Spaces:
Running
on
Zero
Running
on
Zero
import math | |
from typing import Optional, Union | |
import torch | |
from torch import nn | |
from ...configuration_utils import ConfigMixin, register_to_config | |
from ...models import ModelMixin | |
from ...models.attention import FeedForward | |
from ...models.attention_processor import Attention | |
from ...models.embeddings import TimestepEmbedding, Timesteps, get_2d_sincos_pos_embed | |
from ...models.normalization import AdaLayerNorm | |
from ...models.transformers.transformer_2d import Transformer2DModelOutput | |
from ...utils import logging | |
logger = logging.get_logger(__name__) # pylint: disable=invalid-name | |
def _no_grad_trunc_normal_(tensor, mean, std, a, b): | |
# Cut & paste from PyTorch official master until it's in a few official releases - RW | |
# Method based on https://people.sc.fsu.edu/~jburkardt/presentations/truncated_normal.pdf | |
def norm_cdf(x): | |
# Computes standard normal cumulative distribution function | |
return (1.0 + math.erf(x / math.sqrt(2.0))) / 2.0 | |
if (mean < a - 2 * std) or (mean > b + 2 * std): | |
logger.warning( | |
"mean is more than 2 std from [a, b] in nn.init.trunc_normal_. " | |
"The distribution of values may be incorrect." | |
) | |
with torch.no_grad(): | |
# Values are generated by using a truncated uniform distribution and | |
# then using the inverse CDF for the normal distribution. | |
# Get upper and lower cdf values | |
l = norm_cdf((a - mean) / std) | |
u = norm_cdf((b - mean) / std) | |
# Uniformly fill tensor with values from [l, u], then translate to | |
# [2l-1, 2u-1]. | |
tensor.uniform_(2 * l - 1, 2 * u - 1) | |
# Use inverse cdf transform for normal distribution to get truncated | |
# standard normal | |
tensor.erfinv_() | |
# Transform to proper mean, std | |
tensor.mul_(std * math.sqrt(2.0)) | |
tensor.add_(mean) | |
# Clamp to ensure it's in the proper range | |
tensor.clamp_(min=a, max=b) | |
return tensor | |
def trunc_normal_(tensor, mean=0.0, std=1.0, a=-2.0, b=2.0): | |
# type: (torch.Tensor, float, float, float, float) -> torch.Tensor | |
r"""Fills the input Tensor with values drawn from a truncated | |
normal distribution. The values are effectively drawn from the normal distribution :math:`\mathcal{N}(\text{mean}, | |
\text{std}^2)` with values outside :math:`[a, b]` redrawn until they are within the bounds. The method used for | |
generating the random values works best when :math:`a \leq \text{mean} \leq b`. | |
Args: | |
tensor: an n-dimensional `torch.Tensor` | |
mean: the mean of the normal distribution | |
std: the standard deviation of the normal distribution | |
a: the minimum cutoff value | |
b: the maximum cutoff value | |
Examples: | |
>>> w = torch.empty(3, 5) >>> nn.init.trunc_normal_(w) | |
""" | |
return _no_grad_trunc_normal_(tensor, mean, std, a, b) | |
class PatchEmbed(nn.Module): | |
"""2D Image to Patch Embedding""" | |
def __init__( | |
self, | |
height=224, | |
width=224, | |
patch_size=16, | |
in_channels=3, | |
embed_dim=768, | |
layer_norm=False, | |
flatten=True, | |
bias=True, | |
use_pos_embed=True, | |
): | |
super().__init__() | |
num_patches = (height // patch_size) * (width // patch_size) | |
self.flatten = flatten | |
self.layer_norm = layer_norm | |
self.proj = nn.Conv2d( | |
in_channels, embed_dim, kernel_size=(patch_size, patch_size), stride=patch_size, bias=bias | |
) | |
if layer_norm: | |
self.norm = nn.LayerNorm(embed_dim, elementwise_affine=False, eps=1e-6) | |
else: | |
self.norm = None | |
self.use_pos_embed = use_pos_embed | |
if self.use_pos_embed: | |
pos_embed = get_2d_sincos_pos_embed(embed_dim, int(num_patches**0.5)) | |
self.register_buffer("pos_embed", torch.from_numpy(pos_embed).float().unsqueeze(0), persistent=False) | |
def forward(self, latent): | |
latent = self.proj(latent) | |
if self.flatten: | |
latent = latent.flatten(2).transpose(1, 2) # BCHW -> BNC | |
if self.layer_norm: | |
latent = self.norm(latent) | |
if self.use_pos_embed: | |
return latent + self.pos_embed | |
else: | |
return latent | |
class SkipBlock(nn.Module): | |
def __init__(self, dim: int): | |
super().__init__() | |
self.skip_linear = nn.Linear(2 * dim, dim) | |
# Use torch.nn.LayerNorm for now, following the original code | |
self.norm = nn.LayerNorm(dim) | |
def forward(self, x, skip): | |
x = self.skip_linear(torch.cat([x, skip], dim=-1)) | |
x = self.norm(x) | |
return x | |
# Modified to support both pre-LayerNorm and post-LayerNorm configurations | |
# Don't support AdaLayerNormZero for now | |
# Modified from diffusers.models.attention.BasicTransformerBlock | |
class UTransformerBlock(nn.Module): | |
r""" | |
A modification of BasicTransformerBlock which supports pre-LayerNorm and post-LayerNorm configurations. | |
Parameters: | |
dim (`int`): The number of channels in the input and output. | |
num_attention_heads (`int`): The number of heads to use for multi-head attention. | |
attention_head_dim (`int`): The number of channels in each head. | |
dropout (`float`, *optional*, defaults to 0.0): The dropout probability to use. | |
cross_attention_dim (`int`, *optional*): The size of the encoder_hidden_states vector for cross attention. | |
activation_fn (`str`, *optional*, defaults to `"geglu"`): | |
Activation function to be used in feed-forward. | |
num_embeds_ada_norm (:obj: `int`, *optional*): | |
The number of diffusion steps used during training. See `Transformer2DModel`. | |
attention_bias (:obj: `bool`, *optional*, defaults to `False`): | |
Configure if the attentions should contain a bias parameter. | |
only_cross_attention (`bool`, *optional*): | |
Whether to use only cross-attention layers. In this case two cross attention layers are used. | |
double_self_attention (`bool`, *optional*): | |
Whether to use two self-attention layers. In this case no cross attention layers are used. | |
upcast_attention (`bool`, *optional*): | |
