Spaces:
Running
on
Zero
Running
on
Zero
# Copyright 2024 The HuggingFace Team. All rights reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
from dataclasses import dataclass | |
from typing import Optional, Tuple, Union | |
import torch | |
import torch.nn as nn | |
from ..configuration_utils import ConfigMixin, register_to_config | |
from ..utils import BaseOutput | |
from ..utils.accelerate_utils import apply_forward_hook | |
from .autoencoders.vae import Decoder, DecoderOutput, Encoder, VectorQuantizer | |
from .modeling_utils import ModelMixin | |
class VQEncoderOutput(BaseOutput): | |
""" | |
Output of VQModel encoding method. | |
Args: | |
latents (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`): | |
The encoded output sample from the last layer of the model. | |
""" | |
latents: torch.FloatTensor | |
class VQModel(ModelMixin, ConfigMixin): | |
r""" | |
A VQ-VAE model for decoding latent representations. | |
This model inherits from [`ModelMixin`]. Check the superclass documentation for it's generic methods implemented | |
for all models (such as downloading or saving). | |
Parameters: | |
in_channels (int, *optional*, defaults to 3): Number of channels in the input image. | |
out_channels (int, *optional*, defaults to 3): Number of channels in the output. | |
down_block_types (`Tuple[str]`, *optional*, defaults to `("DownEncoderBlock2D",)`): | |
Tuple of downsample block types. | |
up_block_types (`Tuple[str]`, *optional*, defaults to `("UpDecoderBlock2D",)`): | |
Tuple of upsample block types. | |
block_out_channels (`Tuple[int]`, *optional*, defaults to `(64,)`): | |
Tuple of block output channels. | |
layers_per_block (`int`, *optional*, defaults to `1`): Number of layers per block. | |
act_fn (`str`, *optional*, defaults to `"silu"`): The activation function to use. | |
latent_channels (`int`, *optional*, defaults to `3`): Number of channels in the latent space. | |
sample_size (`int`, *optional*, defaults to `32`): Sample input size. | |
num_vq_embeddings (`int`, *optional*, defaults to `256`): Number of codebook vectors in the VQ-VAE. | |
norm_num_groups (`int`, *optional*, defaults to `32`): Number of groups for normalization layers. | |
vq_embed_dim (`int`, *optional*): Hidden dim of codebook vectors in the VQ-VAE. | |
scaling_factor (`float`, *optional*, defaults to `0.18215`): | |
The component-wise standard deviation of the trained latent space computed using the first batch of the | |
training set. This is used to scale the latent space to have unit variance when training the diffusion | |
model. The latents are scaled with the formula `z = z * scaling_factor` before being passed to the | |
diffusion model. When decoding, the latents are scaled back to the original scale with the formula: `z = 1 | |
/ scaling_factor * z`. For more details, refer to sections 4.3.2 and D.1 of the [High-Resolution Image | |
Synthesis with Latent Diffusion Models](https://arxiv.org/abs/2112.10752) paper. | |
norm_type (`str`, *optional*, defaults to `"group"`): | |
Type of normalization layer to use. Can be one of `"group"` or `"spatial"`. | |
""" | |
def __init__( | |
self, | |
in_channels: int = 3, | |
out_channels: int = 3, | |
down_block_types: Tuple[str, ...] = ("DownEncoderBlock2D",), | |
up_block_types: Tuple[str, ...] = ("UpDecoderBlock2D",), | |
block_out_channels: Tuple[int, ...] = (64,), | |
layers_per_block: int = 1, | |
act_fn: str = "silu", | |
latent_channels: int = 3, | |
sample_size: int = 32, | |
num_vq_embeddings: int = 256, | |
norm_num_groups: int = 32, | |
vq_embed_dim: Optional[int] = None, | |
scaling_factor: float = 0.18215, | |
norm_type: str = "group", # group, spatial | |
mid_block_add_attention=True, | |
lookup_from_codebook=False, | |
force_upcast=False, | |
): | |
super().__init__() | |
# pass init params to Encoder | |
self.encoder = Encoder( | |
in_channels=in_channels, | |
out_channels=latent_channels, | |
down_block_types=down_block_types, | |
block_out_channels=block_out_channels, | |
layers_per_block=layers_per_block, | |
act_fn=act_fn, | |
norm_num_groups=norm_num_groups, | |
double_z=False, | |
mid_block_add_attention=mid_block_add_attention, | |
) | |
vq_embed_dim = vq_embed_dim if vq_embed_dim is not None else latent_channels | |
self.quant_conv = nn.Conv2d(latent_channels, vq_embed_dim, 1) | |
self.quantize = VectorQuantizer(num_vq_embeddings, vq_embed_dim, beta=0.25, remap=None, sane_index_shape=False) | |
self.post_quant_conv = nn.Conv2d(vq_embed_dim, latent_channels, 1) | |
# pass init params to Decoder | |
self.decoder = Decoder( | |
in_channels=latent_channels, | |
out_channels=out_channels, | |
up_block_types=up_block_types, | |
block_out_channels=block_out_channels, | |
layers_per_block=layers_per_block, | |
act_fn=act_fn, | |
norm_num_groups=norm_num_groups, | |
norm_type=norm_type, | |
mid_block_add_attention=mid_block_add_attention, | |
) | |
def encode(self, x: torch.FloatTensor, return_dict: bool = True) -> VQEncoderOutput: | |
h = self.encoder(x) | |
h = self.quant_conv(h) | |
if not return_dict: | |
return (h,) | |
return VQEncoderOutput(latents=h) | |
def decode( | |
self, h: torch.FloatTensor, force_not_quantize: bool = False, return_dict: bool = True, shape=None | |
) -> Union[DecoderOutput, torch.FloatTensor]: | |
# also go through quantization layer | |
if not force_not_quantize: | |
quant, _, _ = self.quantize(h) | |
elif self.config.lookup_from_codebook: | |
quant = self.quantize.get_codebook_entry(h, shape) | |
else: | |
quant = h | |
quant2 = self.post_quant_conv(quant) | |
dec = self.decoder(quant2, quant if self.config.norm_type == "spatial" else None) | |
if not return_dict: | |
return (dec,) | |
return DecoderOutput(sample=dec) | |
def forward( | |
self, sample: torch.FloatTensor, return_dict: bool = True | |
) -> Union[DecoderOutput, Tuple[torch.FloatTensor, ...]]: | |
r""" | |
The [`VQModel`] forward method. | |
Args: | |
sample (`torch.FloatTensor`): Input sample. | |
return_dict (`bool`, *optional*, defaults to `True`): | |
Whether or not to return a [`models.vq_model.VQEncoderOutput`] instead of a plain tuple. | |
Returns: | |
[`~models.vq_model.VQEncoderOutput`] or `tuple`: | |
If return_dict is True, a [`~models.vq_model.VQEncoderOutput`] is returned, otherwise a plain `tuple` | |
is returned. | |
""" | |
h = self.encode(sample).latents | |
dec = self.decode(h).sample | |
if not return_dict: | |
return (dec,) | |
return DecoderOutput(sample=dec) | |