Spaces:
Starting
on
Zero
Starting
on
Zero
import torch | |
from collections import namedtuple, OrderedDict | |
from safetensors import safe_open | |
from .attention_processor import init_attn_proc | |
from .ip_adapter import MultiIPAdapterImageProjection | |
from .resampler import Resampler | |
from transformers import ( | |
AutoModel, AutoImageProcessor, | |
CLIPVisionModelWithProjection, CLIPImageProcessor) | |
def init_adapter_in_unet( | |
unet, | |
image_proj_model=None, | |
pretrained_model_path_or_dict=None, | |
adapter_tokens=64, | |
embedding_dim=None, | |
use_lcm=False, | |
use_adaln=True, | |
): | |
device = unet.device | |
dtype = unet.dtype | |
if image_proj_model is None: | |
assert embedding_dim is not None, "embedding_dim must be provided if image_proj_model is None." | |
image_proj_model = Resampler( | |
embedding_dim=embedding_dim, | |
output_dim=unet.config.cross_attention_dim, | |
num_queries=adapter_tokens, | |
) | |
if pretrained_model_path_or_dict is not None: | |
if not isinstance(pretrained_model_path_or_dict, dict): | |
if pretrained_model_path_or_dict.endswith(".safetensors"): | |
state_dict = {"image_proj": {}, "ip_adapter": {}} | |
with safe_open(pretrained_model_path_or_dict, framework="pt", device=unet.device) as f: | |
for key in f.keys(): | |
if key.startswith("image_proj."): | |
state_dict["image_proj"][key.replace("image_proj.", "")] = f.get_tensor(key) | |
elif key.startswith("ip_adapter."): | |
state_dict["ip_adapter"][key.replace("ip_adapter.", "")] = f.get_tensor(key) | |
else: | |
state_dict = torch.load(pretrained_model_path_or_dict, map_location=unet.device) | |
else: | |
state_dict = pretrained_model_path_or_dict | |
keys = list(state_dict.keys()) | |
if "image_proj" not in keys and "ip_adapter" not in keys: | |
state_dict = revise_state_dict(state_dict) | |
# Creat IP cross-attention in unet. | |
attn_procs = init_attn_proc(unet, adapter_tokens, use_lcm, use_adaln) | |
unet.set_attn_processor(attn_procs) | |
# Load pretrinaed model if needed. | |
if pretrained_model_path_or_dict is not None: | |
if "ip_adapter" in state_dict.keys(): | |
adapter_modules = torch.nn.ModuleList(unet.attn_processors.values()) | |
missing, unexpected = adapter_modules.load_state_dict(state_dict["ip_adapter"], strict=False) | |
for mk in missing: | |
if "ln" not in mk: | |
raise ValueError(f"Missing keys in adapter_modules: {missing}") | |
if "image_proj" in state_dict.keys(): | |
image_proj_model.load_state_dict(state_dict["image_proj"]) | |
# Load image projectors into iterable ModuleList. | |
image_projection_layers = [] | |
image_projection_layers.append(image_proj_model) | |
unet.encoder_hid_proj = MultiIPAdapterImageProjection(image_projection_layers) | |
# Adjust unet config to handle addtional ip hidden states. | |
unet.config.encoder_hid_dim_type = "ip_image_proj" | |
unet.to(dtype=dtype, device=device) | |
def load_adapter_to_pipe( | |
pipe, | |
pretrained_model_path_or_dict, | |
image_encoder_or_path=None, | |
feature_extractor_or_path=None, | |
use_clip_encoder=False, | |
adapter_tokens=64, | |
use_lcm=False, | |
use_adaln=True, | |
): | |
if not isinstance(pretrained_model_path_or_dict, dict): | |
if pretrained_model_path_or_dict.endswith(".safetensors"): | |
state_dict = {"image_proj": {}, "ip_adapter": {}} | |
with safe_open(pretrained_model_path_or_dict, framework="pt", device=pipe.device) as f: | |
for key in f.keys(): | |
if key.startswith("image_proj."): | |