Whether to upcast the query and key to float32 when performing the attention calculation. | |
norm_elementwise_affine (`bool`, *optional*): | |
Whether to use learnable per-element affine parameters during layer normalization. | |
norm_type (`str`, defaults to `"layer_norm"`): | |
The layer norm implementation to use. | |
pre_layer_norm (`bool`, *optional*): | |
Whether to perform layer normalization before the attention and feedforward operations ("pre-LayerNorm"), | |
as opposed to after ("post-LayerNorm"). Note that `BasicTransformerBlock` uses pre-LayerNorm, e.g. | |
`pre_layer_norm = True`. | |
final_dropout (`bool`, *optional*): | |
Whether to use a final Dropout layer after the feedforward network. | |
""" | |
def __init__( | |
self, | |
dim: int, | |
num_attention_heads: int, | |
attention_head_dim: int, | |
dropout=0.0, | |
cross_attention_dim: Optional[int] = None, | |
activation_fn: str = "geglu", | |
num_embeds_ada_norm: Optional[int] = None, | |
attention_bias: bool = False, | |
only_cross_attention: bool = False, | |
double_self_attention: bool = False, | |
upcast_attention: bool = False, | |
norm_elementwise_affine: bool = True, | |
norm_type: str = "layer_norm", | |
pre_layer_norm: bool = True, | |
final_dropout: bool = False, | |
): | |
super().__init__() | |
self.only_cross_attention = only_cross_attention | |
self.use_ada_layer_norm = (num_embeds_ada_norm is not None) and norm_type == "ada_norm" | |
self.pre_layer_norm = pre_layer_norm | |
if norm_type in ("ada_norm", "ada_norm_zero") and num_embeds_ada_norm is None: | |
raise ValueError( | |
f"`norm_type` is set to {norm_type}, but `num_embeds_ada_norm` is not defined. Please make sure to" | |
f" define `num_embeds_ada_norm` if setting `norm_type` to {norm_type}." | |
) | |
# 1. Self-Attn | |
self.attn1 = Attention( | |
query_dim=dim, | |
heads=num_attention_heads, | |
dim_head=attention_head_dim, | |
dropout=dropout, | |
bias=attention_bias, | |
cross_attention_dim=cross_attention_dim if only_cross_attention else None, | |
upcast_attention=upcast_attention, | |
) | |
# 2. Cross-Attn | |
if cross_attention_dim is not None or double_self_attention: | |
self.attn2 = Attention( | |
query_dim=dim, | |
cross_attention_dim=cross_attention_dim if not double_self_attention else None, | |
heads=num_attention_heads, | |
dim_head=attention_head_dim, | |
dropout=dropout, | |
bias=attention_bias, | |
upcast_attention=upcast_attention, | |
) # is self-attn if encoder_hidden_states is none | |
else: | |
self.attn2 = None | |
if self.use_ada_layer_norm: | |
self.norm1 = AdaLayerNorm(dim, num_embeds_ada_norm) | |
else: | |
self.norm1 = nn.LayerNorm(dim, elementwise_affine=norm_elementwise_affine) | |
if cross_attention_dim is not None or double_self_attention: | |
# We currently only use AdaLayerNormZero for self attention where there will only be one attention block. | |
# I.e. the number of returned modulation chunks from AdaLayerZero would not make sense if returned during | |
# the second cross attention block. | |
self.norm2 = ( | |
AdaLayerNorm(dim, num_embeds_ada_norm) | |
if self.use_ada_layer_norm | |
else nn.LayerNorm(dim, elementwise_affine=norm_elementwise_affine) | |
) | |
else: | |
self.norm2 = None | |
# 3. Feed-forward | |
self.norm3 = nn.LayerNorm(dim, elementwise_affine=norm_elementwise_affine) | |
self.ff = FeedForward(dim, dropout=dropout, activation_fn=activation_fn, final_dropout=final_dropout) | |
def forward( | |
self, | |
hidden_states, | |
attention_mask=None, | |
encoder_hidden_states=None, | |
encoder_attention_mask=None, | |
timestep=None, | |
cross_attention_kwargs=None, | |
class_labels=None, | |
): | |
# Pre-LayerNorm | |
if self.pre_layer_norm: | |
if self.use_ada_layer_norm: | |
norm_hidden_states = self.norm1(hidden_states, timestep) | |
else: | |
norm_hidden_states = self.norm1(hidden_states) | |
else: | |
norm_hidden_states = hidden_states | |
# 1. Self-Attention | |
cross_attention_kwargs = cross_attention_kwargs if cross_attention_kwargs is not None else {} | |
attn_output = self.attn1( | |
norm_hidden_states, | |
encoder_hidden_states=encoder_hidden_states if self.only_cross_attention else None, | |
attention_mask=attention_mask, | |
**cross_attention_kwargs, | |
) | |
# Post-LayerNorm | |
if not self.pre_layer_norm: | |
if self.use_ada_layer_norm: | |
attn_output = self.norm1(attn_output, timestep) | |
else: | |
attn_output = self.norm1(attn_output) | |
hidden_states = attn_output + hidden_states | |
if self.attn2 is not None: | |
# Pre-LayerNorm | |
if self.pre_layer_norm: | |
norm_hidden_states = ( | |
self.norm2(hidden_states, timestep) if self.use_ada_layer_norm else self.norm2(hidden_states) | |
) | |
else: | |
norm_hidden_states = hidden_states | |
# TODO (Birch-San): Here we should prepare the encoder_attention mask correctly | |
# prepare attention mask here | |
# 2. Cross-Attention | |
attn_output = self.attn2( | |
norm_hidden_states, | |
encoder_hidden_states=encoder_hidden_states, | |
attention_mask=encoder_attention_mask, | |
**cross_attention_kwargs, | |
) | |
# Post-LayerNorm | |
if not self.pre_layer_norm: | |
attn_output = self.norm2(attn_output, timestep) if self.use_ada_layer_norm else self.norm2(attn_output) | |
hidden_states = attn_output + hidden_states | |
# 3. Feed-forward | |
# Pre-LayerNorm | |
if self.pre_layer_norm: | |
norm_hidden_states = self.norm3(hidden_states) | |
else: | |
norm_hidden_states = hidden_states | |
ff_output = self.ff(norm_hidden_states) | |
# Post-LayerNorm | |
if not self.pre_layer_norm: | |
ff_output = self.norm3(ff_output) | |
hidden_states = ff_output + hidden_states | |
return hidden_states | |
# Like UTransformerBlock except with LayerNorms on the residual backbone of the block | |
# Modified from diffusers.models.attention.BasicTransformerBlock | |
class UniDiffuserBlock(nn.Module): | |
r""" | |
A modification of BasicTransformerBlock which supports pre-LayerNorm and post-LayerNorm configurations and puts the | |
