InstantIR / pipelines /sdxl_instantir.py
JOY-Huang's picture
revitalize repo
aa79e9e
raw
history blame
88.8 kB
# Copyright 2024 The InstantX Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import inspect
from typing import Any, Callable, Dict, List, Optional, Tuple, Union
import numpy as np
import PIL.Image
import torch
import torch.nn.functional as F
from transformers import (
CLIPImageProcessor,
CLIPTextModel,
CLIPTextModelWithProjection,
CLIPTokenizer,
CLIPVisionModelWithProjection,
)
from diffusers.utils.import_utils import is_invisible_watermark_available
from diffusers.image_processor import PipelineImageInput, VaeImageProcessor
from diffusers.loaders import (
FromSingleFileMixin,
IPAdapterMixin,
StableDiffusionXLLoraLoaderMixin,
TextualInversionLoaderMixin,
)
from diffusers.models import AutoencoderKL, ImageProjection, UNet2DConditionModel
from diffusers.models.attention_processor import (
AttnProcessor2_0,
LoRAAttnProcessor2_0,
LoRAXFormersAttnProcessor,
XFormersAttnProcessor,
)
from diffusers.models.lora import adjust_lora_scale_text_encoder
from diffusers.schedulers import KarrasDiffusionSchedulers, LCMScheduler
from diffusers.utils import (
USE_PEFT_BACKEND,
deprecate,
logging,
replace_example_docstring,
scale_lora_layers,
unscale_lora_layers,
convert_unet_state_dict_to_peft
)
from diffusers.utils.torch_utils import is_compiled_module, is_torch_version, randn_tensor
from diffusers.pipelines.pipeline_utils import DiffusionPipeline, StableDiffusionMixin
from diffusers.pipelines.stable_diffusion_xl.pipeline_output import StableDiffusionXLPipelineOutput
if is_invisible_watermark_available():
from diffusers.pipelines.stable_diffusion_xl.watermark import StableDiffusionXLWatermarker
from peft import LoraConfig, set_peft_model_state_dict
from module.aggregator import Aggregator
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
EXAMPLE_DOC_STRING = """
Examples:
```py
>>> # !pip install diffusers pillow transformers accelerate
>>> import torch
>>> from PIL import Image
>>> from diffusers import DDPMScheduler
>>> from schedulers.lcm_single_step_scheduler import LCMSingleStepScheduler
>>> from module.ip_adapter.utils import load_adapter_to_pipe
>>> from pipelines.sdxl_instantir import InstantIRPipeline
>>> # download models under ./models
>>> dcp_adapter = f'./models/adapter.pt'
>>> previewer_lora_path = f'./models'
>>> instantir_path = f'./models/aggregator.pt'
>>> # load pretrained models
>>> pipe = InstantIRPipeline.from_pretrained(
... "stabilityai/stable-diffusion-xl-base-1.0", controlnet=controlnet, vae=vae, torch_dtype=torch.float16
... )
>>> # load adapter
>>> load_adapter_to_pipe(
... pipe,
... dcp_adapter,
... image_encoder_or_path = 'facebook/dinov2-large',
... )
>>> # load previewer lora
>>> pipe.prepare_previewers(previewer_lora_path)
>>> pipe.scheduler = DDPMScheduler.from_pretrained('stabilityai/stable-diffusion-xl-base-1.0', subfolder="scheduler")
>>> lcm_scheduler = LCMSingleStepScheduler.from_config(pipe.scheduler.config)
>>> # load aggregator weights
>>> pretrained_state_dict = torch.load(instantir_path)
>>> pipe.aggregator.load_state_dict(pretrained_state_dict)
>>> # send to GPU and fp16
>>> pipe.to(device="cuda", dtype=torch.float16)
>>> pipe.aggregator.to(device="cuda", dtype=torch.float16)
>>> pipe.enable_model_cpu_offload()
>>> # load a broken image
>>> low_quality_image = Image.open('path/to/your-image').convert("RGB")
>>> # restoration
>>> image = pipe(
... image=low_quality_image,
... previewer_scheduler=lcm_scheduler,
... ).images[0]
```
"""
LCM_LORA_MODULES = [
"to_q",
"to_k",
"to_v",
"to_out.0",
"proj_in",
"proj_out",
"ff.net.0.proj",
"ff.net.2",
"conv1",
"conv2",
"conv_shortcut",
"downsamplers.0.conv",
"upsamplers.0.conv",
"time_emb_proj",
]
PREVIEWER_LORA_MODULES = [
"to_q",
"to_kv",
"0.to_out",
"attn1.to_k",
"attn1.to_v",
"to_k_ip",
"to_v_ip",
"ln_k_ip.linear",
"ln_v_ip.linear",
"to_out.0",
"proj_in",
"proj_out",
"ff.net.0.proj",
"ff.net.2",
"conv1",
"conv2",
"conv_shortcut",
"downsamplers.0.conv",
"upsamplers.0.conv",
"time_emb_proj",
]
def remove_attn2(model):
def recursive_find_module(name, module):
if not "up_blocks" in name and not "down_blocks" in name and not "mid_block" in name: return
elif "resnets" in name: return
if hasattr(module, "attn2"):
setattr(module, "attn2", None)
setattr(module, "norm2", None)
return
for sub_name, sub_module in module.named_children():
recursive_find_module(f"{name}.{sub_name}", sub_module)
for name, module in model.named_children():
recursive_find_module(name, module)
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.rescale_noise_cfg
def rescale_noise_cfg(noise_cfg, noise_pred_text, guidance_rescale=0.0):
"""
Rescale `noise_cfg` according to `guidance_rescale`. Based on findings of [Common Diffusion Noise Schedules and
Sample Steps are Flawed](https://arxiv.org/pdf/2305.08891.pdf). See Section 3.4
"""
std_text = noise_pred_text.std(dim=list(range(1, noise_pred_text.ndim)), keepdim=True)
std_cfg = noise_cfg.std(dim=list(range(1, noise_cfg.ndim)), keepdim=True)
# rescale the results from guidance (fixes overexposure)
noise_pred_rescaled = noise_cfg * (std_text / std_cfg)
# mix with the original results from guidance by factor guidance_rescale to avoid "plain looking" images
noise_cfg = guidance_rescale * noise_pred_rescaled + (1 - guidance_rescale) * noise_cfg
return noise_cfg
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.retrieve_timesteps
def retrieve_timesteps(
scheduler,
num_inference_steps: Optional[int] = None,
device: Optional[Union[str, torch.device]] = None,
timesteps: Optional[List[int]] = None,
**kwargs,
):
"""
Calls the scheduler's `set_timesteps` method and retrieves timesteps from the scheduler after the call. Handles
custom timesteps. Any kwargs will be supplied to `scheduler.set_timesteps`.
Args:
scheduler (`SchedulerMixin`):
The scheduler to get timesteps from.
num_inference_steps (`int`):
The number of diffusion steps used when generating samples with a pre-trained model. If used, `timesteps`
must be `None`.
device (`str` or `torch.device`, *optional*):
The device to which the timesteps should be moved to. If `None`, the timesteps are not moved.
timesteps (`List[int]`, *optional*):
Custom timesteps used to support arbitrary spacing between timesteps. If `None`, then the default
timestep spacing strategy of the scheduler is used. If `timesteps` is passed, `num_inference_steps`
must be `None`.
Returns:
`Tuple[torch.Tensor, int]`: A tuple where the first element is the timestep schedule from the scheduler and the
second element is the number of inference steps.
"""
if timesteps is not None:
accepts_timesteps = "timesteps" in set(inspect.signature(scheduler.set_timesteps).parameters.keys())
if not accepts_timesteps:
raise ValueError(
f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom"
f" timestep schedules. Please check whether you are using the correct scheduler."
)
scheduler.set_timesteps(timesteps=timesteps, device=device, **kwargs)
timesteps = scheduler.timesteps
num_inference_steps = len(timesteps)
else:
scheduler.set_timesteps(num_inference_steps, device=device, **kwargs)
timesteps = scheduler.timesteps
return timesteps, num_inference_steps
class InstantIRPipeline(
DiffusionPipeline,
StableDiffusionMixin,
TextualInversionLoaderMixin,
StableDiffusionXLLoraLoaderMixin,
IPAdapterMixin,
FromSingleFileMixin,
):
r"""
Pipeline for text-to-image generation using Stable Diffusion XL with ControlNet guidance.
