Spaces:
Running
on
Zero
Running
on
Zero
import numpy as np | |
import torch | |
from ...utils import is_invisible_watermark_available | |
if is_invisible_watermark_available(): | |
from imwatermark import WatermarkEncoder | |
# Copied from https://github.com/Stability-AI/generative-models/blob/613af104c6b85184091d42d374fef420eddb356d/scripts/demo/streamlit_helpers.py#L66 | |
WATERMARK_MESSAGE = 0b101100111110110010010000011110111011000110011110 | |
# bin(x)[2:] gives bits of x as str, use int to convert them to 0/1 | |
WATERMARK_BITS = [int(bit) for bit in bin(WATERMARK_MESSAGE)[2:]] | |
class StableDiffusionXLWatermarker: | |
def __init__(self): | |
self.watermark = WATERMARK_BITS | |
self.encoder = WatermarkEncoder() | |
self.encoder.set_watermark("bits", self.watermark) | |
def apply_watermark(self, images: torch.FloatTensor): | |
# can't encode images that are smaller than 256 | |
if images.shape[-1] < 256: | |
return images | |
images = (255 * (images / 2 + 0.5)).cpu().permute(0, 2, 3, 1).float().numpy() | |
# Convert RGB to BGR, which is the channel order expected by the watermark encoder. | |
images = images[:, :, :, ::-1] | |
# Add watermark and convert BGR back to RGB | |
images = [self.encoder.encode(image, "dwtDct")[:, :, ::-1] for image in images] | |
images = np.array(images) | |
images = torch.from_numpy(images).permute(0, 3, 1, 2) | |
images = torch.clamp(2 * (images / 255 - 0.5), min=-1.0, max=1.0) | |
return images | |