Spaces:
Running
on
Zero
Running
on
Zero
# Copyright 2022 The Music Spectrogram Diffusion Authors. | |
# Copyright 2024 The HuggingFace Team. All rights reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
import torch | |
import torch.nn as nn | |
from transformers.modeling_utils import ModuleUtilsMixin | |
from transformers.models.t5.modeling_t5 import T5Block, T5Config, T5LayerNorm | |
from ....configuration_utils import ConfigMixin, register_to_config | |
from ....models import ModelMixin | |
class SpectrogramNotesEncoder(ModelMixin, ConfigMixin, ModuleUtilsMixin): | |
def __init__( | |
self, | |
max_length: int, | |
vocab_size: int, | |
d_model: int, | |
dropout_rate: float, | |
num_layers: int, | |
num_heads: int, | |
d_kv: int, | |
d_ff: int, | |
feed_forward_proj: str, | |
is_decoder: bool = False, | |
): | |
super().__init__() | |
self.token_embedder = nn.Embedding(vocab_size, d_model) | |
self.position_encoding = nn.Embedding(max_length, d_model) | |
self.position_encoding.weight.requires_grad = False | |
self.dropout_pre = nn.Dropout(p=dropout_rate) | |
t5config = T5Config( | |
vocab_size=vocab_size, | |
d_model=d_model, | |
num_heads=num_heads, | |
d_kv=d_kv, | |
d_ff=d_ff, | |
dropout_rate=dropout_rate, | |
feed_forward_proj=feed_forward_proj, | |
is_decoder=is_decoder, | |
is_encoder_decoder=False, | |
) | |
self.encoders = nn.ModuleList() | |
for lyr_num in range(num_layers): | |
lyr = T5Block(t5config) | |
self.encoders.append(lyr) | |
self.layer_norm = T5LayerNorm(d_model) | |
self.dropout_post = nn.Dropout(p=dropout_rate) | |
def forward(self, encoder_input_tokens, encoder_inputs_mask): | |
x = self.token_embedder(encoder_input_tokens) | |
seq_length = encoder_input_tokens.shape[1] | |
inputs_positions = torch.arange(seq_length, device=encoder_input_tokens.device) | |
x += self.position_encoding(inputs_positions) | |
x = self.dropout_pre(x) | |
# inverted the attention mask | |
input_shape = encoder_input_tokens.size() | |
extended_attention_mask = self.get_extended_attention_mask(encoder_inputs_mask, input_shape) | |
for lyr in self.encoders: | |
x = lyr(x, extended_attention_mask)[0] | |
x = self.layer_norm(x) | |
return self.dropout_post(x), encoder_inputs_mask | |