This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods
implemented for all pipelines (downloading, saving, running on a particular device, etc.).
The pipeline also inherits the following loading methods:
- [`~loaders.TextualInversionLoaderMixin.load_textual_inversion`] for loading textual inversion embeddings
- [`~loaders.StableDiffusionXLLoraLoaderMixin.load_lora_weights`] for loading LoRA weights
- [`~loaders.StableDiffusionXLLoraLoaderMixin.save_lora_weights`] for saving LoRA weights
- [`~loaders.FromSingleFileMixin.from_single_file`] for loading `.ckpt` files
- [`~loaders.IPAdapterMixin.load_ip_adapter`] for loading IP Adapters
Args:
vae ([`AutoencoderKL`]):
Variational Auto-Encoder (VAE) model to encode and decode images to and from latent representations.
text_encoder ([`~transformers.CLIPTextModel`]):
Frozen text-encoder ([clip-vit-large-patch14](https://huggingface.co./openai/clip-vit-large-patch14)).
text_encoder_2 ([`~transformers.CLIPTextModelWithProjection`]):
Second frozen text-encoder
([laion/CLIP-ViT-bigG-14-laion2B-39B-b160k](https://huggingface.co./laion/CLIP-ViT-bigG-14-laion2B-39B-b160k)).
tokenizer ([`~transformers.CLIPTokenizer`]):
A `CLIPTokenizer` to tokenize text.
tokenizer_2 ([`~transformers.CLIPTokenizer`]):
A `CLIPTokenizer` to tokenize text.
unet ([`UNet2DConditionModel`]):
A `UNet2DConditionModel` to denoise the encoded image latents.
controlnet ([`ControlNetModel`] or `List[ControlNetModel]`):
Provides additional conditioning to the `unet` during the denoising process. If you set multiple
ControlNets as a list, the outputs from each ControlNet are added together to create one combined
additional conditioning.
scheduler ([`SchedulerMixin`]):
A scheduler to be used in combination with `unet` to denoise the encoded image latents. Can be one of
[`DDIMScheduler`], [`LMSDiscreteScheduler`], or [`PNDMScheduler`].
force_zeros_for_empty_prompt (`bool`, *optional*, defaults to `"True"`):
Whether the negative prompt embeddings should always be set to 0. Also see the config of
`stabilityai/stable-diffusion-xl-base-1-0`.
add_watermarker (`bool`, *optional*):
Whether to use the [invisible_watermark](https://github.com/ShieldMnt/invisible-watermark/) library to
watermark output images. If not defined, it defaults to `True` if the package is installed; otherwise no
watermarker is used.
"""
# leave controlnet out on purpose because it iterates with unet
model_cpu_offload_seq = "text_encoder->text_encoder_2->image_encoder->unet->vae"
_optional_components = [
"tokenizer",
"tokenizer_2",
"text_encoder",
"text_encoder_2",
"feature_extractor",
"image_encoder",
]
_callback_tensor_inputs = ["latents", "prompt_embeds", "negative_prompt_embeds"]
def __init__(
self,
vae: AutoencoderKL,
text_encoder: CLIPTextModel,
text_encoder_2: CLIPTextModelWithProjection,
tokenizer: CLIPTokenizer,
tokenizer_2: CLIPTokenizer,
unet: UNet2DConditionModel,
scheduler: KarrasDiffusionSchedulers,
aggregator: Aggregator = None,
force_zeros_for_empty_prompt: bool = True,
add_watermarker: Optional[bool] = None,
feature_extractor: CLIPImageProcessor = None,
image_encoder: CLIPVisionModelWithProjection = None,
):
super().__init__()
if aggregator is None:
aggregator = Aggregator.from_unet(unet)
remove_attn2(aggregator)
self.register_modules(
vae=vae,
text_encoder=text_encoder,
text_encoder_2=text_encoder_2,
tokenizer=tokenizer,
tokenizer_2=tokenizer_2,
unet=unet,
aggregator=aggregator,
scheduler=scheduler,
feature_extractor=feature_extractor,
image_encoder=image_encoder,
)
self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1)
self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor, do_convert_rgb=True)
self.control_image_processor = VaeImageProcessor(
vae_scale_factor=self.vae_scale_factor, do_convert_rgb=True, do_normalize=True
)
add_watermarker = add_watermarker if add_watermarker is not None else is_invisible_watermark_available()
if add_watermarker:
self.watermark = StableDiffusionXLWatermarker()
else:
self.watermark = None
self.register_to_config(force_zeros_for_empty_prompt=force_zeros_for_empty_prompt)
def prepare_previewers(self, previewer_lora_path: str, use_lcm=False):
if use_lcm:
lora_state_dict, alpha_dict = self.lora_state_dict(
previewer_lora_path,
)
else:
lora_state_dict, alpha_dict = self.lora_state_dict(
previewer_lora_path,
weight_name="previewer_lora_weights.bin"
)
unet_state_dict = {
f'{k.replace("unet.", "")}': v for k, v in lora_state_dict.items() if k.startswith("unet.")
}
unet_state_dict = convert_unet_state_dict_to_peft(unet_state_dict)
lora_state_dict = dict()
for k, v in unet_state_dict.items():
if "ip" in k:
k = k.replace("attn2", "attn2.processor")
lora_state_dict[k] = v
else:
lora_state_dict[k] = v
if alpha_dict:
lora_alpha = next(iter(alpha_dict.values()))
else:
lora_alpha = 1
logger.info(f"use lora alpha {lora_alpha}")
lora_config = LoraConfig(
r=64,
target_modules=LCM_LORA_MODULES if use_lcm else PREVIEWER_LORA_MODULES,
lora_alpha=lora_alpha,
lora_dropout=0.0,
)
adapter_name = "lcm" if use_lcm else "previewer"
self.unet.add_adapter(lora_config, adapter_name)
incompatible_keys = set_peft_model_state_dict(self.unet, lora_state_dict, adapter_name=adapter_name)
if incompatible_keys is not None:
# check only for unexpected keys
unexpected_keys = getattr(incompatible_keys, "unexpected_keys", None)
missing_keys = getattr(incompatible_keys, "missing_keys", None)
if unexpected_keys:
raise ValueError(
f"Loading adapter weights from state_dict led to unexpected keys not found in the model: "
f" {unexpected_keys}. "
)
self.unet.disable_adapters()
return lora_alpha
# Copied from diffusers.pipelines.stable_diffusion_xl.pipeline_stable_diffusion_xl.StableDiffusionXLPipeline.encode_prompt
def encode_prompt(
self,
prompt: str,
prompt_2: Optional[str] = None,
device: Optional[torch.device] = None,
num_images_per_prompt: int = 1,
do_classifier_free_guidance: bool = True,
negative_prompt: Optional[str] = None,
negative_prompt_2: Optional[str] = None,
prompt_embeds: Optional[torch.FloatTensor] = None,
negative_prompt_embeds: Optional[torch.FloatTensor] = None,
pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
negative_pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
lora_scale: Optional[float] = None,
clip_skip: Optional[int] = None,
):
r"""
Encodes the prompt into text encoder hidden states.
Args:
prompt (`str` or `List[str]`, *optional*):
prompt to be encoded
prompt_2 (`str` or `List[str]`, *optional*):
The prompt or prompts to be sent to the `tokenizer_2` and `text_encoder_2`. If not defined, `prompt` is
used in both text-encoders
device: (`torch.device`):
torch device
num_images_per_prompt (`int`):
number of images that should be generated per prompt
do_classifier_free_guidance (`bool`):
whether to use classifier free guidance or not
negative_prompt (`str` or `List[str]`, *optional*):
The prompt or prompts not to guide the image generation. If not defined, one has to pass
`negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is
less than `1`).
negative_prompt_2 (`str` or `List[str]`, *optional*):
The prompt or prompts not to guide the image generation to be sent to `tokenizer_2` and
`text_encoder_2`. If not defined, `negative_prompt` is used in both text-encoders
prompt_embeds (`torch.FloatTensor`, *optional*):
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
provided, text embeddings will be generated from `prompt` input argument.
negative_prompt_embeds (`torch.FloatTensor`, *optional*):
Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
argument.
pooled_prompt_embeds (`torch.FloatTensor`, *optional*):
Pre-generated pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting.
