InstantIR / module /ip_adapter /attention_processor.py
JOY-Huang's picture
update repo
b4cad83
# modified from https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py
import torch
import torch.nn as nn
import torch.nn.functional as F
class AdaLayerNorm(nn.Module):
def __init__(self, embedding_dim: int, time_embedding_dim: int = None):
super().__init__()
if time_embedding_dim is None:
time_embedding_dim = embedding_dim
self.silu = nn.SiLU()
self.linear = nn.Linear(time_embedding_dim, 2 * embedding_dim, bias=True)
nn.init.zeros_(self.linear.weight)
nn.init.zeros_(self.linear.bias)
self.norm = nn.LayerNorm(embedding_dim, elementwise_affine=False, eps=1e-6)
def forward(
self, x: torch.Tensor, timestep_embedding: torch.Tensor
):
emb = self.linear(self.silu(timestep_embedding))
shift, scale = emb.view(len(x), 1, -1).chunk(2, dim=-1)
x = self.norm(x) * (1 + scale) + shift
return x
class AttnProcessor(nn.Module):
r"""
Default processor for performing attention-related computations.
"""
def __init__(
self,
hidden_size=None,
cross_attention_dim=None,
):
super().__init__()
def __call__(
self,
attn,
hidden_states,
encoder_hidden_states=None,
attention_mask=None,
temb=None,
):
residual = hidden_states
if attn.spatial_norm is not None:
hidden_states = attn.spatial_norm(hidden_states, temb)
input_ndim = hidden_states.ndim
if input_ndim == 4:
batch_size, channel, height, width = hidden_states.shape
hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2)
batch_size, sequence_length, _ = (
hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape
)
attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size)
if attn.group_norm is not None:
hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2)
query = attn.to_q(hidden_states)
if encoder_hidden_states is None:
encoder_hidden_states = hidden_states
elif attn.norm_cross:
encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states)
key = attn.to_k(encoder_hidden_states)
value = attn.to_v(encoder_hidden_states)
query = attn.head_to_batch_dim(query)
key = attn.head_to_batch_dim(key)
value = attn.head_to_batch_dim(value)
attention_probs = attn.get_attention_scores(query, key, attention_mask)
hidden_states = torch.bmm(attention_probs, value)
hidden_states = attn.batch_to_head_dim(hidden_states)
# linear proj
hidden_states = attn.to_out[0](hidden_states)
# dropout
hidden_states = attn.to_out[1](hidden_states)
if input_ndim == 4:
hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width)
if attn.residual_connection:
hidden_states = hidden_states + residual
hidden_states = hidden_states / attn.rescale_output_factor
return hidden_states
class IPAttnProcessor(nn.Module):
r"""
Attention processor for IP-Adapater.
Args:
hidden_size (`int`):
The hidden size of the attention layer.
cross_attention_dim (`int`):
The number of channels in the `encoder_hidden_states`.
scale (`float`, defaults to 1.0):
the weight scale of image prompt.
num_tokens (`int`, defaults to 4 when do ip_adapter_plus it should be 16):
The context length of the image features.
"""
def __init__(self, hidden_size, cross_attention_dim=None, scale=1.0, num_tokens=4):
super().__init__()
self.hidden_size = hidden_size
self.cross_attention_dim = cross_attention_dim
self.scale = scale
self.num_tokens = num_tokens
self.to_k_ip = nn.Linear(cross_attention_dim or hidden_size, hidden_size, bias=False)
self.to_v_ip = nn.Linear(cross_attention_dim or hidden_size, hidden_size, bias=False)
def __call__(
self,
attn,
hidden_states,
encoder_hidden_states=None,
attention_mask=None,
temb=None,
):
residual = hidden_states
if attn.spatial_norm is not None:
hidden_states = attn.spatial_norm(hidden_states, temb)
input_ndim = hidden_states.ndim
if input_ndim == 4:
batch_size, channel, height, width = hidden_states.shape
hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2)
batch_size, sequence_length, _ = (
hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape
)
attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size)
if attn.group_norm is not None:
hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2)
query = attn.to_q(hidden_states)
if encoder_hidden_states is None:
encoder_hidden_states = hidden_states
else:
# get encoder_hidden_states, ip_hidden_states
end_pos = encoder_hidden_states.shape[1] - self.num_tokens
encoder_hidden_states, ip_hidden_states = (
encoder_hidden_states[:, :end_pos, :],
encoder_hidden_states[:, end_pos:, :],
)
if attn.norm_cross:
encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states)
key = attn.to_k(encoder_hidden_states)
value = attn.to_v(encoder_hidden_states)
query = attn.head_to_batch_dim(query)
key = attn.head_to_batch_dim(key)
value = attn.head_to_batch_dim(value)
attention_probs = attn.get_attention_scores(query, key, attention_mask)
hidden_states = torch.bmm(attention_probs, value)
hidden_states = attn.batch_to_head_dim(hidden_states)
# for ip-adapter
ip_key = self.to_k_ip(ip_hidden_states)
ip_value = self.to_v_ip(ip_hidden_states)
ip_key = attn.head_to_batch_dim(ip_key)
ip_value = attn.head_to_batch_dim(ip_value)
ip_attention_probs = attn.get_attention_scores(query, ip_key, None)
ip_hidden_states = torch.bmm(ip_attention_probs, ip_value)
ip_hidden_states = attn.batch_to_head_dim(ip_hidden_states)
hidden_states = hidden_states + self.scale * ip_hidden_states
# linear proj
hidden_states = attn.to_out[0](hidden_states)
# dropout
hidden_states = attn.to_out[1](hidden_states)
if input_ndim == 4:
hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width)
if attn.residual_connection:
hidden_states = hidden_states + residual
hidden_states = hidden_states / attn.rescale_output_factor
return hidden_states
class TA_IPAttnProcessor(nn.Module):
r"""
Attention processor for IP-Adapater.