LayerNorms on the residual backbone of the block. This matches the transformer block in the [original UniDiffuser | |
implementation](https://github.com/thu-ml/unidiffuser/blob/main/libs/uvit_multi_post_ln_v1.py#L104). | |
Parameters: | |
dim (`int`): The number of channels in the input and output. | |
num_attention_heads (`int`): The number of heads to use for multi-head attention. | |
attention_head_dim (`int`): The number of channels in each head. | |
dropout (`float`, *optional*, defaults to 0.0): The dropout probability to use. | |
cross_attention_dim (`int`, *optional*): The size of the encoder_hidden_states vector for cross attention. | |
activation_fn (`str`, *optional*, defaults to `"geglu"`): | |
Activation function to be used in feed-forward. | |
num_embeds_ada_norm (:obj: `int`, *optional*): | |
The number of diffusion steps used during training. See `Transformer2DModel`. | |
attention_bias (:obj: `bool`, *optional*, defaults to `False`): | |
Configure if the attentions should contain a bias parameter. | |
only_cross_attention (`bool`, *optional*): | |
Whether to use only cross-attention layers. In this case two cross attention layers are used. | |
double_self_attention (`bool`, *optional*): | |
Whether to use two self-attention layers. In this case no cross attention layers are used. | |
upcast_attention (`bool`, *optional*): | |
Whether to upcast the query and key to float() when performing the attention calculation. | |
norm_elementwise_affine (`bool`, *optional*): | |
Whether to use learnable per-element affine parameters during layer normalization. | |
norm_type (`str`, defaults to `"layer_norm"`): | |
The layer norm implementation to use. | |
pre_layer_norm (`bool`, *optional*): | |
Whether to perform layer normalization before the attention and feedforward operations ("pre-LayerNorm"), | |
as opposed to after ("post-LayerNorm"). The original UniDiffuser implementation is post-LayerNorm | |
(`pre_layer_norm = False`). | |
final_dropout (`bool`, *optional*): | |
Whether to use a final Dropout layer after the feedforward network. | |
""" | |
def __init__( | |
self, | |
dim: int, | |
num_attention_heads: int, | |
attention_head_dim: int, | |
dropout=0.0, | |
cross_attention_dim: Optional[int] = None, | |
activation_fn: str = "geglu", | |
num_embeds_ada_norm: Optional[int] = None, | |
attention_bias: bool = False, | |
only_cross_attention: bool = False, | |
double_self_attention: bool = False, | |
upcast_attention: bool = False, | |
norm_elementwise_affine: bool = True, | |
norm_type: str = "layer_norm", | |
pre_layer_norm: bool = False, | |
final_dropout: bool = True, | |
): | |
super().__init__() | |
self.only_cross_attention = only_cross_attention | |
self.use_ada_layer_norm = (num_embeds_ada_norm is not None) and norm_type == "ada_norm" | |
self.pre_layer_norm = pre_layer_norm | |
if norm_type in ("ada_norm", "ada_norm_zero") and num_embeds_ada_norm is None: | |
raise ValueError( | |
f"`norm_type` is set to {norm_type}, but `num_embeds_ada_norm` is not defined. Please make sure to" | |
f" define `num_embeds_ada_norm` if setting `norm_type` to {norm_type}." | |
) | |
# 1. Self-Attn | |
self.attn1 = Attention( | |
query_dim=dim, | |
heads=num_attention_heads, | |
dim_head=attention_head_dim, | |
dropout=dropout, | |
bias=attention_bias, | |
cross_attention_dim=cross_attention_dim if only_cross_attention else None, | |
upcast_attention=upcast_attention, | |
) | |
# 2. Cross-Attn | |
if cross_attention_dim is not None or double_self_attention: | |
self.attn2 = Attention( | |
query_dim=dim, | |
cross_attention_dim=cross_attention_dim if not double_self_attention else None, | |
heads=num_attention_heads, | |
dim_head=attention_head_dim, | |
dropout=dropout, | |
bias=attention_bias, | |
upcast_attention=upcast_attention, | |
) # is self-attn if encoder_hidden_states is none | |
else: | |
self.attn2 = None | |
if self.use_ada_layer_norm: | |
self.norm1 = AdaLayerNorm(dim, num_embeds_ada_norm) | |
else: | |
self.norm1 = nn.LayerNorm(dim, elementwise_affine=norm_elementwise_affine) | |
if cross_attention_dim is not None or double_self_attention: | |
# We currently only use AdaLayerNormZero for self attention where there will only be one attention block. | |
# I.e. the number of returned modulation chunks from AdaLayerZero would not make sense if returned during | |
# the second cross attention block. | |
self.norm2 = ( | |
AdaLayerNorm(dim, num_embeds_ada_norm) | |
if self.use_ada_layer_norm | |
else nn.LayerNorm(dim, elementwise_affine=norm_elementwise_affine) | |
) | |
else: | |
self.norm2 = None | |
# 3. Feed-forward | |
self.norm3 = nn.LayerNorm(dim, elementwise_affine=norm_elementwise_affine) | |
self.ff = FeedForward(dim, dropout=dropout, activation_fn=activation_fn, final_dropout=final_dropout) | |
def forward( | |
self, | |
hidden_states, | |
attention_mask=None, | |
encoder_hidden_states=None, | |
encoder_attention_mask=None, | |
timestep=None, | |
cross_attention_kwargs=None, | |
class_labels=None, | |
): | |
# Following the diffusers transformer block implementation, put the LayerNorm on the | |
# residual backbone | |
# Pre-LayerNorm | |
if self.pre_layer_norm: | |
if self.use_ada_layer_norm: | |
hidden_states = self.norm1(hidden_states, timestep) | |
else: | |
hidden_states = self.norm1(hidden_states) | |
# 1. Self-Attention | |
cross_attention_kwargs = cross_attention_kwargs if cross_attention_kwargs is not None else {} | |
attn_output = self.attn1( | |
hidden_states, | |
encoder_hidden_states=encoder_hidden_states if self.only_cross_attention else None, | |
attention_mask=attention_mask, | |
**cross_attention_kwargs, | |
) | |
hidden_states = attn_output + hidden_states | |
# Following the diffusers transformer block implementation, put the LayerNorm on the | |
# residual backbone | |
# Post-LayerNorm | |
if not self.pre_layer_norm: | |
if self.use_ada_layer_norm: | |
hidden_states = self.norm1(hidden_states, timestep) | |
else: | |