If not provided, pooled text embeddings will be generated from `prompt` input argument.
negative_pooled_prompt_embeds (`torch.FloatTensor`, *optional*):
Pre-generated negative pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
weighting. If not provided, pooled negative_prompt_embeds will be generated from `negative_prompt`
input argument.
lora_scale (`float`, *optional*):
A lora scale that will be applied to all LoRA layers of the text encoder if LoRA layers are loaded.
clip_skip (`int`, *optional*):
Number of layers to be skipped from CLIP while computing the prompt embeddings. A value of 1 means that
the output of the pre-final layer will be used for computing the prompt embeddings.
"""
device = device or self._execution_device
# set lora scale so that monkey patched LoRA
# function of text encoder can correctly access it
if lora_scale is not None and isinstance(self, StableDiffusionXLLoraLoaderMixin):
self._lora_scale = lora_scale
# dynamically adjust the LoRA scale
if self.text_encoder is not None:
if not USE_PEFT_BACKEND:
adjust_lora_scale_text_encoder(self.text_encoder, lora_scale)
else:
scale_lora_layers(self.text_encoder, lora_scale)
if self.text_encoder_2 is not None:
if not USE_PEFT_BACKEND:
adjust_lora_scale_text_encoder(self.text_encoder_2, lora_scale)
else:
scale_lora_layers(self.text_encoder_2, lora_scale)
prompt = [prompt] if isinstance(prompt, str) else prompt
if prompt is not None:
batch_size = len(prompt)
else:
batch_size = prompt_embeds.shape[0]
# Define tokenizers and text encoders
tokenizers = [self.tokenizer, self.tokenizer_2] if self.tokenizer is not None else [self.tokenizer_2]
text_encoders = (
[self.text_encoder, self.text_encoder_2] if self.text_encoder is not None else [self.text_encoder_2]
)
if prompt_embeds is None:
prompt_2 = prompt_2 or prompt
prompt_2 = [prompt_2] if isinstance(prompt_2, str) else prompt_2
# textual inversion: process multi-vector tokens if necessary
prompt_embeds_list = []
prompts = [prompt, prompt_2]
for prompt, tokenizer, text_encoder in zip(prompts, tokenizers, text_encoders):
if isinstance(self, TextualInversionLoaderMixin):
prompt = self.maybe_convert_prompt(prompt, tokenizer)
text_inputs = tokenizer(
prompt,
padding="max_length",
max_length=tokenizer.model_max_length,
truncation=True,
return_tensors="pt",
)
text_input_ids = text_inputs.input_ids
untruncated_ids = tokenizer(prompt, padding="longest", return_tensors="pt").input_ids
if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(
text_input_ids, untruncated_ids
):
removed_text = tokenizer.batch_decode(untruncated_ids[:, tokenizer.model_max_length - 1 : -1])
logger.warning(
"The following part of your input was truncated because CLIP can only handle sequences up to"
f" {tokenizer.model_max_length} tokens: {removed_text}"
)
prompt_embeds = text_encoder(text_input_ids.to(device), output_hidden_states=True)
# We are only ALWAYS interested in the pooled output of the final text encoder
pooled_prompt_embeds = prompt_embeds[0]
if clip_skip is None:
prompt_embeds = prompt_embeds.hidden_states[-2]
else:
# "2" because SDXL always indexes from the penultimate layer.
prompt_embeds = prompt_embeds.hidden_states[-(clip_skip + 2)]
prompt_embeds_list.append(prompt_embeds)
prompt_embeds = torch.concat(prompt_embeds_list, dim=-1)
# get unconditional embeddings for classifier free guidance
zero_out_negative_prompt = negative_prompt is None and self.config.force_zeros_for_empty_prompt
if do_classifier_free_guidance and negative_prompt_embeds is None and zero_out_negative_prompt:
negative_prompt_embeds = torch.zeros_like(prompt_embeds)
negative_pooled_prompt_embeds = torch.zeros_like(pooled_prompt_embeds)
elif do_classifier_free_guidance and negative_prompt_embeds is None:
negative_prompt = negative_prompt or ""
negative_prompt_2 = negative_prompt_2 or negative_prompt
# normalize str to list
negative_prompt = batch_size * [negative_prompt] if isinstance(negative_prompt, str) else negative_prompt
negative_prompt_2 = (
batch_size * [negative_prompt_2] if isinstance(negative_prompt_2, str) else negative_prompt_2
)
uncond_tokens: List[str]
if prompt is not None and type(prompt) is not type(negative_prompt):
raise TypeError(
f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !="
f" {type(prompt)}."
)
elif batch_size != len(negative_prompt):
raise ValueError(
f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:"
f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches"
" the batch size of `prompt`."
)
else:
uncond_tokens = [negative_prompt, negative_prompt_2]
negative_prompt_embeds_list = []
for negative_prompt, tokenizer, text_encoder in zip(uncond_tokens, tokenizers, text_encoders):
if isinstance(self, TextualInversionLoaderMixin):
negative_prompt = self.maybe_convert_prompt(negative_prompt, tokenizer)
max_length = prompt_embeds.shape[1]
uncond_input = tokenizer(
negative_prompt,
padding="max_length",
max_length=max_length,
truncation=True,
return_tensors="pt",
)
negative_prompt_embeds = text_encoder(
uncond_input.input_ids.to(device),
output_hidden_states=True,
)
# We are only ALWAYS interested in the pooled output of the final text encoder
negative_pooled_prompt_embeds = negative_prompt_embeds[0]
negative_prompt_embeds = negative_prompt_embeds.hidden_states[-2]
negative_prompt_embeds_list.append(negative_prompt_embeds)
negative_prompt_embeds = torch.concat(negative_prompt_embeds_list, dim=-1)
if self.text_encoder_2 is not None:
prompt_embeds = prompt_embeds.to(dtype=self.text_encoder_2.dtype, device=device)
else:
prompt_embeds = prompt_embeds.to(dtype=self.unet.dtype, device=device)
bs_embed, seq_len, _ = prompt_embeds.shape
# duplicate text embeddings for each generation per prompt, using mps friendly method
prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1)
prompt_embeds = prompt_embeds.view(bs_embed * num_images_per_prompt, seq_len, -1)
if do_classifier_free_guidance:
# duplicate unconditional embeddings for each generation per prompt, using mps friendly method
seq_len = negative_prompt_embeds.shape[1]
if self.text_encoder_2 is not None:
negative_prompt_embeds = negative_prompt_embeds.to(dtype=self.text_encoder_2.dtype, device=device)
else:
negative_prompt_embeds = negative_prompt_embeds.to(dtype=self.unet.dtype, device=device)
negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt, 1)
negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1)
pooled_prompt_embeds = pooled_prompt_embeds.repeat(1, num_images_per_prompt).view(
bs_embed * num_images_per_prompt, -1
)
if do_classifier_free_guidance:
negative_pooled_prompt_embeds = negative_pooled_prompt_embeds.repeat(1, num_images_per_prompt).view(
bs_embed * num_images_per_prompt, -1
)
if self.text_encoder is not None:
if isinstance(self, StableDiffusionXLLoraLoaderMixin) and USE_PEFT_BACKEND:
# Retrieve the original scale by scaling back the LoRA layers
unscale_lora_layers(self.text_encoder, lora_scale)
if self.text_encoder_2 is not None:
if isinstance(self, StableDiffusionXLLoraLoaderMixin) and USE_PEFT_BACKEND:
# Retrieve the original scale by scaling back the LoRA layers
unscale_lora_layers(self.text_encoder_2, lora_scale)
return prompt_embeds, negative_prompt_embeds, pooled_prompt_embeds, negative_pooled_prompt_embeds
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.encode_image
def encode_image(self, image, device, num_images_per_prompt, output_hidden_states=None):
dtype = next(self.image_encoder.parameters()).dtype
if not isinstance(image, torch.Tensor):
image = self.feature_extractor(image, return_tensors="pt").pixel_values
image = image.to(device=device, dtype=dtype)
if output_hidden_states:
image_enc_hidden_states = self.image_encoder(image, output_hidden_states=True).hidden_states[-2]
image_enc_hidden_states = image_enc_hidden_states.repeat_interleave(num_images_per_prompt, dim=0)
uncond_image_enc_hidden_states = self.image_encoder(
torch.zeros_like(image), output_hidden_states=True
).hidden_states[-2]
uncond_image_enc_hidden_states = uncond_image_enc_hidden_states.repeat_interleave(
num_images_per_prompt, dim=0
)
return image_enc_hidden_states, uncond_image_enc_hidden_states
else:
if isinstance(self.image_encoder, CLIPVisionModelWithProjection):
