Spaces:
Running
on
Zero
Running
on
Zero
# Copy from diffusers.models.attention.py | |
# Copyright 2024 The HuggingFace Team. All rights reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
from typing import Any, Dict, Optional | |
import torch | |
import torch.nn.functional as F | |
from torch import nn | |
from diffusers.utils import deprecate, logging | |
from diffusers.utils.torch_utils import maybe_allow_in_graph | |
from diffusers.models.activations import GEGLU, GELU, ApproximateGELU | |
from diffusers.models.attention_processor import Attention | |
from diffusers.models.embeddings import SinusoidalPositionalEmbedding | |
from diffusers.models.normalization import AdaLayerNorm, AdaLayerNormContinuous, AdaLayerNormZero, RMSNorm | |
from module.min_sdxl import LoRACompatibleLinear, LoRALinearLayer | |
logger = logging.get_logger(__name__) | |
def create_custom_forward(module): | |
def custom_forward(*inputs): | |
return module(*inputs) | |
return custom_forward | |
def maybe_grad_checkpoint(resnet, attn, hidden_states, temb, encoder_hidden_states, adapter_hidden_states, do_ckpt=True): | |
if do_ckpt: | |
hidden_states = torch.utils.checkpoint.checkpoint(create_custom_forward(resnet), hidden_states, temb) | |
hidden_states, extracted_kv = torch.utils.checkpoint.checkpoint( | |
create_custom_forward(attn), hidden_states, encoder_hidden_states, adapter_hidden_states, use_reentrant=False | |
) | |
else: | |
hidden_states = resnet(hidden_states, temb) | |
hidden_states, extracted_kv = attn( | |
hidden_states, | |
encoder_hidden_states=encoder_hidden_states, | |
adapter_hidden_states=adapter_hidden_states, | |
) | |
return hidden_states, extracted_kv | |
def init_lora_in_attn(attn_module, rank: int = 4, is_kvcopy=False): | |
# Set the `lora_layer` attribute of the attention-related matrices. | |
attn_module.to_k.set_lora_layer( | |
LoRALinearLayer( | |
in_features=attn_module.to_k.in_features, out_features=attn_module.to_k.out_features, rank=rank | |
) | |
) | |
attn_module.to_v.set_lora_layer( | |
LoRALinearLayer( | |
in_features=attn_module.to_v.in_features, out_features=attn_module.to_v.out_features, rank=rank | |
) | |
) | |
if not is_kvcopy: | |
attn_module.to_q.set_lora_layer( | |
LoRALinearLayer( | |
in_features=attn_module.to_q.in_features, out_features=attn_module.to_q.out_features, rank=rank | |
) | |
) | |
attn_module.to_out[0].set_lora_layer( | |
LoRALinearLayer( | |
in_features=attn_module.to_out[0].in_features, | |
out_features=attn_module.to_out[0].out_features, | |
rank=rank, | |
) | |
) | |
def drop_kvs(encoder_kvs, drop_chance): | |
for layer in encoder_kvs: | |
len_tokens = encoder_kvs[layer].self_attention.k.shape[1] | |
idx_to_keep = (torch.rand(len_tokens) > drop_chance) | |
encoder_kvs[layer].self_attention.k = encoder_kvs[layer].self_attention.k[:, idx_to_keep] | |
encoder_kvs[layer].self_attention.v = encoder_kvs[layer].self_attention.v[:, idx_to_keep] | |
return encoder_kvs | |
def clone_kvs(encoder_kvs): | |
cloned_kvs = {} | |
for layer in encoder_kvs: | |
sa_cpy = KVCache(k=encoder_kvs[layer].self_attention.k.clone(), | |
v=encoder_kvs[layer].self_attention.v.clone()) | |
ca_cpy = KVCache(k=encoder_kvs[layer].cross_attention.k.clone(), | |
v=encoder_kvs[layer].cross_attention.v.clone()) | |
cloned_layer_cache = AttentionCache(self_attention=sa_cpy, cross_attention=ca_cpy) | |
cloned_kvs[layer] = cloned_layer_cache | |
return cloned_kvs | |
class KVCache(object): | |
def __init__(self, k, v): | |
self.k = k | |
self.v = v | |
class AttentionCache(object): | |
def __init__(self, self_attention: KVCache, cross_attention: KVCache): | |
self.self_attention = self_attention | |
self.cross_attention = cross_attention | |
class KVCopy(nn.Module): | |
def __init__( | |
self, inner_dim, cross_attention_dim=None, | |
): | |
super(KVCopy, self).__init__() | |
in_dim = cross_attention_dim or inner_dim | |
self.to_k = LoRACompatibleLinear(in_dim, inner_dim, bias=False) | |
self.to_v = LoRACompatibleLinear(in_dim, inner_dim, bias=False) | |
def forward(self, hidden_states): | |
k = self.to_k(hidden_states) | |
v = self.to_v(hidden_states) | |
return KVCache(k=k, v=v) | |
def init_kv_copy(self, source_attn): | |
with torch.no_grad(): | |
self.to_k.weight.copy_(source_attn.to_k.weight) | |
self.to_v.weight.copy_(source_attn.to_v.weight) | |
class FeedForward(nn.Module): | |
r""" | |
A feed-forward layer. | |