Args:
hidden_size (`int`):
The hidden size of the attention layer.
cross_attention_dim (`int`):
The number of channels in the `encoder_hidden_states`.
scale (`float`, defaults to 1.0):
the weight scale of image prompt.
num_tokens (`int`, defaults to 4 when do ip_adapter_plus it should be 16):
The context length of the image features.
"""
def __init__(self, hidden_size, cross_attention_dim=None, time_embedding_dim: int = None, scale=1.0, num_tokens=4):
super().__init__()
self.hidden_size = hidden_size
self.cross_attention_dim = cross_attention_dim
self.scale = scale
self.num_tokens = num_tokens
self.to_k_ip = nn.Linear(cross_attention_dim or hidden_size, hidden_size, bias=False)
self.to_v_ip = nn.Linear(cross_attention_dim or hidden_size, hidden_size, bias=False)
self.ln_k_ip = AdaLayerNorm(hidden_size, time_embedding_dim)
self.ln_v_ip = AdaLayerNorm(hidden_size, time_embedding_dim)
def __call__(
self,
attn,
hidden_states,
encoder_hidden_states=None,
attention_mask=None,
temb=None,
):
assert temb is not None, "Timestep embedding is needed for a time-aware attention processor."
residual = hidden_states
if attn.spatial_norm is not None:
hidden_states = attn.spatial_norm(hidden_states, temb)
input_ndim = hidden_states.ndim
if input_ndim == 4:
batch_size, channel, height, width = hidden_states.shape
hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2)
batch_size, sequence_length, _ = (
hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape
)
attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size)
if attn.group_norm is not None:
hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2)
query = attn.to_q(hidden_states)
if encoder_hidden_states is None:
encoder_hidden_states = hidden_states
else:
# get encoder_hidden_states, ip_hidden_states
end_pos = encoder_hidden_states.shape[1] - self.num_tokens
encoder_hidden_states, ip_hidden_states = (
encoder_hidden_states[:, :end_pos, :],
encoder_hidden_states[:, end_pos:, :],
)
if attn.norm_cross:
encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states)
key = attn.to_k(encoder_hidden_states)
value = attn.to_v(encoder_hidden_states)
query = attn.head_to_batch_dim(query)
key = attn.head_to_batch_dim(key)
value = attn.head_to_batch_dim(value)
attention_probs = attn.get_attention_scores(query, key, attention_mask)
hidden_states = torch.bmm(attention_probs, value)
hidden_states = attn.batch_to_head_dim(hidden_states)
# for ip-adapter
ip_key = self.to_k_ip(ip_hidden_states)
ip_value = self.to_v_ip(ip_hidden_states)
# time-dependent adaLN
ip_key = self.ln_k_ip(ip_key, temb)
ip_value = self.ln_v_ip(ip_value, temb)
ip_key = attn.head_to_batch_dim(ip_key)
ip_value = attn.head_to_batch_dim(ip_value)
ip_attention_probs = attn.get_attention_scores(query, ip_key, None)
ip_hidden_states = torch.bmm(ip_attention_probs, ip_value)
ip_hidden_states = attn.batch_to_head_dim(ip_hidden_states)
hidden_states = hidden_states + self.scale * ip_hidden_states
# linear proj
hidden_states = attn.to_out[0](hidden_states)
# dropout
hidden_states = attn.to_out[1](hidden_states)
if input_ndim == 4:
hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width)
if attn.residual_connection:
hidden_states = hidden_states + residual
hidden_states = hidden_states / attn.rescale_output_factor
return hidden_states
class AttnProcessor2_0(torch.nn.Module):
r"""
Processor for implementing scaled dot-product attention (enabled by default if you're using PyTorch 2.0).
"""
def __init__(
self,
hidden_size=None,
cross_attention_dim=None,
):
super().__init__()
if not hasattr(F, "scaled_dot_product_attention"):
raise ImportError("AttnProcessor2_0 requires PyTorch 2.0, to use it, please upgrade PyTorch to 2.0.")
def __call__(
self,
attn,
hidden_states,
encoder_hidden_states=None,
attention_mask=None,
external_kv=None,
temb=None,
):
residual = hidden_states
if attn.spatial_norm is not None:
hidden_states = attn.spatial_norm(hidden_states, temb)
input_ndim = hidden_states.ndim
if input_ndim == 4:
batch_size, channel, height, width = hidden_states.shape
hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2)
batch_size, sequence_length, _ = (
hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape
)
if attention_mask is not None:
attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size)
# scaled_dot_product_attention expects attention_mask shape to be
# (batch, heads, source_length, target_length)
attention_mask = attention_mask.view(batch_size, attn.heads, -1, attention_mask.shape[-1])
if attn.group_norm is not None:
hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2)
query = attn.to_q(hidden_states)
if encoder_hidden_states is None:
encoder_hidden_states = hidden_states
elif attn.norm_cross:
encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states)
key = attn.to_k(encoder_hidden_states)
value = attn.to_v(encoder_hidden_states)
if external_kv:
key = torch.cat([key, external_kv.k], axis=1)
value = torch.cat([value, external_kv.v], axis=1)
inner_dim = key.shape[-1]
head_dim = inner_dim // attn.heads
query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
# the output of sdp = (batch, num_heads, seq_len, head_dim)
# TODO: add support for attn.scale when we move to Torch 2.1
hidden_states = F.scaled_dot_product_attention(
query, key, value, attn_mask=attention_mask, dropout_p=0.0, is_causal=False
)
hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim)
hidden_states = hidden_states.to(query.dtype)
# linear proj
hidden_states = attn.to_out[0](hidden_states)
# dropout
hidden_states = attn.to_out[1](hidden_states)
if input_ndim == 4:
hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width)
if attn.residual_connection:
hidden_states = hidden_states + residual
hidden_states = hidden_states / attn.rescale_output_factor
return hidden_states
class split_AttnProcessor2_0(torch.nn.Module):
r"""
Processor for implementing scaled dot-product attention (enabled by default if you're using PyTorch 2.0).