# CLIP image encoder.
image_embeds = self.image_encoder(image).image_embeds
image_embeds = image_embeds.repeat_interleave(num_images_per_prompt, dim=0)
uncond_image_embeds = torch.zeros_like(image_embeds)
else:
# DINO image encoder.
image_embeds = self.image_encoder(image).last_hidden_state
image_embeds = image_embeds.repeat_interleave(num_images_per_prompt, dim=0)
uncond_image_embeds = self.image_encoder(
torch.zeros_like(image)
).last_hidden_state
uncond_image_embeds = uncond_image_embeds.repeat_interleave(
num_images_per_prompt, dim=0
)
return image_embeds, uncond_image_embeds
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_ip_adapter_image_embeds
def prepare_ip_adapter_image_embeds(
self, ip_adapter_image, ip_adapter_image_embeds, device, num_images_per_prompt, do_classifier_free_guidance
):
if ip_adapter_image_embeds is None:
if not isinstance(ip_adapter_image, list):
ip_adapter_image = [ip_adapter_image]
if len(ip_adapter_image) != len(self.unet.encoder_hid_proj.image_projection_layers):
if isinstance(ip_adapter_image[0], list):
raise ValueError(
f"`ip_adapter_image` must have same length as the number of IP Adapters. Got {len(ip_adapter_image)} images and {len(self.unet.encoder_hid_proj.image_projection_layers)} IP Adapters."
)
else:
logger.warning(
f"Got {len(ip_adapter_image)} images for {len(self.unet.encoder_hid_proj.image_projection_layers)} IP Adapters."
" By default, these images will be sent to each IP-Adapter. If this is not your use-case, please specify `ip_adapter_image` as a list of image-list, with"
f" length equals to the number of IP-Adapters."
)
ip_adapter_image = [ip_adapter_image] * len(self.unet.encoder_hid_proj.image_projection_layers)
image_embeds = []
for single_ip_adapter_image, image_proj_layer in zip(
ip_adapter_image, self.unet.encoder_hid_proj.image_projection_layers
):
output_hidden_state = isinstance(self.image_encoder, CLIPVisionModelWithProjection) and not isinstance(image_proj_layer, ImageProjection)
single_image_embeds, single_negative_image_embeds = self.encode_image(
single_ip_adapter_image, device, 1, output_hidden_state
)
single_image_embeds = torch.stack([single_image_embeds] * (num_images_per_prompt//single_image_embeds.shape[0]), dim=0)
single_negative_image_embeds = torch.stack(
[single_negative_image_embeds] * (num_images_per_prompt//single_negative_image_embeds.shape[0]), dim=0
)
if do_classifier_free_guidance:
single_image_embeds = torch.cat([single_negative_image_embeds, single_image_embeds])
single_image_embeds = single_image_embeds.to(device)
image_embeds.append(single_image_embeds)
else:
repeat_dims = [1]
image_embeds = []
for single_image_embeds in ip_adapter_image_embeds:
if do_classifier_free_guidance:
single_negative_image_embeds, single_image_embeds = single_image_embeds.chunk(2)
single_image_embeds = single_image_embeds.repeat(
num_images_per_prompt, *(repeat_dims * len(single_image_embeds.shape[1:]))
)
single_negative_image_embeds = single_negative_image_embeds.repeat(
num_images_per_prompt, *(repeat_dims * len(single_negative_image_embeds.shape[1:]))
)
single_image_embeds = torch.cat([single_negative_image_embeds, single_image_embeds])
else:
single_image_embeds = single_image_embeds.repeat(
num_images_per_prompt, *(repeat_dims * len(single_image_embeds.shape[1:]))
)
image_embeds.append(single_image_embeds)
return image_embeds
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_extra_step_kwargs
def prepare_extra_step_kwargs(self, generator, eta):
# prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
# eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
# eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502
# and should be between [0, 1]
accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys())
extra_step_kwargs = {}
if accepts_eta:
extra_step_kwargs["eta"] = eta
# check if the scheduler accepts generator
accepts_generator = "generator" in set(inspect.signature(self.scheduler.step).parameters.keys())
if accepts_generator:
extra_step_kwargs["generator"] = generator
return extra_step_kwargs
def check_inputs(
self,
prompt,
prompt_2,
image,
callback_steps,
negative_prompt=None,
negative_prompt_2=None,
prompt_embeds=None,
negative_prompt_embeds=None,
pooled_prompt_embeds=None,
ip_adapter_image=None,
ip_adapter_image_embeds=None,
negative_pooled_prompt_embeds=None,
controlnet_conditioning_scale=1.0,
control_guidance_start=0.0,
control_guidance_end=1.0,
callback_on_step_end_tensor_inputs=None,
):
if callback_steps is not None and (not isinstance(callback_steps, int) or callback_steps <= 0):
raise ValueError(
f"`callback_steps` has to be a positive integer but is {callback_steps} of type"
f" {type(callback_steps)}."
)
if callback_on_step_end_tensor_inputs is not None and not all(
k in self._callback_tensor_inputs for k in callback_on_step_end_tensor_inputs
):
raise ValueError(
f"`callback_on_step_end_tensor_inputs` has to be in {self._callback_tensor_inputs}, but found {[k for k in callback_on_step_end_tensor_inputs if k not in self._callback_tensor_inputs]}"
)
if prompt is not None and prompt_embeds is not None:
raise ValueError(
f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to"
" only forward one of the two."
)
elif prompt_2 is not None and prompt_embeds is not None:
raise ValueError(
f"Cannot forward both `prompt_2`: {prompt_2} and `prompt_embeds`: {prompt_embeds}. Please make sure to"
" only forward one of the two."
)
elif prompt is None and prompt_embeds is None:
raise ValueError(
"Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined."
)
elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)):
raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}")
elif prompt_2 is not None and (not isinstance(prompt_2, str) and not isinstance(prompt_2, list)):
raise ValueError(f"`prompt_2` has to be of type `str` or `list` but is {type(prompt_2)}")
if negative_prompt is not None and negative_prompt_embeds is not None:
raise ValueError(
f"Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`:"
f" {negative_prompt_embeds}. Please make sure to only forward one of the two."
)
elif negative_prompt_2 is not None and negative_prompt_embeds is not None:
raise ValueError(
f"Cannot forward both `negative_prompt_2`: {negative_prompt_2} and `negative_prompt_embeds`:"
f" {negative_prompt_embeds}. Please make sure to only forward one of the two."
)
if prompt_embeds is not None and negative_prompt_embeds is not None:
if prompt_embeds.shape != negative_prompt_embeds.shape:
raise ValueError(
"`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but"
f" got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds`"
f" {negative_prompt_embeds.shape}."
)
if prompt_embeds is not None and pooled_prompt_embeds is None:
raise ValueError(
"If `prompt_embeds` are provided, `pooled_prompt_embeds` also have to be passed. Make sure to generate `pooled_prompt_embeds` from the same text encoder that was used to generate `prompt_embeds`."