state_dict["image_proj"][key.replace("image_proj.", "")] = f.get_tensor(key) | |
elif key.startswith("ip_adapter."): | |
state_dict["ip_adapter"][key.replace("ip_adapter.", "")] = f.get_tensor(key) | |
else: | |
state_dict = torch.load(pretrained_model_path_or_dict, map_location=pipe.device) | |
else: | |
state_dict = pretrained_model_path_or_dict | |
keys = list(state_dict.keys()) | |
if "image_proj" not in keys and "ip_adapter" not in keys: | |
state_dict = revise_state_dict(state_dict) | |
# load CLIP image encoder here if it has not been registered to the pipeline yet | |
if image_encoder_or_path is not None: | |
if isinstance(image_encoder_or_path, str): | |
feature_extractor_or_path = image_encoder_or_path if feature_extractor_or_path is None else feature_extractor_or_path | |
image_encoder_or_path = ( | |
CLIPVisionModelWithProjection.from_pretrained( | |
image_encoder_or_path | |
) if use_clip_encoder else | |
AutoModel.from_pretrained(image_encoder_or_path) | |
) | |
if feature_extractor_or_path is not None: | |
if isinstance(feature_extractor_or_path, str): | |
feature_extractor_or_path = ( | |
CLIPImageProcessor() if use_clip_encoder else | |
AutoImageProcessor.from_pretrained(feature_extractor_or_path) | |
) | |
# create image encoder if it has not been registered to the pipeline yet | |
if hasattr(pipe, "image_encoder") and getattr(pipe, "image_encoder", None) is None: | |
image_encoder = image_encoder_or_path.to(pipe.device, dtype=pipe.dtype) | |
pipe.register_modules(image_encoder=image_encoder) | |
else: | |
image_encoder = pipe.image_encoder | |
# create feature extractor if it has not been registered to the pipeline yet | |
if hasattr(pipe, "feature_extractor") and getattr(pipe, "feature_extractor", None) is None: | |
feature_extractor = feature_extractor_or_path | |
pipe.register_modules(feature_extractor=feature_extractor) | |
else: | |
feature_extractor = pipe.feature_extractor | |
# load adapter into unet | |
unet = getattr(pipe, pipe.unet_name) if not hasattr(pipe, "unet") else pipe.unet | |
attn_procs = init_attn_proc(unet, adapter_tokens, use_lcm, use_adaln) | |
unet.set_attn_processor(attn_procs) | |
image_proj_model = Resampler( | |
embedding_dim=image_encoder.config.hidden_size, | |
output_dim=unet.config.cross_attention_dim, | |
num_queries=adapter_tokens, | |
) | |
# Load pretrinaed model if needed. | |
if "ip_adapter" in state_dict.keys(): | |
adapter_modules = torch.nn.ModuleList(unet.attn_processors.values()) | |
missing, unexpected = adapter_modules.load_state_dict(state_dict["ip_adapter"], strict=False) | |
for mk in missing: | |
if "ln" not in mk: | |
raise ValueError(f"Missing keys in adapter_modules: {missing}") | |
if "image_proj" in state_dict.keys(): | |
image_proj_model.load_state_dict(state_dict["image_proj"]) | |
# convert IP-Adapter Image Projection layers to diffusers | |
image_projection_layers = [] | |
image_projection_layers.append(image_proj_model) | |
unet.encoder_hid_proj = MultiIPAdapterImageProjection(image_projection_layers) | |
# Adjust unet config to handle addtional ip hidden states. | |
unet.config.encoder_hid_dim_type = "ip_image_proj" | |
unet.to(dtype=pipe.dtype, device=pipe.device) | |
def revise_state_dict(old_state_dict_or_path, map_location="cpu"): | |
new_state_dict = OrderedDict() | |
new_state_dict["image_proj"] = OrderedDict() | |
new_state_dict["ip_adapter"] = OrderedDict() | |
if isinstance(old_state_dict_or_path, str): | |
old_state_dict = torch.load(old_state_dict_or_path, map_location=map_location) | |