"""
def __init__(
self,
hidden_size=None,
cross_attention_dim=None,
time_embedding_dim=None,
):
super().__init__()
if not hasattr(F, "scaled_dot_product_attention"):
raise ImportError("AttnProcessor2_0 requires PyTorch 2.0, to use it, please upgrade PyTorch to 2.0.")
def __call__(
self,
attn,
hidden_states,
encoder_hidden_states=None,
attention_mask=None,
external_kv=None,
temb=None,
cat_dim=-2,
original_shape=None,
):
residual = hidden_states
if attn.spatial_norm is not None:
hidden_states = attn.spatial_norm(hidden_states, temb)
input_ndim = hidden_states.ndim
if input_ndim == 4:
# 2d to sequence.
height, width = hidden_states.shape[-2:]
if cat_dim==-2 or cat_dim==2:
hidden_states_0 = hidden_states[:, :, :height//2, :]
hidden_states_1 = hidden_states[:, :, -(height//2):, :]
elif cat_dim==-1 or cat_dim==3:
hidden_states_0 = hidden_states[:, :, :, :width//2]
hidden_states_1 = hidden_states[:, :, :, -(width//2):]
batch_size, channel, height, width = hidden_states_0.shape
hidden_states_0 = hidden_states_0.view(batch_size, channel, height * width).transpose(1, 2)
hidden_states_1 = hidden_states_1.view(batch_size, channel, height * width).transpose(1, 2)
else:
# directly split sqeuence according to concat dim.
single_dim = original_shape[2] if cat_dim==-2 or cat_dim==2 else original_shape[1]
hidden_states_0 = hidden_states[:, :single_dim*single_dim,:]
hidden_states_1 = hidden_states[:, single_dim*(single_dim+1):,:]
hidden_states = torch.cat([hidden_states_0, hidden_states_1], dim=1)
batch_size, sequence_length, _ = (
hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape
)
if attention_mask is not None:
attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size)
# scaled_dot_product_attention expects attention_mask shape to be
# (batch, heads, source_length, target_length)
attention_mask = attention_mask.view(batch_size, attn.heads, -1, attention_mask.shape[-1])
if attn.group_norm is not None:
hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2)
query = attn.to_q(hidden_states)
key = attn.to_k(hidden_states)
value = attn.to_v(hidden_states)
if external_kv:
key = torch.cat([key, external_kv.k], dim=1)
value = torch.cat([value, external_kv.v], dim=1)
inner_dim = key.shape[-1]
head_dim = inner_dim // attn.heads
query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
# the output of sdp = (batch, num_heads, seq_len, head_dim)
# TODO: add support for attn.scale when we move to Torch 2.1
hidden_states = F.scaled_dot_product_attention(
query, key, value, attn_mask=attention_mask, dropout_p=0.0, is_causal=False
)
hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim)
hidden_states = hidden_states.to(query.dtype)
# linear proj
hidden_states = attn.to_out[0](hidden_states)
# dropout
hidden_states = attn.to_out[1](hidden_states)
# spatially split.
hidden_states_0, hidden_states_1 = hidden_states.chunk(2, dim=1)
if input_ndim == 4:
hidden_states_0 = hidden_states_0.transpose(-1, -2).reshape(batch_size, channel, height, width)
hidden_states_1 = hidden_states_1.transpose(-1, -2).reshape(batch_size, channel, height, width)
if cat_dim==-2 or cat_dim==2:
hidden_states_pad = torch.zeros(batch_size, channel, 1, width)
elif cat_dim==-1 or cat_dim==3:
hidden_states_pad = torch.zeros(batch_size, channel, height, 1)
hidden_states_pad = hidden_states_pad.to(hidden_states_0.device, dtype=hidden_states_0.dtype)
hidden_states = torch.cat([hidden_states_0, hidden_states_pad, hidden_states_1], dim=cat_dim)
assert hidden_states.shape == residual.shape, f"{hidden_states.shape} != {residual.shape}"
else:
batch_size, sequence_length, inner_dim = hidden_states.shape
hidden_states_pad = torch.zeros(batch_size, single_dim, inner_dim)
hidden_states_pad = hidden_states_pad.to(hidden_states_0.device, dtype=hidden_states_0.dtype)
hidden_states = torch.cat([hidden_states_0, hidden_states_pad, hidden_states_1], dim=1)
assert hidden_states.shape == residual.shape, f"{hidden_states.shape} != {residual.shape}"
if attn.residual_connection:
hidden_states = hidden_states + residual
hidden_states = hidden_states / attn.rescale_output_factor
return hidden_states
class sep_split_AttnProcessor2_0(torch.nn.Module):
r"""
Processor for implementing scaled dot-product attention (enabled by default if you're using PyTorch 2.0).