)
if negative_prompt_embeds is not None and negative_pooled_prompt_embeds is None:
raise ValueError(
"If `negative_prompt_embeds` are provided, `negative_pooled_prompt_embeds` also have to be passed. Make sure to generate `negative_pooled_prompt_embeds` from the same text encoder that was used to generate `negative_prompt_embeds`."
)
# Check `image`
is_compiled = hasattr(F, "scaled_dot_product_attention") and isinstance(
self.aggregator, torch._dynamo.eval_frame.OptimizedModule
)
if (
isinstance(self.aggregator, Aggregator)
or is_compiled
and isinstance(self.aggregator._orig_mod, Aggregator)
):
self.check_image(image, prompt, prompt_embeds)
else:
assert False
if control_guidance_start >= control_guidance_end:
raise ValueError(
f"control guidance start: {control_guidance_start} cannot be larger or equal to control guidance end: {control_guidance_end}."
)
if control_guidance_start < 0.0:
raise ValueError(f"control guidance start: {control_guidance_start} can't be smaller than 0.")
if control_guidance_end > 1.0:
raise ValueError(f"control guidance end: {control_guidance_end} can't be larger than 1.0.")
if ip_adapter_image is not None and ip_adapter_image_embeds is not None:
raise ValueError(
"Provide either `ip_adapter_image` or `ip_adapter_image_embeds`. Cannot leave both `ip_adapter_image` and `ip_adapter_image_embeds` defined."
)
if ip_adapter_image_embeds is not None:
if not isinstance(ip_adapter_image_embeds, list):
raise ValueError(
f"`ip_adapter_image_embeds` has to be of type `list` but is {type(ip_adapter_image_embeds)}"
)
elif ip_adapter_image_embeds[0].ndim not in [3, 4]:
raise ValueError(
f"`ip_adapter_image_embeds` has to be a list of 3D or 4D tensors but is {ip_adapter_image_embeds[0].ndim}D"
)
# Copied from diffusers.pipelines.controlnet.pipeline_controlnet.StableDiffusionControlNetPipeline.check_image
def check_image(self, image, prompt, prompt_embeds):
image_is_pil = isinstance(image, PIL.Image.Image)
image_is_tensor = isinstance(image, torch.Tensor)
image_is_np = isinstance(image, np.ndarray)
image_is_pil_list = isinstance(image, list) and isinstance(image[0], PIL.Image.Image)
image_is_tensor_list = isinstance(image, list) and isinstance(image[0], torch.Tensor)
image_is_np_list = isinstance(image, list) and isinstance(image[0], np.ndarray)
if (
not image_is_pil
and not image_is_tensor
and not image_is_np
and not image_is_pil_list
and not image_is_tensor_list
and not image_is_np_list
):
raise TypeError(
f"image must be passed and be one of PIL image, numpy array, torch tensor, list of PIL images, list of numpy arrays or list of torch tensors, but is {type(image)}"
)
if image_is_pil:
image_batch_size = 1
else:
image_batch_size = len(image)
if prompt is not None and isinstance(prompt, str):
prompt_batch_size = 1
elif prompt is not None and isinstance(prompt, list):
prompt_batch_size = len(prompt)
elif prompt_embeds is not None:
prompt_batch_size = prompt_embeds.shape[0]
if image_batch_size != 1 and image_batch_size != prompt_batch_size:
raise ValueError(
f"If image batch size is not 1, image batch size must be same as prompt batch size. image batch size: {image_batch_size}, prompt batch size: {prompt_batch_size}"
)
# Copied from diffusers.pipelines.controlnet.pipeline_controlnet.StableDiffusionControlNetPipeline.prepare_image
def prepare_image(
self,
image,
width,
height,
batch_size,
num_images_per_prompt,
device,
dtype,
do_classifier_free_guidance=False,
):
image = self.control_image_processor.preprocess(image, height=height, width=width).to(dtype=torch.float32)
image_batch_size = image.shape[0]
if image_batch_size == 1:
repeat_by = batch_size
else:
# image batch size is the same as prompt batch size
repeat_by = num_images_per_prompt
image = image.repeat_interleave(repeat_by, dim=0)
image = image.to(device=device, dtype=dtype)
return image
@torch.no_grad()
def init_latents(self, latents, generator, timestep):
noise = torch.randn(latents.shape, generator=generator, device=self.vae.device, dtype=self.vae.dtype, layout=torch.strided)
bsz = latents.shape[0]
print(f"init latent at {timestep}")
timestep = torch.tensor([timestep]*bsz, device=self.vae.device)
# Note that the latents will be scaled aleady by scheduler.add_noise
latents = self.scheduler.add_noise(latents, noise, timestep)
return latents
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_latents
def prepare_latents(self, batch_size, num_channels_latents, height, width, dtype, device, generator, latents=None):
shape = (
batch_size,
num_channels_latents,
int(height) // self.vae_scale_factor,
int(width) // self.vae_scale_factor,
)
if isinstance(generator, list) and len(generator) != batch_size:
raise ValueError(
f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
f" size of {batch_size}. Make sure the batch size matches the length of the generators."
)
if latents is None:
latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype)
else:
latents = latents.to(device)
# scale the initial noise by the standard deviation required by the scheduler
latents = latents * self.scheduler.init_noise_sigma
return latents
# Copied from diffusers.pipelines.stable_diffusion_xl.pipeline_stable_diffusion_xl.StableDiffusionXLPipeline._get_add_time_ids
def _get_add_time_ids(
self, original_size, crops_coords_top_left, target_size, dtype, text_encoder_projection_dim=None
):
add_time_ids = list(original_size + crops_coords_top_left + target_size)
passed_add_embed_dim = (
self.unet.config.addition_time_embed_dim * len(add_time_ids) + text_encoder_projection_dim
)
expected_add_embed_dim = self.unet.add_embedding.linear_1.in_features
if expected_add_embed_dim != passed_add_embed_dim:
raise ValueError(
f"Model expects an added time embedding vector of length {expected_add_embed_dim}, but a vector of {passed_add_embed_dim} was created. The model has an incorrect config. Please check `unet.config.time_embedding_type` and `text_encoder_2.config.projection_dim`."
)
add_time_ids = torch.tensor([add_time_ids], dtype=dtype)
return add_time_ids
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_upscale.StableDiffusionUpscalePipeline.upcast_vae
def upcast_vae(self):
dtype = self.vae.dtype
self.vae.to(dtype=torch.float32)
use_torch_2_0_or_xformers = isinstance(
self.vae.decoder.mid_block.attentions[0].processor,
(
AttnProcessor2_0,
XFormersAttnProcessor,
LoRAXFormersAttnProcessor,
LoRAAttnProcessor2_0,
),
)
# if xformers or torch_2_0 is used attention block does not need
# to be in float32 which can save lots of memory
if use_torch_2_0_or_xformers:
self.vae.post_quant_conv.to(dtype)
self.vae.decoder.conv_in.to(dtype)
self.vae.decoder.mid_block.to(dtype)
# Copied from diffusers.pipelines.latent_consistency_models.pipeline_latent_consistency_text2img.LatentConsistencyModelPipeline.get_guidance_scale_embedding
def get_guidance_scale_embedding(
self, w: torch.Tensor, embedding_dim: int = 512, dtype: torch.dtype = torch.float32
) -> torch.FloatTensor:
"""
See https://github.com/google-research/vdm/blob/dc27b98a554f65cdc654b800da5aa1846545d41b/model_vdm.py#L298
Args:
w (`torch.Tensor`):
Generate embedding vectors with a specified guidance scale to subsequently enrich timestep embeddings.
embedding_dim (`int`, *optional*, defaults to 512):
Dimension of the embeddings to generate.
dtype (`torch.dtype`, *optional*, defaults to `torch.float32`):
Data type of the generated embeddings.
Returns:
`torch.FloatTensor`: Embedding vectors with shape `(len(w), embedding_dim)`.