Parameters: | |
dim (`int`): The number of channels in the input. | |
dim_out (`int`, *optional*): The number of channels in the output. If not given, defaults to `dim`. | |
mult (`int`, *optional*, defaults to 4): The multiplier to use for the hidden dimension. | |
dropout (`float`, *optional*, defaults to 0.0): The dropout probability to use. | |
activation_fn (`str`, *optional*, defaults to `"geglu"`): Activation function to be used in feed-forward. | |
final_dropout (`bool` *optional*, defaults to False): Apply a final dropout. | |
bias (`bool`, defaults to True): Whether to use a bias in the linear layer. | |
""" | |
def __init__( | |
self, | |
dim: int, | |
dim_out: Optional[int] = None, | |
mult: int = 4, | |
dropout: float = 0.0, | |
activation_fn: str = "geglu", | |
final_dropout: bool = False, | |
inner_dim=None, | |
bias: bool = True, | |
): | |
super().__init__() | |
if inner_dim is None: | |
inner_dim = int(dim * mult) | |
dim_out = dim_out if dim_out is not None else dim | |
if activation_fn == "gelu": | |
act_fn = GELU(dim, inner_dim, bias=bias) | |
if activation_fn == "gelu-approximate": | |
act_fn = GELU(dim, inner_dim, approximate="tanh", bias=bias) | |
elif activation_fn == "geglu": | |
act_fn = GEGLU(dim, inner_dim, bias=bias) | |
elif activation_fn == "geglu-approximate": | |
act_fn = ApproximateGELU(dim, inner_dim, bias=bias) | |
self.net = nn.ModuleList([]) | |
# project in | |
self.net.append(act_fn) | |
# project dropout | |
self.net.append(nn.Dropout(dropout)) | |
# project out | |
self.net.append(nn.Linear(inner_dim, dim_out, bias=bias)) | |
# FF as used in Vision Transformer, MLP-Mixer, etc. have a final dropout | |
if final_dropout: | |
self.net.append(nn.Dropout(dropout)) | |
def forward(self, hidden_states: torch.Tensor, *args, **kwargs) -> torch.Tensor: | |
if len(args) > 0 or kwargs.get("scale", None) is not None: | |
deprecation_message = "The `scale` argument is deprecated and will be ignored. Please remove it, as passing it will raise an error in the future. `scale` should directly be passed while calling the underlying pipeline component i.e., via `cross_attention_kwargs`." | |
deprecate("scale", "1.0.0", deprecation_message) | |
for module in self.net: | |
hidden_states = module(hidden_states) | |
return hidden_states | |
def _chunked_feed_forward(ff: nn.Module, hidden_states: torch.Tensor, chunk_dim: int, chunk_size: int): | |
# "feed_forward_chunk_size" can be used to save memory | |
if hidden_states.shape[chunk_dim] % chunk_size != 0: | |
raise ValueError( | |
f"`hidden_states` dimension to be chunked: {hidden_states.shape[chunk_dim]} has to be divisible by chunk size: {chunk_size}. Make sure to set an appropriate `chunk_size` when calling `unet.enable_forward_chunking`." | |
) | |
num_chunks = hidden_states.shape[chunk_dim] // chunk_size | |
ff_output = torch.cat( | |
[ff(hid_slice) for hid_slice in hidden_states.chunk(num_chunks, dim=chunk_dim)], | |
dim=chunk_dim, | |
) | |
return ff_output | |
class GatedSelfAttentionDense(nn.Module): | |
r""" | |
A gated self-attention dense layer that combines visual features and object features. | |
Parameters: | |
query_dim (`int`): The number of channels in the query. | |
context_dim (`int`): The number of channels in the context. | |
n_heads (`int`): The number of heads to use for attention. | |
d_head (`int`): The number of channels in each head. | |
""" | |
def __init__(self, query_dim: int, context_dim: int, n_heads: int, d_head: int): | |
super().__init__() | |
# we need a linear projection since we need cat visual feature and obj feature | |
self.linear = nn.Linear(context_dim, query_dim) | |
self.attn = Attention(query_dim=query_dim, heads=n_heads, dim_head=d_head) | |
self.ff = FeedForward(query_dim, activation_fn="geglu") | |
self.norm1 = nn.LayerNorm(query_dim) | |
self.norm2 = nn.LayerNorm(query_dim) | |
self.register_parameter("alpha_attn", nn.Parameter(torch.tensor(0.0))) | |
self.register_parameter("alpha_dense", nn.Parameter(torch.tensor(0.0))) | |
self.enabled = True | |
def forward(self, x: torch.Tensor, objs: torch.Tensor) -> torch.Tensor: | |
if not self.enabled: | |
return x | |
n_visual = x.shape[1] | |
objs = self.linear(objs) | |
x = x + self.alpha_attn.tanh() * self.attn(self.norm1(torch.cat([x, objs], dim=1)))[:, :n_visual, :] | |
x = x + self.alpha_dense.tanh() * self.ff(self.norm2(x)) | |
return x | |