"""
def __init__(
self,
hidden_size=None,
cross_attention_dim=None,
time_embedding_dim=None,
):
super().__init__()
if not hasattr(F, "scaled_dot_product_attention"):
raise ImportError("AttnProcessor2_0 requires PyTorch 2.0, to use it, please upgrade PyTorch to 2.0.")
self.ln_k_ref = AdaLayerNorm(hidden_size, time_embedding_dim)
self.ln_v_ref = AdaLayerNorm(hidden_size, time_embedding_dim)
# self.hidden_size = hidden_size
# self.cross_attention_dim = cross_attention_dim
# self.scale = scale
# self.num_tokens = num_tokens
# self.to_q_ref = nn.Linear(cross_attention_dim or hidden_size, hidden_size, bias=False)
# self.to_k_ref = nn.Linear(cross_attention_dim or hidden_size, hidden_size, bias=False)
# self.to_v_ref = nn.Linear(cross_attention_dim or hidden_size, hidden_size, bias=False)
def __call__(
self,
attn,
hidden_states,
encoder_hidden_states=None,
attention_mask=None,
external_kv=None,
temb=None,
cat_dim=-2,
original_shape=None,
ref_scale=1.0,
):
residual = hidden_states
if attn.spatial_norm is not None:
hidden_states = attn.spatial_norm(hidden_states, temb)
input_ndim = hidden_states.ndim
if input_ndim == 4:
# 2d to sequence.
height, width = hidden_states.shape[-2:]
if cat_dim==-2 or cat_dim==2:
hidden_states_0 = hidden_states[:, :, :height//2, :]
hidden_states_1 = hidden_states[:, :, -(height//2):, :]
elif cat_dim==-1 or cat_dim==3:
hidden_states_0 = hidden_states[:, :, :, :width//2]
hidden_states_1 = hidden_states[:, :, :, -(width//2):]
batch_size, channel, height, width = hidden_states_0.shape
hidden_states_0 = hidden_states_0.view(batch_size, channel, height * width).transpose(1, 2)
hidden_states_1 = hidden_states_1.view(batch_size, channel, height * width).transpose(1, 2)
else:
# directly split sqeuence according to concat dim.
single_dim = original_shape[2] if cat_dim==-2 or cat_dim==2 else original_shape[1]
hidden_states_0 = hidden_states[:, :single_dim*single_dim,:]
hidden_states_1 = hidden_states[:, single_dim*(single_dim+1):,:]
batch_size, sequence_length, _ = (
hidden_states_0.shape if encoder_hidden_states is None else encoder_hidden_states.shape
)
if attention_mask is not None:
attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size)
# scaled_dot_product_attention expects attention_mask shape to be
# (batch, heads, source_length, target_length)
attention_mask = attention_mask.view(batch_size, attn.heads, -1, attention_mask.shape[-1])
if attn.group_norm is not None:
hidden_states_0 = attn.group_norm(hidden_states_0.transpose(1, 2)).transpose(1, 2)
hidden_states_1 = attn.group_norm(hidden_states_1.transpose(1, 2)).transpose(1, 2)
query_0 = attn.to_q(hidden_states_0)
query_1 = attn.to_q(hidden_states_1)
key_0 = attn.to_k(hidden_states_0)
key_1 = attn.to_k(hidden_states_1)
value_0 = attn.to_v(hidden_states_0)
value_1 = attn.to_v(hidden_states_1)
# time-dependent adaLN
key_1 = self.ln_k_ref(key_1, temb)
value_1 = self.ln_v_ref(value_1, temb)
if external_kv:
key_1 = torch.cat([key_1, external_kv.k], dim=1)
value_1 = torch.cat([value_1, external_kv.v], dim=1)
inner_dim = key_0.shape[-1]
head_dim = inner_dim // attn.heads
query_0 = query_0.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
query_1 = query_1.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
key_0 = key_0.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
key_1 = key_1.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
value_0 = value_0.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
value_1 = value_1.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
# the output of sdp = (batch, num_heads, seq_len, head_dim)
# TODO: add support for attn.scale when we move to Torch 2.1
hidden_states_0 = F.scaled_dot_product_attention(
query_0, key_0, value_0, attn_mask=attention_mask, dropout_p=0.0, is_causal=False
)
hidden_states_1 = F.scaled_dot_product_attention(
query_1, key_1, value_1, attn_mask=attention_mask, dropout_p=0.0, is_causal=False
)
# cross-attn
_hidden_states_0 = F.scaled_dot_product_attention(
query_0, key_1, value_1, attn_mask=attention_mask, dropout_p=0.0, is_causal=False
)
hidden_states_0 = hidden_states_0 + ref_scale * _hidden_states_0 * 10
# TODO: drop this cross-attn
_hidden_states_1 = F.scaled_dot_product_attention(
query_1, key_0, value_0, attn_mask=attention_mask, dropout_p=0.0, is_causal=False
)
hidden_states_1 = hidden_states_1 + ref_scale * _hidden_states_1
hidden_states_0 = hidden_states_0.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim)
hidden_states_1 = hidden_states_1.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim)
hidden_states_0 = hidden_states_0.to(query_0.dtype)
hidden_states_1 = hidden_states_1.to(query_1.dtype)
# linear proj
hidden_states_0 = attn.to_out[0](hidden_states_0)
hidden_states_1 = attn.to_out[0](hidden_states_1)
# dropout
hidden_states_0 = attn.to_out[1](hidden_states_0)
hidden_states_1 = attn.to_out[1](hidden_states_1)
if input_ndim == 4:
hidden_states_0 = hidden_states_0.transpose(-1, -2).reshape(batch_size, channel, height, width)
hidden_states_1 = hidden_states_1.transpose(-1, -2).reshape(batch_size, channel, height, width)
if cat_dim==-2 or cat_dim==2:
hidden_states_pad = torch.zeros(batch_size, channel, 1, width)
elif cat_dim==-1 or cat_dim==3:
hidden_states_pad = torch.zeros(batch_size, channel, height, 1)
hidden_states_pad = hidden_states_pad.to(hidden_states_0.device, dtype=hidden_states_0.dtype)
hidden_states = torch.cat([hidden_states_0, hidden_states_pad, hidden_states_1], dim=cat_dim)
assert hidden_states.shape == residual.shape, f"{hidden_states.shape} != {residual.shape}"
else:
batch_size, sequence_length, inner_dim = hidden_states.shape
hidden_states_pad = torch.zeros(batch_size, single_dim, inner_dim)
hidden_states_pad = hidden_states_pad.to(hidden_states_0.device, dtype=hidden_states_0.dtype)
hidden_states = torch.cat([hidden_states_0, hidden_states_pad, hidden_states_1], dim=1)
assert hidden_states.shape == residual.shape, f"{hidden_states.shape} != {residual.shape}"
if attn.residual_connection:
hidden_states = hidden_states + residual
hidden_states = hidden_states / attn.rescale_output_factor
return hidden_states
class AdditiveKV_AttnProcessor2_0(torch.nn.Module):
r"""
Processor for implementing scaled dot-product attention (enabled by default if you're using PyTorch 2.0).