"""
assert len(w.shape) == 1
w = w * 1000.0
half_dim = embedding_dim // 2
emb = torch.log(torch.tensor(10000.0)) / (half_dim - 1)
emb = torch.exp(torch.arange(half_dim, dtype=dtype) * -emb)
emb = w.to(dtype)[:, None] * emb[None, :]
emb = torch.cat([torch.sin(emb), torch.cos(emb)], dim=1)
if embedding_dim % 2 == 1: # zero pad
emb = torch.nn.functional.pad(emb, (0, 1))
assert emb.shape == (w.shape[0], embedding_dim)
return emb
@property
def guidance_scale(self):
return self._guidance_scale
@property
def guidance_rescale(self):
return self._guidance_rescale
@property
def clip_skip(self):
return self._clip_skip
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
# of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
# corresponds to doing no classifier free guidance.
@property
def do_classifier_free_guidance(self):
return self._guidance_scale > 1 and self.unet.config.time_cond_proj_dim is None
@property
def cross_attention_kwargs(self):
return self._cross_attention_kwargs
@property
def denoising_end(self):
return self._denoising_end
@property
def num_timesteps(self):
return self._num_timesteps
@torch.no_grad()
@replace_example_docstring(EXAMPLE_DOC_STRING)
def __call__(
self,
prompt: Union[str, List[str]] = None,
prompt_2: Optional[Union[str, List[str]]] = None,
image: PipelineImageInput = None,
height: Optional[int] = None,
width: Optional[int] = None,
num_inference_steps: int = 30,
timesteps: List[int] = None,
denoising_end: Optional[float] = None,
guidance_scale: float = 7.0,
negative_prompt: Optional[Union[str, List[str]]] = None,
negative_prompt_2: Optional[Union[str, List[str]]] = None,
num_images_per_prompt: Optional[int] = 1,
eta: float = 0.0,
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
latents: Optional[torch.FloatTensor] = None,
prompt_embeds: Optional[torch.FloatTensor] = None,
negative_prompt_embeds: Optional[torch.FloatTensor] = None,
pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
negative_pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
ip_adapter_image: Optional[PipelineImageInput] = None,
ip_adapter_image_embeds: Optional[List[torch.FloatTensor]] = None,
output_type: Optional[str] = "pil",
return_dict: bool = True,
save_preview_row: bool = False,
init_latents_with_lq: bool = True,
multistep_restore: bool = False,
adastep_restore: bool = False,
cross_attention_kwargs: Optional[Dict[str, Any]] = None,
guidance_rescale: float = 0.0,
controlnet_conditioning_scale: float = 1.0,
control_guidance_start: float = 0.0,
control_guidance_end: float = 1.0,
preview_start: float = 0.0,
preview_end: float = 1.0,
original_size: Tuple[int, int] = None,
crops_coords_top_left: Tuple[int, int] = (0, 0),
target_size: Tuple[int, int] = None,
negative_original_size: Optional[Tuple[int, int]] = None,
negative_crops_coords_top_left: Tuple[int, int] = (0, 0),
negative_target_size: Optional[Tuple[int, int]] = None,
clip_skip: Optional[int] = None,
callback_on_step_end: Optional[Callable[[int, int, Dict], None]] = None,
callback_on_step_end_tensor_inputs: List[str] = ["latents"],
previewer_scheduler: KarrasDiffusionSchedulers = None,
reference_latents: Optional[torch.FloatTensor] = None,
**kwargs,
):
r"""
The call function to the pipeline for generation.
Args:
prompt (`str` or `List[str]`, *optional*):
The prompt or prompts to guide image generation. If not defined, you need to pass `prompt_embeds`.
prompt_2 (`str` or `List[str]`, *optional*):
The prompt or prompts to be sent to `tokenizer_2` and `text_encoder_2`. If not defined, `prompt` is
used in both text-encoders.
image (`torch.FloatTensor`, `PIL.Image.Image`, `np.ndarray`, `List[torch.FloatTensor]`, `List[PIL.Image.Image]`, `List[np.ndarray]`,:
`List[List[torch.FloatTensor]]`, `List[List[np.ndarray]]` or `List[List[PIL.Image.Image]]`):
The ControlNet input condition to provide guidance to the `unet` for generation. If the type is
specified as `torch.FloatTensor`, it is passed to ControlNet as is. `PIL.Image.Image` can also be
accepted as an image. The dimensions of the output image defaults to `image`'s dimensions. If height
and/or width are passed, `image` is resized accordingly. If multiple ControlNets are specified in
`init`, images must be passed as a list such that each element of the list can be correctly batched for
input to a single ControlNet.
height (`int`, *optional*, defaults to `self.unet.config.sample_size * self.vae_scale_factor`):
The height in pixels of the generated image. Anything below 512 pixels won't work well for
[stabilityai/stable-diffusion-xl-base-1.0](https://huggingface.co./stabilityai/stable-diffusion-xl-base-1.0)
and checkpoints that are not specifically fine-tuned on low resolutions.
width (`int`, *optional*, defaults to `self.unet.config.sample_size * self.vae_scale_factor`):
The width in pixels of the generated image. Anything below 512 pixels won't work well for
[stabilityai/stable-diffusion-xl-base-1.0](https://huggingface.co./stabilityai/stable-diffusion-xl-base-1.0)
and checkpoints that are not specifically fine-tuned on low resolutions.
num_inference_steps (`int`, *optional*, defaults to 50):
The number of denoising steps. More denoising steps usually lead to a higher quality image at the
expense of slower inference.
timesteps (`List[int]`, *optional*):
Custom timesteps to use for the denoising process with schedulers which support a `timesteps` argument
in their `set_timesteps` method. If not defined, the default behavior when `num_inference_steps` is
passed will be used. Must be in descending order.
denoising_end (`float`, *optional*):
When specified, determines the fraction (between 0.0 and 1.0) of the total denoising process to be
completed before it is intentionally prematurely terminated. As a result, the returned sample will
still retain a substantial amount of noise as determined by the discrete timesteps selected by the
scheduler. The denoising_end parameter should ideally be utilized when this pipeline forms a part of a
"Mixture of Denoisers" multi-pipeline setup, as elaborated in [**Refining the Image
Output**](https://huggingface.co./docs/diffusers/api/pipelines/stable_diffusion/stable_diffusion_xl#refining-the-image-output)
guidance_scale (`float`, *optional*, defaults to 5.0):
A higher guidance scale value encourages the model to generate images closely linked to the text
`prompt` at the expense of lower image quality. Guidance scale is enabled when `guidance_scale > 1`.
negative_prompt (`str` or `List[str]`, *optional*):
The prompt or prompts to guide what to not include in image generation. If not defined, you need to
pass `negative_prompt_embeds` instead. Ignored when not using guidance (`guidance_scale < 1`).
negative_prompt_2 (`str` or `List[str]`, *optional*):
The prompt or prompts to guide what to not include in image generation. This is sent to `tokenizer_2`
and `text_encoder_2`. If not defined, `negative_prompt` is used in both text-encoders.
num_images_per_prompt (`int`, *optional*, defaults to 1):
The number of images to generate per prompt.
eta (`float`, *optional*, defaults to 0.0):
Corresponds to parameter eta (η) from the [DDIM](https://arxiv.org/abs/2010.02502) paper. Only applies
to the [`~schedulers.DDIMScheduler`], and is ignored in other schedulers.
generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
A [`torch.Generator`](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make
generation deterministic.
latents (`torch.FloatTensor`, *optional*):
Pre-generated noisy latents sampled from a Gaussian distribution, to be used as inputs for image
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
tensor is generated by sampling using the supplied random `generator`.
prompt_embeds (`torch.FloatTensor`, *optional*):
Pre-generated text embeddings. Can be used to easily tweak text inputs (prompt weighting). If not
provided, text embeddings are generated from the `prompt` input argument.
negative_prompt_embeds (`torch.FloatTensor`, *optional*):
Pre-generated negative text embeddings. Can be used to easily tweak text inputs (prompt weighting). If
not provided, `negative_prompt_embeds` are generated from the `negative_prompt` input argument.
pooled_prompt_embeds (`torch.FloatTensor`, *optional*):
Pre-generated pooled text embeddings. Can be used to easily tweak text inputs (prompt weighting). If
not provided, pooled text embeddings are generated from `prompt` input argument.
