Spaces:
Running
on
Zero
Running
on
Zero
# Copyright 2024 The HuggingFace Team. All rights reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
from typing import List, Optional, Tuple, Union | |
import torch | |
from ...schedulers import DDIMScheduler | |
from ...utils.torch_utils import randn_tensor | |
from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput | |
class DDIMPipeline(DiffusionPipeline): | |
r""" | |
Pipeline for image generation. | |
This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods | |
implemented for all pipelines (downloading, saving, running on a particular device, etc.). | |
Parameters: | |
unet ([`UNet2DModel`]): | |
A `UNet2DModel` to denoise the encoded image latents. | |
scheduler ([`SchedulerMixin`]): | |
A scheduler to be used in combination with `unet` to denoise the encoded image. Can be one of | |
[`DDPMScheduler`], or [`DDIMScheduler`]. | |
""" | |
model_cpu_offload_seq = "unet" | |
def __init__(self, unet, scheduler): | |
super().__init__() | |
# make sure scheduler can always be converted to DDIM | |
scheduler = DDIMScheduler.from_config(scheduler.config) | |
self.register_modules(unet=unet, scheduler=scheduler) | |
def __call__( | |
self, | |
batch_size: int = 1, | |
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None, | |
eta: float = 0.0, | |
num_inference_steps: int = 50, | |
use_clipped_model_output: Optional[bool] = None, | |
output_type: Optional[str] = "pil", | |
return_dict: bool = True, | |
) -> Union[ImagePipelineOutput, Tuple]: | |
r""" | |
The call function to the pipeline for generation. | |
Args: | |
batch_size (`int`, *optional*, defaults to 1): | |
The number of images to generate. | |
generator (`torch.Generator`, *optional*): | |
A [`torch.Generator`](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make | |
generation deterministic. | |
eta (`float`, *optional*, defaults to 0.0): | |
Corresponds to parameter eta (η) from the [DDIM](https://arxiv.org/abs/2010.02502) paper. Only applies | |
to the [`~schedulers.DDIMScheduler`], and is ignored in other schedulers. A value of `0` corresponds to | |
DDIM and `1` corresponds to DDPM. | |
num_inference_steps (`int`, *optional*, defaults to 50): | |
The number of denoising steps. More denoising steps usually lead to a higher quality image at the | |
expense of slower inference. | |
use_clipped_model_output (`bool`, *optional*, defaults to `None`): | |
If `True` or `False`, see documentation for [`DDIMScheduler.step`]. If `None`, nothing is passed | |
downstream to the scheduler (use `None` for schedulers which don't support this argument). | |
output_type (`str`, *optional*, defaults to `"pil"`): | |
The output format of the generated image. Choose between `PIL.Image` or `np.array`. | |
return_dict (`bool`, *optional*, defaults to `True`): | |
Whether or not to return a [`~pipelines.ImagePipelineOutput`] instead of a plain tuple. | |
Example: | |
```py | |
>>> from diffusers import DDIMPipeline | |
>>> import PIL.Image | |
>>> import numpy as np | |
>>> # load model and scheduler | |
>>> pipe = DDIMPipeline.from_pretrained("fusing/ddim-lsun-bedroom") | |
>>> # run pipeline in inference (sample random noise and denoise) | |
>>> image = pipe(eta=0.0, num_inference_steps=50) | |
>>> # process image to PIL | |
>>> image_processed = image.cpu().permute(0, 2, 3, 1) | |
>>> image_processed = (image_processed + 1.0) * 127.5 | |
>>> image_processed = image_processed.numpy().astype(np.uint8) | |
>>> image_pil = PIL.Image.fromarray(image_processed[0]) | |
>>> # save image | |
>>> image_pil.save("test.png") | |
``` | |
Returns: | |
[`~pipelines.ImagePipelineOutput`] or `tuple`: | |
If `return_dict` is `True`, [`~pipelines.ImagePipelineOutput`] is returned, otherwise a `tuple` is | |
returned where the first element is a list with the generated images | |
""" | |
# Sample gaussian noise to begin loop | |
if isinstance(self.unet.config.sample_size, int): | |
image_shape = ( | |
batch_size, | |
self.unet.config.in_channels, | |
self.unet.config.sample_size, | |
self.unet.config.sample_size, | |
) | |
else: | |
image_shape = (batch_size, self.unet.config.in_channels, *self.unet.config.sample_size) | |
if isinstance(generator, list) and len(generator) != batch_size: | |
raise ValueError( | |
f"You have passed a list of generators of length {len(generator)}, but requested an effective batch" | |
f" size of {batch_size}. Make sure the batch size matches the length of the generators." | |
) | |
image = randn_tensor(image_shape, generator=generator, device=self._execution_device, dtype=self.unet.dtype) | |
# set step values | |
self.scheduler.set_timesteps(num_inference_steps) | |
for t in self.progress_bar(self.scheduler.timesteps): | |
# 1. predict noise model_output | |
model_output = self.unet(image, t).sample | |
# 2. predict previous mean of image x_t-1 and add variance depending on eta | |
# eta corresponds to η in paper and should be between [0, 1] | |
# do x_t -> x_t-1 | |
image = self.scheduler.step( | |
model_output, t, image, eta=eta, use_clipped_model_output=use_clipped_model_output, generator=generator | |
).prev_sample | |
image = (image / 2 + 0.5).clamp(0, 1) | |
image = image.cpu().permute(0, 2, 3, 1).numpy() | |
if output_type == "pil": | |
image = self.numpy_to_pil(image) | |
if not return_dict: | |
return (image,) | |
return ImagePipelineOutput(images=image) | |