"""
def __init__(
self,
hidden_size: int = None,
cross_attention_dim: int = None,
time_embedding_dim: int = None,
additive_scale: float = 1.0,
):
super().__init__()
if not hasattr(F, "scaled_dot_product_attention"):
raise ImportError("AttnProcessor2_0 requires PyTorch 2.0, to use it, please upgrade PyTorch to 2.0.")
self.additive_scale = additive_scale
def __call__(
self,
attn,
hidden_states,
encoder_hidden_states=None,
external_kv=None,
attention_mask=None,
temb=None,
):
assert temb is not None, "Timestep embedding is needed for a time-aware attention processor."
residual = hidden_states
if attn.spatial_norm is not None:
hidden_states = attn.spatial_norm(hidden_states, temb)
input_ndim = hidden_states.ndim
if input_ndim == 4:
batch_size, channel, height, width = hidden_states.shape
hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2)
batch_size, sequence_length, _ = (
hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape
)
if attention_mask is not None:
attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size)
# scaled_dot_product_attention expects attention_mask shape to be
# (batch, heads, source_length, target_length)
attention_mask = attention_mask.view(batch_size, attn.heads, -1, attention_mask.shape[-1])
if attn.group_norm is not None:
hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2)
query = attn.to_q(hidden_states)
if encoder_hidden_states is None:
encoder_hidden_states = hidden_states
elif attn.norm_cross:
encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states)
key = attn.to_k(encoder_hidden_states)
value = attn.to_v(encoder_hidden_states)
inner_dim = key.shape[-1]
head_dim = inner_dim // attn.heads
query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
# the output of sdp = (batch, num_heads, seq_len, head_dim)
# TODO: add support for attn.scale when we move to Torch 2.1
hidden_states = F.scaled_dot_product_attention(
query, key, value, attn_mask=attention_mask, dropout_p=0.0, is_causal=False
)
hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim)
if external_kv:
key = external_kv.k
value = external_kv.v
key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
external_attn_output = F.scaled_dot_product_attention(
query, key, value, attn_mask=attention_mask, dropout_p=0.0, is_causal=False
)
external_attn_output = external_attn_output.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim)
hidden_states = hidden_states + self.additive_scale * external_attn_output
hidden_states = hidden_states.to(query.dtype)
# linear proj
hidden_states = attn.to_out[0](hidden_states)
# dropout
hidden_states = attn.to_out[1](hidden_states)
if input_ndim == 4:
hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width)
if attn.residual_connection:
hidden_states = hidden_states + residual
hidden_states = hidden_states / attn.rescale_output_factor
return hidden_states
class TA_AdditiveKV_AttnProcessor2_0(torch.nn.Module):
r"""
Processor for implementing scaled dot-product attention (enabled by default if you're using PyTorch 2.0).
"""
def __init__(
self,
hidden_size: int = None,
cross_attention_dim: int = None,
time_embedding_dim: int = None,
additive_scale: float = 1.0,
):
super().__init__()
if not hasattr(F, "scaled_dot_product_attention"):
raise ImportError("AttnProcessor2_0 requires PyTorch 2.0, to use it, please upgrade PyTorch to 2.0.")
self.ln_k = AdaLayerNorm(hidden_size, time_embedding_dim)
self.ln_v = AdaLayerNorm(hidden_size, time_embedding_dim)
self.additive_scale = additive_scale
def __call__(
self,
attn,
hidden_states,
encoder_hidden_states=None,
external_kv=None,
attention_mask=None,
temb=None,
):
assert temb is not None, "Timestep embedding is needed for a time-aware attention processor."
residual = hidden_states
if attn.spatial_norm is not None:
hidden_states = attn.spatial_norm(hidden_states, temb)
input_ndim = hidden_states.ndim
if input_ndim == 4:
batch_size, channel, height, width = hidden_states.shape
hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2)
batch_size, sequence_length, _ = (
hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape
)
if attention_mask is not None:
attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size)
# scaled_dot_product_attention expects attention_mask shape to be
# (batch, heads, source_length, target_length)
attention_mask = attention_mask.view(batch_size, attn.heads, -1, attention_mask.shape[-1])
if attn.group_norm is not None:
hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2)
query = attn.to_q(hidden_states)
if encoder_hidden_states is None:
encoder_hidden_states = hidden_states
elif attn.norm_cross:
encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states)
key = attn.to_k(encoder_hidden_states)
value = attn.to_v(encoder_hidden_states)
inner_dim = key.shape[-1]
head_dim = inner_dim // attn.heads
query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
# the output of sdp = (batch, num_heads, seq_len, head_dim)
# TODO: add support for attn.scale when we move to Torch 2.1
hidden_states = F.scaled_dot_product_attention(
query, key, value, attn_mask=attention_mask, dropout_p=0.0, is_causal=False
)
hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim)
if external_kv:
key = external_kv.k
value = external_kv.v
# time-dependent adaLN
key = self.ln_k(key, temb)
value = self.ln_v(value, temb)
key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
external_attn_output = F.scaled_dot_product_attention(
query, key, value, attn_mask=attention_mask, dropout_p=0.0, is_causal=False
)
external_attn_output = external_attn_output.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim)
hidden_states = hidden_states + self.additive_scale * external_attn_output
hidden_states = hidden_states.to(query.dtype)
# linear proj
hidden_states = attn.to_out[0](hidden_states)
# dropout
hidden_states = attn.to_out[1](hidden_states)
if input_ndim == 4:
hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width)
if attn.residual_connection:
hidden_states = hidden_states + residual
hidden_states = hidden_states / attn.rescale_output_factor
return hidden_states
class IPAttnProcessor2_0(torch.nn.Module):
r"""
Attention processor for IP-Adapater for PyTorch 2.0.