negative_pooled_prompt_embeds (`torch.FloatTensor`, *optional*):
Pre-generated negative pooled text embeddings. Can be used to easily tweak text inputs (prompt
weighting). If not provided, pooled `negative_prompt_embeds` are generated from `negative_prompt` input
argument.
ip_adapter_image: (`PipelineImageInput`, *optional*): Optional image input to work with IP Adapters.
ip_adapter_image_embeds (`List[torch.FloatTensor]`, *optional*):
Pre-generated image embeddings for IP-Adapter. It should be a list of length same as number of
IP-adapters. Each element should be a tensor of shape `(batch_size, num_images, emb_dim)`. It should
contain the negative image embedding if `do_classifier_free_guidance` is set to `True`. If not
provided, embeddings are computed from the `ip_adapter_image` input argument.
output_type (`str`, *optional*, defaults to `"pil"`):
The output format of the generated image. Choose between `PIL.Image` or `np.array`.
return_dict (`bool`, *optional*, defaults to `True`):
Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] instead of a
plain tuple.
cross_attention_kwargs (`dict`, *optional*):
A kwargs dictionary that if specified is passed along to the [`AttentionProcessor`] as defined in
[`self.processor`](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
controlnet_conditioning_scale (`float` or `List[float]`, *optional*, defaults to 1.0):
The outputs of the ControlNet are multiplied by `controlnet_conditioning_scale` before they are added
to the residual in the original `unet`. If multiple ControlNets are specified in `init`, you can set
the corresponding scale as a list.
control_guidance_start (`float` or `List[float]`, *optional*, defaults to 0.0):
The percentage of total steps at which the ControlNet starts applying.
control_guidance_end (`float` or `List[float]`, *optional*, defaults to 1.0):
The percentage of total steps at which the ControlNet stops applying.
original_size (`Tuple[int]`, *optional*, defaults to (1024, 1024)):
If `original_size` is not the same as `target_size` the image will appear to be down- or upsampled.
`original_size` defaults to `(height, width)` if not specified. Part of SDXL's micro-conditioning as
explained in section 2.2 of
[https://huggingface.co./papers/2307.01952](https://huggingface.co./papers/2307.01952).
crops_coords_top_left (`Tuple[int]`, *optional*, defaults to (0, 0)):
`crops_coords_top_left` can be used to generate an image that appears to be "cropped" from the position
`crops_coords_top_left` downwards. Favorable, well-centered images are usually achieved by setting
`crops_coords_top_left` to (0, 0). Part of SDXL's micro-conditioning as explained in section 2.2 of
[https://huggingface.co./papers/2307.01952](https://huggingface.co./papers/2307.01952).
target_size (`Tuple[int]`, *optional*, defaults to (1024, 1024)):
For most cases, `target_size` should be set to the desired height and width of the generated image. If
not specified it will default to `(height, width)`. Part of SDXL's micro-conditioning as explained in
section 2.2 of [https://huggingface.co./papers/2307.01952](https://huggingface.co./papers/2307.01952).
negative_original_size (`Tuple[int]`, *optional*, defaults to (1024, 1024)):
To negatively condition the generation process based on a specific image resolution. Part of SDXL's
micro-conditioning as explained in section 2.2 of
[https://huggingface.co./papers/2307.01952](https://huggingface.co./papers/2307.01952). For more
information, refer to this issue thread: https://github.com/huggingface/diffusers/issues/4208.
negative_crops_coords_top_left (`Tuple[int]`, *optional*, defaults to (0, 0)):
To negatively condition the generation process based on a specific crop coordinates. Part of SDXL's
micro-conditioning as explained in section 2.2 of
[https://huggingface.co./papers/2307.01952](https://huggingface.co./papers/2307.01952). For more
information, refer to this issue thread: https://github.com/huggingface/diffusers/issues/4208.
negative_target_size (`Tuple[int]`, *optional*, defaults to (1024, 1024)):
To negatively condition the generation process based on a target image resolution. It should be as same
as the `target_size` for most cases. Part of SDXL's micro-conditioning as explained in section 2.2 of
[https://huggingface.co./papers/2307.01952](https://huggingface.co./papers/2307.01952). For more
information, refer to this issue thread: https://github.com/huggingface/diffusers/issues/4208.
clip_skip (`int`, *optional*):
Number of layers to be skipped from CLIP while computing the prompt embeddings. A value of 1 means that
the output of the pre-final layer will be used for computing the prompt embeddings.
callback_on_step_end (`Callable`, *optional*):
A function that calls at the end of each denoising steps during the inference. The function is called
with the following arguments: `callback_on_step_end(self: DiffusionPipeline, step: int, timestep: int,
callback_kwargs: Dict)`. `callback_kwargs` will include a list of all tensors as specified by
`callback_on_step_end_tensor_inputs`.
callback_on_step_end_tensor_inputs (`List`, *optional*):
The list of tensor inputs for the `callback_on_step_end` function. The tensors specified in the list
will be passed as `callback_kwargs` argument. You will only be able to include variables listed in the
`._callback_tensor_inputs` attribute of your pipeline class.
Examples:
Returns:
[`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] or `tuple`:
If `return_dict` is `True`, [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] is returned,
otherwise a `tuple` is returned containing the output images.
"""
callback = kwargs.pop("callback", None)
callback_steps = kwargs.pop("callback_steps", None)
if callback is not None:
deprecate(
"callback",
"1.0.0",
"Passing `callback` as an input argument to `__call__` is deprecated, consider using `callback_on_step_end`",
)
if callback_steps is not None:
deprecate(
"callback_steps",
"1.0.0",
"Passing `callback_steps` as an input argument to `__call__` is deprecated, consider using `callback_on_step_end`",
)
aggregator = self.aggregator._orig_mod if is_compiled_module(self.aggregator) else self.aggregator
if not isinstance(ip_adapter_image, list):
ip_adapter_image = [ip_adapter_image] if ip_adapter_image is not None else [image]
# 1. Check inputs. Raise error if not correct
self.check_inputs(
prompt,
prompt_2,
image,
callback_steps,
negative_prompt,
negative_prompt_2,
prompt_embeds,
negative_prompt_embeds,
pooled_prompt_embeds,
ip_adapter_image,
ip_adapter_image_embeds,
negative_pooled_prompt_embeds,
controlnet_conditioning_scale,
control_guidance_start,
control_guidance_end,
callback_on_step_end_tensor_inputs,
)
self._guidance_scale = guidance_scale
self._guidance_rescale = guidance_rescale
self._clip_skip = clip_skip
self._cross_attention_kwargs = cross_attention_kwargs
self._denoising_end = denoising_end
# 2. Define call parameters
if prompt is not None and isinstance(prompt, str):
if not isinstance(image, PIL.Image.Image):
batch_size = len(image)
else:
batch_size = 1
prompt = [prompt] * batch_size
elif prompt is not None and isinstance(prompt, list):
batch_size = len(prompt)
assert batch_size == len(image) or (isinstance(image, PIL.Image.Image) or len(image) == 1)
else:
batch_size = prompt_embeds.shape[0]
assert batch_size == len(image) or (isinstance(image, PIL.Image.Image) or len(image) == 1)
device = self._execution_device
# 3.1 Encode input prompt
text_encoder_lora_scale = (
self.cross_attention_kwargs.get("scale", None) if self.cross_attention_kwargs is not None else None
)
(
prompt_embeds,
negative_prompt_embeds,
pooled_prompt_embeds,
negative_pooled_prompt_embeds,
) = self.encode_prompt(
prompt=prompt,