hidden_states = self.norm1(hidden_states) | |
if self.attn2 is not None: | |
# Pre-LayerNorm | |
if self.pre_layer_norm: | |
hidden_states = ( | |
self.norm2(hidden_states, timestep) if self.use_ada_layer_norm else self.norm2(hidden_states) | |
) | |
# TODO (Birch-San): Here we should prepare the encoder_attention mask correctly | |
# prepare attention mask here | |
# 2. Cross-Attention | |
attn_output = self.attn2( | |
hidden_states, | |
encoder_hidden_states=encoder_hidden_states, | |
attention_mask=encoder_attention_mask, | |
**cross_attention_kwargs, | |
) | |
hidden_states = attn_output + hidden_states | |
# Post-LayerNorm | |
if not self.pre_layer_norm: | |
hidden_states = ( | |
self.norm2(hidden_states, timestep) if self.use_ada_layer_norm else self.norm2(hidden_states) | |
) | |
# 3. Feed-forward | |
# Pre-LayerNorm | |
if self.pre_layer_norm: | |
hidden_states = self.norm3(hidden_states) | |
ff_output = self.ff(hidden_states) | |
hidden_states = ff_output + hidden_states | |
# Post-LayerNorm | |
if not self.pre_layer_norm: | |
hidden_states = self.norm3(hidden_states) | |
return hidden_states | |
# Modified from diffusers.models.transformer_2d.Transformer2DModel | |
# Modify the transformer block structure to be U-Net like following U-ViT | |
# Only supports patch-style input and torch.nn.LayerNorm currently | |
# https://github.com/baofff/U-ViT | |
class UTransformer2DModel(ModelMixin, ConfigMixin): | |
""" | |
Transformer model based on the [U-ViT](https://github.com/baofff/U-ViT) architecture for image-like data. Compared | |
to [`Transformer2DModel`], this model has skip connections between transformer blocks in a "U"-shaped fashion, | |
similar to a U-Net. Supports only continuous (actual embeddings) inputs, which are embedded via a [`PatchEmbed`] | |
layer and then reshaped to (b, t, d). | |
Parameters: | |
num_attention_heads (`int`, *optional*, defaults to 16): The number of heads to use for multi-head attention. | |
attention_head_dim (`int`, *optional*, defaults to 88): The number of channels in each head. | |
in_channels (`int`, *optional*): | |
Pass if the input is continuous. The number of channels in the input. | |
out_channels (`int`, *optional*): | |
The number of output channels; if `None`, defaults to `in_channels`. | |
num_layers (`int`, *optional*, defaults to 1): The number of layers of Transformer blocks to use. | |
dropout (`float`, *optional*, defaults to 0.0): The dropout probability to use. | |
norm_num_groups (`int`, *optional*, defaults to `32`): | |
The number of groups to use when performing Group Normalization. | |
cross_attention_dim (`int`, *optional*): The number of encoder_hidden_states dimensions to use. | |
attention_bias (`bool`, *optional*): | |
Configure if the TransformerBlocks' attention should contain a bias parameter. | |
sample_size (`int`, *optional*): Pass if the input is discrete. The width of the latent images. | |
Note that this is fixed at training time as it is used for learning a number of position embeddings. See | |
`ImagePositionalEmbeddings`. | |
num_vector_embeds (`int`, *optional*): | |
Pass if the input is discrete. The number of classes of the vector embeddings of the latent pixels. | |
Includes the class for the masked latent pixel. | |
patch_size (`int`, *optional*, defaults to 2): | |
The patch size to use in the patch embedding. | |
activation_fn (`str`, *optional*, defaults to `"geglu"`): Activation function to be used in feed-forward. | |
num_embeds_ada_norm ( `int`, *optional*): Pass if at least one of the norm_layers is `AdaLayerNorm`. | |
The number of diffusion steps used during training. Note that this is fixed at training time as it is used | |
to learn a number of embeddings that are added to the hidden states. During inference, you can denoise for | |
up to but not more than steps than `num_embeds_ada_norm`. | |
use_linear_projection (int, *optional*): TODO: Not used | |
only_cross_attention (`bool`, *optional*): | |
Whether to use only cross-attention layers. In this case two cross attention layers are used in each | |
transformer block. | |
upcast_attention (`bool`, *optional*): | |
Whether to upcast the query and key to float() when performing the attention calculation. | |
norm_type (`str`, *optional*, defaults to `"layer_norm"`): | |
The Layer Normalization implementation to use. Defaults to `torch.nn.LayerNorm`. | |
block_type (`str`, *optional*, defaults to `"unidiffuser"`): | |
The transformer block implementation to use. If `"unidiffuser"`, has the LayerNorms on the residual | |
backbone of each transformer block; otherwise has them in the attention/feedforward branches (the standard | |
behavior in `diffusers`.) | |
pre_layer_norm (`bool`, *optional*): | |
Whether to perform layer normalization before the attention and feedforward operations ("pre-LayerNorm"), | |
as opposed to after ("post-LayerNorm"). The original UniDiffuser implementation is post-LayerNorm | |
(`pre_layer_norm = False`). | |
norm_elementwise_affine (`bool`, *optional*): | |
Whether to use learnable per-element affine parameters during layer normalization. | |
use_patch_pos_embed (`bool`, *optional*): | |
Whether to use position embeddings inside the patch embedding layer (`PatchEmbed`). | |
final_dropout (`bool`, *optional*): | |
Whether to use a final Dropout layer after the feedforward network. | |
""" | |
def __init__( | |
self, | |
num_attention_heads: int = 16, | |
attention_head_dim: int = 88, | |
in_channels: Optional[int] = None, | |
out_channels: Optional[int] = None, | |
num_layers: int = 1, | |
dropout: float = 0.0, | |
norm_num_groups: int = 32, | |
cross_attention_dim: Optional[int] = None, | |
attention_bias: bool = False, | |
sample_size: Optional[int] = None, | |
num_vector_embeds: Optional[int] = None, | |
patch_size: Optional[int] = 2, | |
activation_fn: str = "geglu", | |
num_embeds_ada_norm: Optional[int] = None, | |
use_linear_projection: bool = False, | |