Args:
hidden_size (`int`):
The hidden size of the attention layer.
cross_attention_dim (`int`):
The number of channels in the `encoder_hidden_states`.
scale (`float`, defaults to 1.0):
the weight scale of image prompt.
num_tokens (`int`, defaults to 4 when do ip_adapter_plus it should be 16):
The context length of the image features.
"""
def __init__(self, hidden_size, cross_attention_dim=None, scale=1.0, num_tokens=4):
super().__init__()
if not hasattr(F, "scaled_dot_product_attention"):
raise ImportError("AttnProcessor2_0 requires PyTorch 2.0, to use it, please upgrade PyTorch to 2.0.")
self.hidden_size = hidden_size
self.cross_attention_dim = cross_attention_dim
self.scale = scale
self.num_tokens = num_tokens
self.to_k_ip = nn.Linear(cross_attention_dim or hidden_size, hidden_size, bias=False)
self.to_v_ip = nn.Linear(cross_attention_dim or hidden_size, hidden_size, bias=False)
def __call__(
self,
attn,
hidden_states,
encoder_hidden_states=None,
attention_mask=None,
temb=None,
):
residual = hidden_states
if attn.spatial_norm is not None:
hidden_states = attn.spatial_norm(hidden_states, temb)
input_ndim = hidden_states.ndim
if input_ndim == 4:
batch_size, channel, height, width = hidden_states.shape
hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2)
if isinstance(encoder_hidden_states, tuple):
# FIXME: now hard coded to single image prompt.
batch_size, _, hid_dim = encoder_hidden_states[0].shape
ip_tokens = encoder_hidden_states[1][0]
encoder_hidden_states = torch.cat([encoder_hidden_states[0], ip_tokens], dim=1)
batch_size, sequence_length, _ = (
hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape
)
if attention_mask is not None:
attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size)
# scaled_dot_product_attention expects attention_mask shape to be
# (batch, heads, source_length, target_length)
attention_mask = attention_mask.view(batch_size, attn.heads, -1, attention_mask.shape[-1])
if attn.group_norm is not None:
hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2)
query = attn.to_q(hidden_states)
if encoder_hidden_states is None:
encoder_hidden_states = hidden_states
else:
# get encoder_hidden_states, ip_hidden_states
end_pos = encoder_hidden_states.shape[1] - self.num_tokens
encoder_hidden_states, ip_hidden_states = (
encoder_hidden_states[:, :end_pos, :],
encoder_hidden_states[:, end_pos:, :],
)
if attn.norm_cross:
encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states)
key = attn.to_k(encoder_hidden_states)
value = attn.to_v(encoder_hidden_states)
inner_dim = key.shape[-1]
head_dim = inner_dim // attn.heads
query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
# the output of sdp = (batch, num_heads, seq_len, head_dim)
# TODO: add support for attn.scale when we move to Torch 2.1
hidden_states = F.scaled_dot_product_attention(
query, key, value, attn_mask=attention_mask, dropout_p=0.0, is_causal=False
)
hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim)
hidden_states = hidden_states.to(query.dtype)
# for ip-adapter
ip_key = self.to_k_ip(ip_hidden_states)
ip_value = self.to_v_ip(ip_hidden_states)
ip_key = ip_key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
ip_value = ip_value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
# the output of sdp = (batch, num_heads, seq_len, head_dim)
# TODO: add support for attn.scale when we move to Torch 2.1
ip_hidden_states = F.scaled_dot_product_attention(
query, ip_key, ip_value, attn_mask=None, dropout_p=0.0, is_causal=False
)
ip_hidden_states = ip_hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim)
ip_hidden_states = ip_hidden_states.to(query.dtype)
hidden_states = hidden_states + self.scale * ip_hidden_states
# linear proj
hidden_states = attn.to_out[0](hidden_states)
# dropout
hidden_states = attn.to_out[1](hidden_states)
if input_ndim == 4:
hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width)
if attn.residual_connection:
hidden_states = hidden_states + residual
hidden_states = hidden_states / attn.rescale_output_factor
return hidden_states
class TA_IPAttnProcessor2_0(torch.nn.Module):
r"""
Attention processor for IP-Adapater for PyTorch 2.0.
Args:
hidden_size (`int`):
The hidden size of the attention layer.
cross_attention_dim (`int`):
The number of channels in the `encoder_hidden_states`.
scale (`float`, defaults to 1.0):
the weight scale of image prompt.
num_tokens (`int`, defaults to 4 when do ip_adapter_plus it should be 16):
The context length of the image features.
