) ) if not is_kvcopy: attn_module.to_q.set_lora_layer( LoRALinearLayer( in_features=attn_module.to_q.in_features, out_features=attn_module.to_q.out_features, rank=rank ) ) attn_module.to_out[0].set_lora_layer( LoRALinearLayer( in_features=attn_module.to_out[0].in_features, out_features=attn_module.to_out[0].out_features, rank=rank, ) ) def drop_kvs(encoder_kvs, drop_chance): for layer in encoder_kvs: len_tokens = encoder_kvs[layer].self_attention.k.shape[1] idx_to_keep = (torch.rand(len_tokens) > drop_chance) encoder_kvs[layer].self_attention.k = encoder_kvs[layer].self_attention.k[:, idx_to_keep] encoder_kvs[layer].self_attention.v = encoder_kvs[layer].self_attention.v[:, idx_to_keep] return encoder_kvs def clone_kvs(encoder_kvs): cloned_kvs = {} for layer in encoder_kvs: sa_cpy = KVCache(k=encoder_kvs[layer].self_attention.k.clone(), v=encoder_kvs[layer].self_attention.v.clone()) ca_cpy = KVCache(k=encoder_kvs[layer].cross_attention.k.clone(), v=encoder_kvs[layer].cross_attention.v.clone()) cloned_layer_cache = AttentionCache(self_attention=sa_cpy, cross_attention=ca_cpy) cloned_kvs[layer] = cloned_layer_cache return cloned_kvs class KVCache(object): def __init__(self, k, v): self.k = k self.v = v class AttentionCache(object): def __init__(self, self_attention: KVCache, cross_attention: KVCache): self.self_attention = self_attention self.cross_attention = cross_attention class KVCopy(nn.Module): def __init__( self, inner_dim, cross_attention_dim=None, ): super(KVCopy, self).__init__() in_dim = cross_attention_dim or inner_dim self.to_k = LoRACompatibleLinear(in_dim, inner_dim, bias=False) self.to_v = LoRACompatibleLinear(in_dim, inner_dim, bias=False) def forward(self, hidden_states): k = self.to_k(hidden_states) v = self.to_v(hidden_states) return KVCache(k=k, v=v) def init_kv_copy(self, source_attn): with torch.no_grad(): self.to_k.weight.copy_(source_attn.to_k.weight) self.to_v.weight.copy_(source_attn.to_v.weight) class FeedForward(nn.Module): r""" A feed-forward layer. Parameters: dim (`int`): The number of channels in the input. dim_out (`int`, *optional*): The number of channels in the output. If not given, defaults to `dim`. mult (`int`, *optional*, defaults to 4): The multiplier to use for the hidden dimension. dropout (`float`, *optional*, defaults to 0.0): The dropout probability to use. activation_fn (`str`, *optional*, defaults to `"geglu"`): Activation function to be used in feed-forward. final_dropout (`bool` *optional*, defaults to False): Apply a final dropout. bias (`bool`, defaults to True): Whether to use a bias in the linear layer. """ def __init__( self, dim: int, dim_out: Optional[int] = None, mult: int = 4, dropout: float = 0.0, activation_fn: str = "geglu", final_dropout: bool = False, inner_dim=None, bias: bool = True, ): super().__init__() if inner_dim is None: inner_dim = int(dim * mult) dim_out = dim_out if dim_out is not None else dim if activation_fn == "gelu": act_fn = GELU(dim, inner_dim, bias=bias) if activation_fn == "gelu-approximate": act_fn = GELU(dim, inner_dim, approximate="tanh", bias=bias) elif activation_fn == "geglu": act_fn = GEGLU(dim, inner_dim, bias=bias) elif activation_fn == "geglu-approximate": act_fn = ApproximateGELU(dim, inner_dim, bias=bias) self.net = nn.ModuleList([]) # project in self.net.append(act_fn) # project dropout self.net.append(nn.Dropout(dropout)) # project out self.net.append(nn.Linear(inner_dim, dim_out, bias=bias)) # FF as used in Vision Transformer, MLP-Mixer, etc. have a final dropout if final_dropout: self.net.append(nn.Dropout(dropout)) def forward(self, hidden_states: torch.Tensor, *args, **kwargs) -> torch.Tensor: if len(args) > 0 or kwargs.get("scale", None) is not None: deprecation_message = "The `scale` argument is deprecated and will be ignored. Please remove it, as passing it will raise an error in the future. `scale` should directly be passed while calling the underlying pipeline component i.e., via `cross_attention_kwargs`." deprecate("scale", "1.0.0", deprecation_message) for module in self.net: hidden_states = module(hidden_states) return hidden_states def _chunked_feed_forward(ff: nn.Module, hidden_states: torch.Tensor, chunk_dim: int, chunk_size: int): # "feed_forward_chunk_size" can be used to save memory if hidden_states.shape[chunk_dim] % chunk_size != 0: raise ValueError( f"`hidden_states` dimension to be chunked: {hidden_states.shape[chunk_dim]} has to be divisible by chunk size: {chunk_size}. Make sure to set an appropriate `chunk_size` when calling `unet.enable_forward_chunking`." ) num_chunks = hidden_states.shape[chunk_dim] // chunk_size ff_output = torch.cat( [ff(hid_slice) for hid_slice in hidden_states.chunk(num_chunks, dim=chunk_dim)], dim=chunk_dim, ) return ff_output @maybe_allow_in_graph class GatedSelfAttentionDense(nn.Module): r""" A gated self-attention dense layer that combines visual features and object features. Parameters: query_dim (`int`): The number of channels in the query. context_dim (`int`): The number of channels in the context. n_heads (`int`): The number of heads to use for attention. d_head (`int`): The number of channels in each head. """ def __init__(self, query_dim: int, context_dim: int, n_heads: int, d_head: int): super().__init__() # we need a linear projection since we need cat visual feature and obj feature self.linear = nn.Linear(context_dim, query_dim) self.attn = Attention(query_dim=query_dim, heads=n_heads, dim_head=d_head) self.ff = FeedForward(query_dim, activation_fn="geglu") self.norm1 = nn.LayerNorm(query_dim) self.norm2 = nn.LayerNorm(query_dim) self.register_parameter("alpha_attn", nn.Parameter(torch.tensor(0.0))) self.register_parameter("alpha_dense", nn.Parameter(torch.tensor(0.0))) self.enabled = True def forward(self, x: torch.Tensor, objs: torch.Tensor) -> torch.Tensor: if not self.enabled: return x n_visual = x.shape[1] objs = self.linear(objs) x = x + self.alpha_attn.tanh() * self.attn(self.norm1(torch.cat([x, objs], dim=1)))[:, :n_visual, :] x = x + self.alpha_dense.tanh() * self.ff(self.norm2(x)) return x