only_cross_attention: bool = False, | |
upcast_attention: bool = False, | |
norm_type: str = "layer_norm", | |
block_type: str = "unidiffuser", | |
pre_layer_norm: bool = False, | |
norm_elementwise_affine: bool = True, | |
use_patch_pos_embed=False, | |
ff_final_dropout: bool = False, | |
): | |
super().__init__() | |
self.use_linear_projection = use_linear_projection | |
self.num_attention_heads = num_attention_heads | |
self.attention_head_dim = attention_head_dim | |
inner_dim = num_attention_heads * attention_head_dim | |
# 1. Input | |
# Only support patch input of shape (batch_size, num_channels, height, width) for now | |
assert in_channels is not None and patch_size is not None, "Patch input requires in_channels and patch_size." | |
assert sample_size is not None, "UTransformer2DModel over patched input must provide sample_size" | |
# 2. Define input layers | |
self.height = sample_size | |
self.width = sample_size | |
self.patch_size = patch_size | |
self.pos_embed = PatchEmbed( | |
height=sample_size, | |
width=sample_size, | |
patch_size=patch_size, | |
in_channels=in_channels, | |
embed_dim=inner_dim, | |
use_pos_embed=use_patch_pos_embed, | |
) | |
# 3. Define transformers blocks | |
# Modify this to have in_blocks ("downsample" blocks, even though we don't actually downsample), a mid_block, | |
# and out_blocks ("upsample" blocks). Like a U-Net, there are skip connections from in_blocks to out_blocks in | |
# a "U"-shaped fashion (e.g. first in_block to last out_block, etc.). | |
# Quick hack to make the transformer block type configurable | |
if block_type == "unidiffuser": | |
block_cls = UniDiffuserBlock | |
else: | |
block_cls = UTransformerBlock | |
self.transformer_in_blocks = nn.ModuleList( | |
[ | |
block_cls( | |
inner_dim, | |
num_attention_heads, | |
attention_head_dim, | |
dropout=dropout, | |
cross_attention_dim=cross_attention_dim, | |
activation_fn=activation_fn, | |
num_embeds_ada_norm=num_embeds_ada_norm, | |
attention_bias=attention_bias, | |
only_cross_attention=only_cross_attention, | |
upcast_attention=upcast_attention, | |
norm_type=norm_type, | |
pre_layer_norm=pre_layer_norm, | |
norm_elementwise_affine=norm_elementwise_affine, | |
final_dropout=ff_final_dropout, | |
) | |
for d in range(num_layers // 2) | |
] | |
) | |
self.transformer_mid_block = block_cls( | |
inner_dim, | |
num_attention_heads, | |
attention_head_dim, | |
dropout=dropout, | |
cross_attention_dim=cross_attention_dim, | |
activation_fn=activation_fn, | |
num_embeds_ada_norm=num_embeds_ada_norm, | |
attention_bias=attention_bias, | |
only_cross_attention=only_cross_attention, | |
upcast_attention=upcast_attention, | |
norm_type=norm_type, | |
pre_layer_norm=pre_layer_norm, | |
norm_elementwise_affine=norm_elementwise_affine, | |
final_dropout=ff_final_dropout, | |
) | |
# For each skip connection, we use a SkipBlock (concatenation + Linear + LayerNorm) to process the inputs | |
# before each transformer out_block. | |
self.transformer_out_blocks = nn.ModuleList( | |
[ | |
nn.ModuleDict( | |
{ | |
"skip": SkipBlock( | |
inner_dim, | |
), | |
"block": block_cls( | |
inner_dim, | |
num_attention_heads, | |
attention_head_dim, | |
dropout=dropout, | |
cross_attention_dim=cross_attention_dim, | |
activation_fn=activation_fn, | |
num_embeds_ada_norm=num_embeds_ada_norm, | |
attention_bias=attention_bias, | |
only_cross_attention=only_cross_attention, | |
upcast_attention=upcast_attention, | |
norm_type=norm_type, | |
pre_layer_norm=pre_layer_norm, | |
norm_elementwise_affine=norm_elementwise_affine, | |
final_dropout=ff_final_dropout, | |
), | |
} | |
) | |
for d in range(num_layers // 2) | |
] | |
) | |
# 4. Define output layers | |
self.out_channels = in_channels if out_channels is None else out_channels | |
# Following the UniDiffuser U-ViT implementation, we process the transformer output with | |
# a LayerNorm layer with per-element affine params | |
self.norm_out = nn.LayerNorm(inner_dim) | |
def forward( | |
self, | |
hidden_states, | |
encoder_hidden_states=None, | |
timestep=None, | |
class_labels=None, | |
cross_attention_kwargs=None, | |
return_dict: bool = True, | |
hidden_states_is_embedding: bool = False, | |
unpatchify: bool = True, | |
): | |
""" | |
Args: | |
hidden_states ( When discrete, `torch.LongTensor` of shape `(batch size, num latent pixels)`. | |
When continuous, `torch.FloatTensor` of shape `(batch size, channel, height, width)`): Input | |
hidden_states | |
encoder_hidden_states ( `torch.LongTensor` of shape `(batch size, encoder_hidden_states dim)`, *optional*): | |
Conditional embeddings for cross attention layer. If not given, cross-attention defaults to | |
self-attention. | |
timestep ( `torch.long`, *optional*): | |
Optional timestep to be applied as an embedding in AdaLayerNorm's. Used to indicate denoising step. | |
class_labels ( `torch.LongTensor` of shape `(batch size, num classes)`, *optional*): | |
Optional class labels to be applied as an embedding in AdaLayerZeroNorm. Used to indicate class labels | |
conditioning. | |
cross_attention_kwargs (*optional*): | |
Keyword arguments to supply to the cross attention layers, if used. | |
return_dict (`bool`, *optional*, defaults to `True`): | |
Whether or not to return a [`models.unets.unet_2d_condition.UNet2DConditionOutput`] instead of a plain | |
tuple. | |
hidden_states_is_embedding (`bool`, *optional*, defaults to `False`): | |
Whether or not hidden_states is an embedding directly usable by the transformer. In this case we will | |
ignore input handling (e.g. continuous, vectorized, etc.) and directly feed hidden_states into the | |
transformer blocks. | |
unpatchify (`bool`, *optional*, defaults to `True`): | |
Whether to unpatchify the transformer output. | |
Returns: | |
[`~models.transformer_2d.Transformer2DModelOutput`] or `tuple`: | |
[`~models.transformer_2d.Transformer2DModelOutput`] if `return_dict` is True, otherwise a `tuple`. When | |