"""
def __init__(self, hidden_size, cross_attention_dim=None, time_embedding_dim: int = None, scale=1.0, num_tokens=4):
super().__init__()
if not hasattr(F, "scaled_dot_product_attention"):
raise ImportError("AttnProcessor2_0 requires PyTorch 2.0, to use it, please upgrade PyTorch to 2.0.")
self.hidden_size = hidden_size
self.cross_attention_dim = cross_attention_dim
self.scale = scale
self.num_tokens = num_tokens
self.to_k_ip = nn.Linear(cross_attention_dim or hidden_size, hidden_size, bias=False)
self.to_v_ip = nn.Linear(cross_attention_dim or hidden_size, hidden_size, bias=False)
self.ln_k_ip = AdaLayerNorm(hidden_size, time_embedding_dim)
self.ln_v_ip = AdaLayerNorm(hidden_size, time_embedding_dim)
def __call__(
self,
attn,
hidden_states,
encoder_hidden_states=None,
attention_mask=None,
external_kv=None,
temb=None,
):
assert temb is not None, "Timestep embedding is needed for a time-aware attention processor."
residual = hidden_states
if attn.spatial_norm is not None:
hidden_states = attn.spatial_norm(hidden_states, temb)
input_ndim = hidden_states.ndim
if input_ndim == 4:
batch_size, channel, height, width = hidden_states.shape
hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2)
if not isinstance(encoder_hidden_states, tuple):
# get encoder_hidden_states, ip_hidden_states
end_pos = encoder_hidden_states.shape[1] - self.num_tokens
encoder_hidden_states, ip_hidden_states = (
encoder_hidden_states[:, :end_pos, :],
encoder_hidden_states[:, end_pos:, :],
)
else:
# FIXME: now hard coded to single image prompt.
batch_size, _, hid_dim = encoder_hidden_states[0].shape
ip_hidden_states = encoder_hidden_states[1][0]
encoder_hidden_states = encoder_hidden_states[0]
batch_size, sequence_length, _ = (
hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape
)
if attention_mask is not None:
attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size)
# scaled_dot_product_attention expects attention_mask shape to be
# (batch, heads, source_length, target_length)
attention_mask = attention_mask.view(batch_size, attn.heads, -1, attention_mask.shape[-1])
if attn.group_norm is not None:
hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2)
query = attn.to_q(hidden_states)
if encoder_hidden_states is None:
encoder_hidden_states = hidden_states
else:
if attn.norm_cross:
encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states)
key = attn.to_k(encoder_hidden_states)
value = attn.to_v(encoder_hidden_states)
if external_kv:
key = torch.cat([key, external_kv.k], axis=1)
value = torch.cat([value, external_kv.v], axis=1)
inner_dim = key.shape[-1]
head_dim = inner_dim // attn.heads
query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
# the output of sdp = (batch, num_heads, seq_len, head_dim)
# TODO: add support for attn.scale when we move to Torch 2.1
hidden_states = F.scaled_dot_product_attention(
query, key, value, attn_mask=attention_mask, dropout_p=0.0, is_causal=False
)
hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim)
hidden_states = hidden_states.to(query.dtype)
# for ip-adapter
ip_key = self.to_k_ip(ip_hidden_states)
ip_value = self.to_v_ip(ip_hidden_states)
# time-dependent adaLN
ip_key = self.ln_k_ip(ip_key, temb)
ip_value = self.ln_v_ip(ip_value, temb)
ip_key = ip_key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
ip_value = ip_value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
# the output of sdp = (batch, num_heads, seq_len, head_dim)
# TODO: add support for attn.scale when we move to Torch 2.1
ip_hidden_states = F.scaled_dot_product_attention(
query, ip_key, ip_value, attn_mask=None, dropout_p=0.0, is_causal=False
)
ip_hidden_states = ip_hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim)
ip_hidden_states = ip_hidden_states.to(query.dtype)
hidden_states = hidden_states + self.scale * ip_hidden_states
# linear proj
hidden_states = attn.to_out[0](hidden_states)
# dropout
hidden_states = attn.to_out[1](hidden_states)
if input_ndim == 4:
hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width)
if attn.residual_connection:
hidden_states = hidden_states + residual
hidden_states = hidden_states / attn.rescale_output_factor
return hidden_states
## for controlnet
class CNAttnProcessor:
r"""
Default processor for performing attention-related computations.
"""
def __init__(self, num_tokens=4):
self.num_tokens = num_tokens
def __call__(self, attn, hidden_states, encoder_hidden_states=None, attention_mask=None, temb=None):
residual = hidden_states
if attn.spatial_norm is not None:
hidden_states = attn.spatial_norm(hidden_states, temb)
input_ndim = hidden_states.ndim
if input_ndim == 4:
batch_size, channel, height, width = hidden_states.shape
hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2)
batch_size, sequence_length, _ = (
hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape
)
attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size)
if attn.group_norm is not None:
hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2)
query = attn.to_q(hidden_states)
if encoder_hidden_states is None:
encoder_hidden_states = hidden_states
else:
end_pos = encoder_hidden_states.shape[1] - self.num_tokens
encoder_hidden_states = encoder_hidden_states[:, :end_pos] # only use text
if attn.norm_cross:
encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states)
key = attn.to_k(encoder_hidden_states)
value = attn.to_v(encoder_hidden_states)
query = attn.head_to_batch_dim(query)
key = attn.head_to_batch_dim(key)
value = attn.head_to_batch_dim(value)
attention_probs = attn.get_attention_scores(query, key, attention_mask)
hidden_states = torch.bmm(attention_probs, value)
hidden_states = attn.batch_to_head_dim(hidden_states)
# linear proj
hidden_states = attn.to_out[0](hidden_states)
# dropout
hidden_states = attn.to_out[1](hidden_states)
if input_ndim == 4:
hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width)
if attn.residual_connection:
hidden_states = hidden_states + residual
hidden_states = hidden_states / attn.rescale_output_factor
return hidden_states
class CNAttnProcessor2_0:
r"""
Processor for implementing scaled dot-product attention (enabled by default if you're using PyTorch 2.0).