else: | |
old_state_dict = old_state_dict_or_path | |
for name, weight in old_state_dict.items(): | |
if name.startswith("image_proj_model."): | |
new_state_dict["image_proj"][name[len("image_proj_model."):]] = weight | |
elif name.startswith("adapter_modules."): | |
new_state_dict["ip_adapter"][name[len("adapter_modules."):]] = weight | |
return new_state_dict | |
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.encode_image | |
def encode_image(image_encoder, feature_extractor, image, device, num_images_per_prompt, output_hidden_states=None): | |
dtype = next(image_encoder.parameters()).dtype | |
if not isinstance(image, torch.Tensor): | |
image = feature_extractor(image, return_tensors="pt").pixel_values | |
image = image.to(device=device, dtype=dtype) | |
if output_hidden_states: | |
image_enc_hidden_states = image_encoder(image, output_hidden_states=True).hidden_states[-2] | |
image_enc_hidden_states = image_enc_hidden_states.repeat_interleave(num_images_per_prompt, dim=0) | |
return image_enc_hidden_states | |
else: | |
if isinstance(image_encoder, CLIPVisionModelWithProjection): | |
# CLIP image encoder. | |
image_embeds = image_encoder(image).image_embeds | |
else: | |
# DINO image encoder. | |
image_embeds = image_encoder(image).last_hidden_state | |
image_embeds = image_embeds.repeat_interleave(num_images_per_prompt, dim=0) | |
return image_embeds | |
def prepare_training_image_embeds( | |
image_encoder, feature_extractor, | |
ip_adapter_image, ip_adapter_image_embeds, | |
device, drop_rate, output_hidden_state, idx_to_replace=None | |
): | |
if ip_adapter_image_embeds is None: | |
if not isinstance(ip_adapter_image, list): | |
ip_adapter_image = [ip_adapter_image] | |
# if len(ip_adapter_image) != len(unet.encoder_hid_proj.image_projection_layers): | |
# raise ValueError( | |
# f"`ip_adapter_image` must have same length as the number of IP Adapters. Got {len(ip_adapter_image)} images and {len(unet.encoder_hid_proj.image_projection_layers)} IP Adapters." | |
# ) | |
image_embeds = [] | |
for single_ip_adapter_image in ip_adapter_image: | |
if idx_to_replace is None: | |
idx_to_replace = torch.rand(len(single_ip_adapter_image)) < drop_rate | |
zero_ip_adapter_image = torch.zeros_like(single_ip_adapter_image) | |
single_ip_adapter_image[idx_to_replace] = zero_ip_adapter_image[idx_to_replace] | |
single_image_embeds = encode_image( | |
image_encoder, feature_extractor, single_ip_adapter_image, device, 1, output_hidden_state | |
) | |
single_image_embeds = torch.stack([single_image_embeds], dim=1) # FIXME | |
image_embeds.append(single_image_embeds) | |
else: | |
repeat_dims = [1] | |
image_embeds = [] | |
for single_image_embeds in ip_adapter_image_embeds: | |
if do_classifier_free_guidance: | |
single_negative_image_embeds, single_image_embeds = single_image_embeds.chunk(2) | |
single_image_embeds = single_image_embeds.repeat( | |
num_images_per_prompt, *(repeat_dims * len(single_image_embeds.shape[1:])) | |
) | |
single_negative_image_embeds = single_negative_image_embeds.repeat( | |
num_images_per_prompt, *(repeat_dims * len(single_negative_image_embeds.shape[1:])) | |
) | |
single_image_embeds = torch.cat([single_negative_image_embeds, single_image_embeds]) | |
else: | |
single_image_embeds = single_image_embeds.repeat( | |
num_images_per_prompt, *(repeat_dims * len(single_image_embeds.shape[1:])) | |
) | |
image_embeds.append(single_image_embeds) | |
return image_embeds |