returning a tuple, the first element is the sample tensor. | |
""" | |
# 0. Check inputs | |
if not unpatchify and return_dict: | |
raise ValueError( | |
f"Cannot both define `unpatchify`: {unpatchify} and `return_dict`: {return_dict} since when" | |
f" `unpatchify` is {unpatchify} the returned output is of shape (batch_size, seq_len, hidden_dim)" | |
" rather than (batch_size, num_channels, height, width)." | |
) | |
# 1. Input | |
if not hidden_states_is_embedding: | |
hidden_states = self.pos_embed(hidden_states) | |
# 2. Blocks | |
# In ("downsample") blocks | |
skips = [] | |
for in_block in self.transformer_in_blocks: | |
hidden_states = in_block( | |
hidden_states, | |
encoder_hidden_states=encoder_hidden_states, | |
timestep=timestep, | |
cross_attention_kwargs=cross_attention_kwargs, | |
class_labels=class_labels, | |
) | |
skips.append(hidden_states) | |
# Mid block | |
hidden_states = self.transformer_mid_block(hidden_states) | |
# Out ("upsample") blocks | |
for out_block in self.transformer_out_blocks: | |
hidden_states = out_block["skip"](hidden_states, skips.pop()) | |
hidden_states = out_block["block"]( | |
hidden_states, | |
encoder_hidden_states=encoder_hidden_states, | |
timestep=timestep, | |
cross_attention_kwargs=cross_attention_kwargs, | |
class_labels=class_labels, | |
) | |
# 3. Output | |
# Don't support AdaLayerNorm for now, so no conditioning/scale/shift logic | |
hidden_states = self.norm_out(hidden_states) | |
# hidden_states = self.proj_out(hidden_states) | |
if unpatchify: | |
# unpatchify | |
height = width = int(hidden_states.shape[1] ** 0.5) | |
hidden_states = hidden_states.reshape( | |
shape=(-1, height, width, self.patch_size, self.patch_size, self.out_channels) | |
) | |
hidden_states = torch.einsum("nhwpqc->nchpwq", hidden_states) | |
output = hidden_states.reshape( | |
shape=(-1, self.out_channels, height * self.patch_size, width * self.patch_size) | |
) | |
else: | |
output = hidden_states | |
if not return_dict: | |
return (output,) | |
return Transformer2DModelOutput(sample=output) | |
class UniDiffuserModel(ModelMixin, ConfigMixin): | |
""" | |
Transformer model for a image-text [UniDiffuser](https://arxiv.org/pdf/2303.06555.pdf) model. This is a | |
modification of [`UTransformer2DModel`] with input and output heads for the VAE-embedded latent image, the | |
CLIP-embedded image, and the CLIP-embedded prompt (see paper for more details). | |
Parameters: | |
text_dim (`int`): The hidden dimension of the CLIP text model used to embed images. | |
clip_img_dim (`int`): The hidden dimension of the CLIP vision model used to embed prompts. | |
num_attention_heads (`int`, *optional*, defaults to 16): The number of heads to use for multi-head attention. | |
attention_head_dim (`int`, *optional*, defaults to 88): The number of channels in each head. | |
in_channels (`int`, *optional*): | |
Pass if the input is continuous. The number of channels in the input. | |
out_channels (`int`, *optional*): | |
The number of output channels; if `None`, defaults to `in_channels`. | |
num_layers (`int`, *optional*, defaults to 1): The number of layers of Transformer blocks to use. | |
dropout (`float`, *optional*, defaults to 0.0): The dropout probability to use. | |
norm_num_groups (`int`, *optional*, defaults to `32`): | |
The number of groups to use when performing Group Normalization. | |
cross_attention_dim (`int`, *optional*): The number of encoder_hidden_states dimensions to use. | |
attention_bias (`bool`, *optional*): | |
Configure if the TransformerBlocks' attention should contain a bias parameter. | |
sample_size (`int`, *optional*): Pass if the input is discrete. The width of the latent images. | |
Note that this is fixed at training time as it is used for learning a number of position embeddings. See | |
`ImagePositionalEmbeddings`. | |
num_vector_embeds (`int`, *optional*): | |
Pass if the input is discrete. The number of classes of the vector embeddings of the latent pixels. | |
Includes the class for the masked latent pixel. | |
patch_size (`int`, *optional*, defaults to 2): | |
The patch size to use in the patch embedding. | |
activation_fn (`str`, *optional*, defaults to `"geglu"`): Activation function to be used in feed-forward. | |
num_embeds_ada_norm ( `int`, *optional*): Pass if at least one of the norm_layers is `AdaLayerNorm`. | |
The number of diffusion steps used during training. Note that this is fixed at training time as it is used | |
to learn a number of embeddings that are added to the hidden states. During inference, you can denoise for | |
up to but not more than steps than `num_embeds_ada_norm`. | |
use_linear_projection (int, *optional*): TODO: Not used | |
only_cross_attention (`bool`, *optional*): | |
Whether to use only cross-attention layers. In this case two cross attention layers are used in each | |
transformer block. | |
upcast_attention (`bool`, *optional*): | |
Whether to upcast the query and key to float32 when performing the attention calculation. | |
norm_type (`str`, *optional*, defaults to `"layer_norm"`): | |
The Layer Normalization implementation to use. Defaults to `torch.nn.LayerNorm`. | |
block_type (`str`, *optional*, defaults to `"unidiffuser"`): | |
The transformer block implementation to use. If `"unidiffuser"`, has the LayerNorms on the residual | |
backbone of each transformer block; otherwise has them in the attention/feedforward branches (the standard | |
behavior in `diffusers`.) | |
pre_layer_norm (`bool`, *optional*): | |
Whether to perform layer normalization before the attention and feedforward operations ("pre-LayerNorm"), | |
as opposed to after ("post-LayerNorm"). The original UniDiffuser implementation is post-LayerNorm | |
(`pre_layer_norm = False`). | |
norm_elementwise_affine (`bool`, *optional*): | |
Whether to use learnable per-element affine parameters during layer normalization. | |
use_patch_pos_embed (`bool`, *optional*): | |