"""
def __init__(self, num_tokens=4):
if not hasattr(F, "scaled_dot_product_attention"):
raise ImportError("AttnProcessor2_0 requires PyTorch 2.0, to use it, please upgrade PyTorch to 2.0.")
self.num_tokens = num_tokens
def __call__(
self,
attn,
hidden_states,
encoder_hidden_states=None,
attention_mask=None,
temb=None,
):
residual = hidden_states
if attn.spatial_norm is not None:
hidden_states = attn.spatial_norm(hidden_states, temb)
input_ndim = hidden_states.ndim
if input_ndim == 4:
batch_size, channel, height, width = hidden_states.shape
hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2)
batch_size, sequence_length, _ = (
hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape
)
if attention_mask is not None:
attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size)
# scaled_dot_product_attention expects attention_mask shape to be
# (batch, heads, source_length, target_length)
attention_mask = attention_mask.view(batch_size, attn.heads, -1, attention_mask.shape[-1])
if attn.group_norm is not None:
hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2)
query = attn.to_q(hidden_states)
if encoder_hidden_states is None:
encoder_hidden_states = hidden_states
else:
end_pos = encoder_hidden_states.shape[1] - self.num_tokens
encoder_hidden_states = encoder_hidden_states[:, :end_pos] # only use text
if attn.norm_cross:
encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states)
key = attn.to_k(encoder_hidden_states)
value = attn.to_v(encoder_hidden_states)
inner_dim = key.shape[-1]
head_dim = inner_dim // attn.heads
query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
# the output of sdp = (batch, num_heads, seq_len, head_dim)
# TODO: add support for attn.scale when we move to Torch 2.1
hidden_states = F.scaled_dot_product_attention(
query, key, value, attn_mask=attention_mask, dropout_p=0.0, is_causal=False
)
hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim)
hidden_states = hidden_states.to(query.dtype)
# linear proj
hidden_states = attn.to_out[0](hidden_states)
# dropout
hidden_states = attn.to_out[1](hidden_states)
if input_ndim == 4:
hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width)
if attn.residual_connection:
hidden_states = hidden_states + residual
hidden_states = hidden_states / attn.rescale_output_factor
return hidden_states
def init_attn_proc(unet, ip_adapter_tokens=16, use_lcm=False, use_adaln=True, use_external_kv=False):
attn_procs = {}
unet_sd = unet.state_dict()
for name in unet.attn_processors.keys():
cross_attention_dim = None if name.endswith("attn1.processor") else unet.config.cross_attention_dim
if name.startswith("mid_block"):
hidden_size = unet.config.block_out_channels[-1]
elif name.startswith("up_blocks"):
block_id = int(name[len("up_blocks.")])
hidden_size = list(reversed(unet.config.block_out_channels))[block_id]
elif name.startswith("down_blocks"):
block_id = int(name[len("down_blocks.")])
hidden_size = unet.config.block_out_channels[block_id]
if cross_attention_dim is None:
if use_external_kv:
attn_procs[name] = AdditiveKV_AttnProcessor2_0(
hidden_size=hidden_size,
cross_attention_dim=cross_attention_dim,
time_embedding_dim=1280,
) if hasattr(F, "scaled_dot_product_attention") else AdditiveKV_AttnProcessor()
else:
attn_procs[name] = AttnProcessor2_0() if hasattr(F, "scaled_dot_product_attention") else AttnProcessor()
else:
if use_adaln:
layer_name = name.split(".processor")[0]
if use_lcm:
weights = {
"to_k_ip.weight": unet_sd[layer_name + ".to_k.base_layer.weight"],
"to_v_ip.weight": unet_sd[layer_name + ".to_v.base_layer.weight"],
}
else:
weights = {
"to_k_ip.weight": unet_sd[layer_name + ".to_k.weight"],
"to_v_ip.weight": unet_sd[layer_name + ".to_v.weight"],
}
attn_procs[name] = TA_IPAttnProcessor2_0(
hidden_size=hidden_size,
cross_attention_dim=cross_attention_dim,
num_tokens=ip_adapter_tokens,
time_embedding_dim=1280,
) if hasattr(F, "scaled_dot_product_attention") else \
TA_IPAttnProcessor(
hidden_size=hidden_size,
cross_attention_dim=cross_attention_dim,
num_tokens=ip_adapter_tokens,
time_embedding_dim=1280,
)
attn_procs[name].load_state_dict(weights, strict=False)
else:
attn_procs[name] = AttnProcessor2_0() if hasattr(F, "scaled_dot_product_attention") else AttnProcessor()
return attn_procs
def init_aggregator_attn_proc(unet, use_adaln=False, split_attn=False):
attn_procs = {}
unet_sd = unet.state_dict()
for name in unet.attn_processors.keys():
# get layer name and hidden dim
cross_attention_dim = None if name.endswith("attn1.processor") else unet.config.cross_attention_dim
if name.startswith("mid_block"):
hidden_size = unet.config.block_out_channels[-1]
elif name.startswith("up_blocks"):
block_id = int(name[len("up_blocks.")])
hidden_size = list(reversed(unet.config.block_out_channels))[block_id]
elif name.startswith("down_blocks"):
block_id = int(name[len("down_blocks.")])
hidden_size = unet.config.block_out_channels[block_id]
# init attn proc
if split_attn:
# layer_name = name.split(".processor")[0]
# weights = {
# "to_q_ref.weight": unet_sd[layer_name + ".to_q.weight"],
# "to_k_ref.weight": unet_sd[layer_name + ".to_k.weight"],
# "to_v_ref.weight": unet_sd[layer_name + ".to_v.weight"],
# }
attn_procs[name] = (
sep_split_AttnProcessor2_0(
hidden_size=hidden_size,
cross_attention_dim=hidden_size,
time_embedding_dim=1280,
)
if use_adaln
else split_AttnProcessor2_0(
hidden_size=hidden_size,
cross_attention_dim=cross_attention_dim,
time_embedding_dim=1280,
)
)
# attn_procs[name].load_state_dict(weights, strict=False)
else:
attn_procs[name] = (
AttnProcessor2_0(
hidden_size=hidden_size,
cross_attention_dim=hidden_size,
)
if hasattr(F, "scaled_dot_product_attention")
else AttnProcessor(
hidden_size=hidden_size,
cross_attention_dim=hidden_size,
)
)
return attn_procs