InstantIR / diffusers /loaders /controlnet.py
JOY-Huang's picture
add local diffusers
62c110b
raw
history blame
7.03 kB
# Copyright 2024 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from huggingface_hub.utils import validate_hf_hub_args
from .single_file_utils import (
create_diffusers_controlnet_model_from_ldm,
fetch_ldm_config_and_checkpoint,
)
class FromOriginalControlNetMixin:
"""
Load pretrained ControlNet weights saved in the `.ckpt` or `.safetensors` format into a [`ControlNetModel`].
"""
@classmethod
@validate_hf_hub_args
def from_single_file(cls, pretrained_model_link_or_path, **kwargs):
r"""
Instantiate a [`ControlNetModel`] from pretrained ControlNet weights saved in the original `.ckpt` or
`.safetensors` format. The pipeline is set in evaluation mode (`model.eval()`) by default.
Parameters:
pretrained_model_link_or_path (`str` or `os.PathLike`, *optional*):
Can be either:
- A link to the `.ckpt` file (for example
`"https://huggingface.co./<repo_id>/blob/main/<path_to_file>.ckpt"`) on the Hub.
- A path to a *file* containing all pipeline weights.
config_file (`str`, *optional*):
Filepath to the configuration YAML file associated with the model. If not provided it will default to:
https://raw.githubusercontent.com/lllyasviel/ControlNet/main/models/cldm_v15.yaml
torch_dtype (`str` or `torch.dtype`, *optional*):
Override the default `torch.dtype` and load the model with another dtype. If `"auto"` is passed, the
dtype is automatically derived from the model's weights.
force_download (`bool`, *optional*, defaults to `False`):
Whether or not to force the (re-)download of the model weights and configuration files, overriding the
cached versions if they exist.
cache_dir (`Union[str, os.PathLike]`, *optional*):
Path to a directory where a downloaded pretrained model configuration is cached if the standard cache
is not used.
resume_download:
Deprecated and ignored. All downloads are now resumed by default when possible. Will be removed in v1
of Diffusers.
proxies (`Dict[str, str]`, *optional*):
A dictionary of proxy servers to use by protocol or endpoint, for example, `{'http': 'foo.bar:3128',
'http://hostname': 'foo.bar:4012'}`. The proxies are used on each request.
local_files_only (`bool`, *optional*, defaults to `False`):
Whether to only load local model weights and configuration files or not. If set to True, the model
won't be downloaded from the Hub.
token (`str` or *bool*, *optional*):
The token to use as HTTP bearer authorization for remote files. If `True`, the token generated from
`diffusers-cli login` (stored in `~/.huggingface`) is used.
revision (`str`, *optional*, defaults to `"main"`):
The specific model version to use. It can be a branch name, a tag name, a commit id, or any identifier
allowed by Git.
image_size (`int`, *optional*, defaults to 512):
The image size the model was trained on. Use 512 for all Stable Diffusion v1 models and the Stable
Diffusion v2 base model. Use 768 for Stable Diffusion v2.
upcast_attention (`bool`, *optional*, defaults to `None`):
Whether the attention computation should always be upcasted.
kwargs (remaining dictionary of keyword arguments, *optional*):
Can be used to overwrite load and saveable variables (for example the pipeline components of the
specific pipeline class). The overwritten components are directly passed to the pipelines `__init__`
method. See example below for more information.
Examples:
```py
from diffusers import StableDiffusionControlNetPipeline, ControlNetModel
url = "https://huggingface.co./lllyasviel/ControlNet-v1-1/blob/main/control_v11p_sd15_canny.pth" # can also be a local path
model = ControlNetModel.from_single_file(url)
url = "https://huggingface.co./runwayml/stable-diffusion-v1-5/blob/main/v1-5-pruned.safetensors" # can also be a local path
pipe = StableDiffusionControlNetPipeline.from_single_file(url, controlnet=controlnet)
```
"""
original_config_file = kwargs.pop("original_config_file", None)
config_file = kwargs.pop("config_file", None)
resume_download = kwargs.pop("resume_download", None)
force_download = kwargs.pop("force_download", False)
proxies = kwargs.pop("proxies", None)
token = kwargs.pop("token", None)
cache_dir = kwargs.pop("cache_dir", None)
local_files_only = kwargs.pop("local_files_only", None)
revision = kwargs.pop("revision", None)
torch_dtype = kwargs.pop("torch_dtype", None)
class_name = cls.__name__
if (config_file is not None) and (original_config_file is not None):
raise ValueError(
"You cannot pass both `config_file` and `original_config_file` to `from_single_file`. Please use only one of these arguments."
)
original_config_file = config_file or original_config_file
original_config, checkpoint = fetch_ldm_config_and_checkpoint(
pretrained_model_link_or_path=pretrained_model_link_or_path,
class_name=class_name,
original_config_file=original_config_file,
resume_download=resume_download,
force_download=force_download,
proxies=proxies,
token=token,
revision=revision,
local_files_only=local_files_only,
cache_dir=cache_dir,
)
upcast_attention = kwargs.pop("upcast_attention", False)
image_size = kwargs.pop("image_size", None)
component = create_diffusers_controlnet_model_from_ldm(
class_name,
original_config,
checkpoint,
upcast_attention=upcast_attention,
image_size=image_size,
torch_dtype=torch_dtype,
)
controlnet = component["controlnet"]
if torch_dtype is not None:
controlnet = controlnet.to(torch_dtype)
return controlnet