Whether to use position embeddings inside the patch embedding layer (`PatchEmbed`). | |
ff_final_dropout (`bool`, *optional*): | |
Whether to use a final Dropout layer after the feedforward network. | |
use_data_type_embedding (`bool`, *optional*): | |
Whether to use a data type embedding. This is only relevant for UniDiffuser-v1 style models; UniDiffuser-v1 | |
is continue-trained from UniDiffuser-v0 on non-publically-available data and accepts a `data_type` | |
argument, which can either be `1` to use the weights trained on non-publically-available data or `0` | |
otherwise. This argument is subsequently embedded by the data type embedding, if used. | |
""" | |
def __init__( | |
self, | |
text_dim: int = 768, | |
clip_img_dim: int = 512, | |
num_text_tokens: int = 77, | |
num_attention_heads: int = 16, | |
attention_head_dim: int = 88, | |
in_channels: Optional[int] = None, | |
out_channels: Optional[int] = None, | |
num_layers: int = 1, | |
dropout: float = 0.0, | |
norm_num_groups: int = 32, | |
cross_attention_dim: Optional[int] = None, | |
attention_bias: bool = False, | |
sample_size: Optional[int] = None, | |
num_vector_embeds: Optional[int] = None, | |
patch_size: Optional[int] = None, | |
activation_fn: str = "geglu", | |
num_embeds_ada_norm: Optional[int] = None, | |
use_linear_projection: bool = False, | |
only_cross_attention: bool = False, | |
upcast_attention: bool = False, | |
norm_type: str = "layer_norm", | |
block_type: str = "unidiffuser", | |
pre_layer_norm: bool = False, | |
use_timestep_embedding=False, | |
norm_elementwise_affine: bool = True, | |
use_patch_pos_embed=False, | |
ff_final_dropout: bool = True, | |
use_data_type_embedding: bool = False, | |
): | |
super().__init__() | |
# 0. Handle dimensions | |
self.inner_dim = num_attention_heads * attention_head_dim | |
assert sample_size is not None, "UniDiffuserModel over patched input must provide sample_size" | |
self.sample_size = sample_size | |
self.in_channels = in_channels | |
self.out_channels = in_channels if out_channels is None else out_channels | |
self.patch_size = patch_size | |
# Assume image is square... | |
self.num_patches = (self.sample_size // patch_size) * (self.sample_size // patch_size) | |
# 1. Define input layers | |
# 1.1 Input layers for text and image input | |
# For now, only support patch input for VAE latent image input | |
self.vae_img_in = PatchEmbed( | |
height=sample_size, | |
width=sample_size, | |
patch_size=patch_size, | |
in_channels=in_channels, | |
embed_dim=self.inner_dim, | |
use_pos_embed=use_patch_pos_embed, | |
) | |
self.clip_img_in = nn.Linear(clip_img_dim, self.inner_dim) | |
self.text_in = nn.Linear(text_dim, self.inner_dim) | |
# 1.2. Timestep embeddings for t_img, t_text | |
self.timestep_img_proj = Timesteps( | |
self.inner_dim, | |
flip_sin_to_cos=True, | |
downscale_freq_shift=0, | |
) | |
self.timestep_img_embed = ( | |
TimestepEmbedding( | |
self.inner_dim, | |
4 * self.inner_dim, | |
out_dim=self.inner_dim, | |
) | |
if use_timestep_embedding | |
else nn.Identity() | |
) | |
self.timestep_text_proj = Timesteps( | |
self.inner_dim, | |
flip_sin_to_cos=True, | |
downscale_freq_shift=0, | |
) | |
self.timestep_text_embed = ( | |
TimestepEmbedding( | |
self.inner_dim, | |
4 * self.inner_dim, | |
out_dim=self.inner_dim, | |
) | |
if use_timestep_embedding | |
else nn.Identity() | |
) | |
# 1.3. Positional embedding | |
self.num_text_tokens = num_text_tokens | |
self.num_tokens = 1 + 1 + num_text_tokens + 1 + self.num_patches | |
self.pos_embed = nn.Parameter(torch.zeros(1, self.num_tokens, self.inner_dim)) | |
self.pos_embed_drop = nn.Dropout(p=dropout) | |
trunc_normal_(self.pos_embed, std=0.02) | |
# 1.4. Handle data type token embeddings for UniDiffuser-V1, if necessary | |
self.use_data_type_embedding = use_data_type_embedding | |
if self.use_data_type_embedding: | |
self.data_type_token_embedding = nn.Embedding(2, self.inner_dim) | |
self.data_type_pos_embed_token = nn.Parameter(torch.zeros(1, 1, self.inner_dim)) | |
# 2. Define transformer blocks | |
self.transformer = UTransformer2DModel( | |
num_attention_heads=num_attention_heads, | |
attention_head_dim=attention_head_dim, | |
in_channels=in_channels, | |
out_channels=out_channels, | |
num_layers=num_layers, | |
dropout=dropout, | |
norm_num_groups=norm_num_groups, | |
cross_attention_dim=cross_attention_dim, | |
attention_bias=attention_bias, | |
sample_size=sample_size, | |
num_vector_embeds=num_vector_embeds, | |
patch_size=patch_size, | |
activation_fn=activation_fn, | |
num_embeds_ada_norm=num_embeds_ada_norm, | |
use_linear_projection=use_linear_projection, | |
only_cross_attention=only_cross_attention, | |
upcast_attention=upcast_attention, | |
norm_type=norm_type, | |
block_type=block_type, | |
pre_layer_norm=pre_layer_norm, | |
norm_elementwise_affine=norm_elementwise_affine, | |
use_patch_pos_embed=use_patch_pos_embed, | |
ff_final_dropout=ff_final_dropout, | |
) | |
# 3. Define output layers | |
patch_dim = (patch_size**2) * out_channels | |
self.vae_img_out = nn.Linear(self.inner_dim, patch_dim) | |
self.clip_img_out = nn.Linear(self.inner_dim, clip_img_dim) | |
self.text_out = nn.Linear(self.inner_dim, text_dim) | |
def no_weight_decay(self): | |
return {"pos_embed"} | |
def forward( | |
self, | |
latent_image_embeds: torch.FloatTensor, | |
image_embeds: torch.FloatTensor, | |
prompt_embeds: torch.FloatTensor, | |
timestep_img: Union[torch.Tensor, float, int], | |
timestep_text: Union[torch.Tensor, float, int], | |
data_type: Optional[Union[torch.Tensor, float, int]] = 1, | |
encoder_hidden_states=None, | |
cross_attention_kwargs=None, | |
): | |
""" | |
Args: | |
latent_image_embeds (`torch.FloatTensor` of shape `(batch size, latent channels, height, width)`): | |
Latent image representation from the VAE encoder. | |
image_embeds (`torch.FloatTensor` of shape `(batch size, 1, clip_img_dim)`): | |
CLIP-embedded image representation (unsqueezed in the first dimension). | |
prompt_embeds (`torch.FloatTensor` of shape `(batch size, seq_len, text_dim)`): | |
CLIP-embedded text representation. | |
timestep_img (`torch.long` or `float` or `int`): | |
Current denoising step for the image. | |
timestep_text (`torch.long` or `float` or `int`): | |
Current denoising step for the text. | |
data_type: (`torch.int` or `float` or `int`, *optional*, defaults to `1`): | |
Only used in UniDiffuser-v1-style models. Can be either `1`, to use weights trained on nonpublic data, | |
or `0` otherwise. | |
encoder_hidden_states ( `torch.LongTensor` of shape `(batch size, encoder_hidden_states dim)`, *optional*): | |
Conditional embeddings for cross attention layer. If not given, cross-attention defaults to | |
self-attention. | |
cross_attention_kwargs (*optional*): | |
Keyword arguments to supply to the cross attention layers, if used. | |
Returns: | |
`tuple`: Returns relevant parts of the model's noise prediction: the first element of the tuple is tbe VAE | |
image embedding, the second element is the CLIP image embedding, and the third element is the CLIP text | |
embedding. | |
""" | |
batch_size = latent_image_embeds.shape[0] | |
# 1. Input | |
# 1.1. Map inputs to shape (B, N, inner_dim) | |
vae_hidden_states = self.vae_img_in(latent_image_embeds) | |
clip_hidden_states = self.clip_img_in(image_embeds) | |
text_hidden_states = self.text_in(prompt_embeds) | |
num_text_tokens, num_img_tokens = text_hidden_states.size(1), vae_hidden_states.size(1) | |
# 1.2. Encode image timesteps to single token (B, 1, inner_dim) | |
if not torch.is_tensor(timestep_img): | |
timestep_img = torch.tensor([timestep_img], dtype=torch.long, device=vae_hidden_states.device) | |
# broadcast to batch dimension in a way that's compatible with ONNX/Core ML | |
timestep_img = timestep_img * torch.ones(batch_size, dtype=timestep_img.dtype, device=timestep_img.device) | |
timestep_img_token = self.timestep_img_proj(timestep_img) | |
# t_img_token does not contain any weights and will always return f32 tensors | |
# but time_embedding might be fp16, so we need to cast here. | |
timestep_img_token = timestep_img_token.to(dtype=self.dtype) | |
timestep_img_token = self.timestep_img_embed(timestep_img_token) | |
timestep_img_token = timestep_img_token.unsqueeze(dim=1) | |
# 1.3. Encode text timesteps to single token (B, 1, inner_dim) | |
if not torch.is_tensor(timestep_text): | |
timestep_text = torch.tensor([timestep_text], dtype=torch.long, device=vae_hidden_states.device) | |
# broadcast to batch dimension in a way that's compatible with ONNX/Core ML | |
timestep_text = timestep_text * torch.ones(batch_size, dtype=timestep_text.dtype, device=timestep_text.device) | |
timestep_text_token = self.timestep_text_proj(timestep_text) | |
# t_text_token does not contain any weights and will always return f32 tensors | |
# but time_embedding might be fp16, so we need to cast here. | |
timestep_text_token = timestep_text_token.to(dtype=self.dtype) | |
timestep_text_token = self.timestep_text_embed(timestep_text_token) | |
timestep_text_token = timestep_text_token.unsqueeze(dim=1) | |
# 1.4. Concatenate all of the embeddings together. | |
if self.use_data_type_embedding: | |
assert data_type is not None, "data_type must be supplied if the model uses a data type embedding" | |
if not torch.is_tensor(data_type): | |
data_type = torch.tensor([data_type], dtype=torch.int, device=vae_hidden_states.device) | |
# broadcast to batch dimension in a way that's compatible with ONNX/Core ML | |
data_type = data_type * torch.ones(batch_size, dtype=data_type.dtype, device=data_type.device) | |
data_type_token = self.data_type_token_embedding(data_type).unsqueeze(dim=1) | |
hidden_states = torch.cat( | |
[ | |
timestep_img_token, | |
timestep_text_token, | |
data_type_token, | |
text_hidden_states, | |
clip_hidden_states, | |
vae_hidden_states, | |
], | |
dim=1, | |
) | |
else: | |
hidden_states = torch.cat( | |
[timestep_img_token, timestep_text_token, text_hidden_states, clip_hidden_states, vae_hidden_states], | |
dim=1, | |
) | |
# 1.5. Prepare the positional embeddings and add to hidden states | |
# Note: I think img_vae should always have the proper shape, so there's no need to interpolate | |
# the position embeddings. | |
if self.use_data_type_embedding: | |
pos_embed = torch.cat( | |
[self.pos_embed[:, : 1 + 1, :], self.data_type_pos_embed_token, self.pos_embed[:, 1 + 1 :, :]], dim=1 | |
) | |
else: | |
pos_embed = self.pos_embed | |
hidden_states = hidden_states + pos_embed | |
hidden_states = self.pos_embed_drop(hidden_states) | |
# 2. Blocks | |
hidden_states = self.transformer( | |
hidden_states, | |
encoder_hidden_states=encoder_hidden_states, | |
timestep=None, | |
class_labels=None, | |
cross_attention_kwargs=cross_attention_kwargs, | |
return_dict=False, | |
hidden_states_is_embedding=True, | |
unpatchify=False, | |
)[0] | |
# 3. Output | |
# Split out the predicted noise representation. | |
if self.use_data_type_embedding: | |
( | |
t_img_token_out, | |
t_text_token_out, | |
data_type_token_out, | |
text_out, | |
img_clip_out, | |
img_vae_out, | |
) = hidden_states.split((1, 1, 1, num_text_tokens, 1, num_img_tokens), dim=1) | |
else: | |
t_img_token_out, t_text_token_out, text_out, img_clip_out, img_vae_out = hidden_states.split( | |
(1, 1, num_text_tokens, 1, num_img_tokens), dim=1 | |
) | |
img_vae_out = self.vae_img_out(img_vae_out) | |
# unpatchify | |
height = width = int(img_vae_out.shape[1] ** 0.5) | |
img_vae_out = img_vae_out.reshape( | |
shape=(-1, height, width, self.patch_size, self.patch_size, self.out_channels) | |
) | |
img_vae_out = torch.einsum("nhwpqc->nchpwq", img_vae_out) | |
img_vae_out = img_vae_out.reshape( | |
shape=(-1, self.out_channels, height * self.patch_size, width * self.patch_size) | |
) | |
img_clip_out = self.clip_img_out(img_clip_out) | |
text_out = self.text_out(text_out) | |
return img_vae_out, img_clip_out, text_out | |