prompt_2=prompt_2,
device=device,
num_images_per_prompt=num_images_per_prompt,
do_classifier_free_guidance=self.do_classifier_free_guidance,
negative_prompt=negative_prompt,
negative_prompt_2=negative_prompt_2,
prompt_embeds=prompt_embeds,
negative_prompt_embeds=negative_prompt_embeds,
pooled_prompt_embeds=pooled_prompt_embeds,
negative_pooled_prompt_embeds=negative_pooled_prompt_embeds,
lora_scale=text_encoder_lora_scale,
clip_skip=self.clip_skip,
)
# 3.2 Encode ip_adapter_image
if ip_adapter_image is not None or ip_adapter_image_embeds is not None:
image_embeds = self.prepare_ip_adapter_image_embeds(
ip_adapter_image,
ip_adapter_image_embeds,
device,
batch_size * num_images_per_prompt,
self.do_classifier_free_guidance,
)
# 4. Prepare image
image = self.prepare_image(
image=image,
width=width,
height=height,
batch_size=batch_size * num_images_per_prompt,
num_images_per_prompt=num_images_per_prompt,
device=device,
dtype=aggregator.dtype,
do_classifier_free_guidance=self.do_classifier_free_guidance,
)
height, width = image.shape[-2:]
if image.shape[1] != 4:
needs_upcasting = self.vae.dtype == torch.float16 and self.vae.config.force_upcast
if needs_upcasting:
image = image.float()
self.vae.to(dtype=torch.float32)
image = self.vae.encode(image).latent_dist.sample()
image = image * self.vae.config.scaling_factor
if needs_upcasting:
self.vae.to(dtype=torch.float16)
image = image.to(dtype=torch.float16)
else:
height = int(height * self.vae_scale_factor)
width = int(width * self.vae_scale_factor)
# 5. Prepare timesteps
timesteps, num_inference_steps = retrieve_timesteps(self.scheduler, num_inference_steps, device, timesteps)
# 6. Prepare latent variables
if init_latents_with_lq:
latents = self.init_latents(image, generator, timesteps[0])
else:
num_channels_latents = self.unet.config.in_channels
latents = self.prepare_latents(
batch_size * num_images_per_prompt,
num_channels_latents,
height,
width,
prompt_embeds.dtype,
device,
generator,
latents,
)
# 6.5 Optionally get Guidance Scale Embedding
timestep_cond = None
if self.unet.config.time_cond_proj_dim is not None:
guidance_scale_tensor = torch.tensor(self.guidance_scale - 1).repeat(batch_size * num_images_per_prompt)
timestep_cond = self.get_guidance_scale_embedding(
guidance_scale_tensor, embedding_dim=self.unet.config.time_cond_proj_dim
).to(device=device, dtype=latents.dtype)
# 7. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline
extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)
# 7.1 Create tensor stating which controlnets to keep
controlnet_keep = []
previewing = []
for i in range(len(timesteps)):
keeps = 1.0 - float(i / len(timesteps) < control_guidance_start or (i + 1) / len(timesteps) > control_guidance_end)
controlnet_keep.append(keeps)
use_preview = 1.0 - float(i / len(timesteps) < preview_start or (i + 1) / len(timesteps) > preview_end)
previewing.append(use_preview)
if isinstance(controlnet_conditioning_scale, list):
assert len(controlnet_conditioning_scale) == len(timesteps), f"{len(controlnet_conditioning_scale)} controlnet scales do not match number of sampling steps {len(timesteps)}"
else:
controlnet_conditioning_scale = [controlnet_conditioning_scale] * len(controlnet_keep)
# 7.2 Prepare added time ids & embeddings
original_size = original_size or (height, width)
target_size = target_size or (height, width)
add_text_embeds = pooled_prompt_embeds
if self.text_encoder_2 is None:
text_encoder_projection_dim = int(pooled_prompt_embeds.shape[-1])
else:
text_encoder_projection_dim = self.text_encoder_2.config.projection_dim
add_time_ids = self._get_add_time_ids(
original_size,
crops_coords_top_left,
target_size,
dtype=prompt_embeds.dtype,
text_encoder_projection_dim=text_encoder_projection_dim,
)
if negative_original_size is not None and negative_target_size is not None:
negative_add_time_ids = self._get_add_time_ids(
negative_original_size,
negative_crops_coords_top_left,
negative_target_size,
dtype=prompt_embeds.dtype,
text_encoder_projection_dim=text_encoder_projection_dim,
)
else:
negative_add_time_ids = add_time_ids
if self.do_classifier_free_guidance:
prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds], dim=0)
add_text_embeds = torch.cat([negative_pooled_prompt_embeds, add_text_embeds], dim=0)
add_time_ids = torch.cat([negative_add_time_ids, add_time_ids], dim=0)
image = torch.cat([image] * 2, dim=0)
prompt_embeds = prompt_embeds.to(device)
add_text_embeds = add_text_embeds.to(device)
add_time_ids = add_time_ids.to(device).repeat(batch_size * num_images_per_prompt, 1)
# 8. Denoising loop
num_warmup_steps = max(len(timesteps) - num_inference_steps * self.scheduler.order, 0)
# 8.1 Apply denoising_end
if (
self.denoising_end is not None
and isinstance(self.denoising_end, float)
and self.denoising_end > 0
and self.denoising_end < 1
):
discrete_timestep_cutoff = int(
round(
self.scheduler.config.num_train_timesteps
- (self.denoising_end * self.scheduler.config.num_train_timesteps)
)
)
num_inference_steps = len(list(filter(lambda ts: ts >= discrete_timestep_cutoff, timesteps)))
timesteps = timesteps[:num_inference_steps]
is_unet_compiled = is_compiled_module(self.unet)
is_aggregator_compiled = is_compiled_module(self.aggregator)
is_torch_higher_equal_2_1 = is_torch_version(">=", "2.1")
previewer_mean = torch.zeros_like(latents)
unet_mean = torch.zeros_like(latents)
preview_factor = torch.ones(
(latents.shape[0], *((1,) * (len(latents.shape) - 1))), dtype=latents.dtype, device=latents.device
)
self._num_timesteps = len(timesteps)
preview_row = []
with self.progress_bar(total=num_inference_steps) as progress_bar:
for i, t in enumerate(timesteps):
# Relevant thread:
# https://dev-discuss.pytorch.org/t/cudagraphs-in-pytorch-2-0/1428
if (is_unet_compiled and is_aggregator_compiled) and is_torch_higher_equal_2_1:
torch._inductor.cudagraph_mark_step_begin()
# expand the latents if we are doing classifier free guidance
latent_model_input = torch.cat([latents] * 2) if self.do_classifier_free_guidance else latents
latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)
prev_t = t
unet_model_input = latent_model_input
added_cond_kwargs = {
"text_embeds": add_text_embeds,
"time_ids": add_time_ids,
"image_embeds": image_embeds
}
aggregator_added_cond_kwargs = {"text_embeds": add_text_embeds, "time_ids": add_time_ids}
# prepare time_embeds in advance as adapter input
cross_attention_t_emb = self.unet.get_time_embed(sample=latent_model_input, timestep=t)
cross_attention_emb = self.unet.time_embedding(cross_attention_t_emb, timestep_cond)
cross_attention_aug_emb = None
cross_attention_aug_emb = self.unet.get_aug_embed(
emb=cross_attention_emb,
encoder_hidden_states=prompt_embeds,
added_cond_kwargs=added_cond_kwargs
)
cross_attention_emb = cross_attention_emb + cross_attention_aug_emb if cross_attention_aug_emb is not None else cross_attention_emb
if self.unet.time_embed_act is not None:
cross_attention_emb = self.unet.time_embed_act(cross_attention_emb)
current_cross_attention_kwargs = {"temb": cross_attention_emb}
if cross_attention_kwargs is not None:
for k,v in cross_attention_kwargs.items():
current_cross_attention_kwargs[k] = v
self._cross_attention_kwargs = current_cross_attention_kwargs
# adaptive restoration factors
adaRes_scale = preview_factor.to(latent_model_input.dtype).clamp(0.0, controlnet_conditioning_scale[i])
cond_scale = adaRes_scale * controlnet_keep[i]
cond_scale = torch.cat([cond_scale] * 2) if self.do_classifier_free_guidance else cond_scale
if (cond_scale>0.1).sum().item() > 0:
if previewing[i] > 0:
# preview with LCM
self.unet.enable_adapters()
preview_noise = self.unet(
latent_model_input,
t,
encoder_hidden_states=prompt_embeds,
timestep_cond=timestep_cond,
cross_attention_kwargs=self.cross_attention_kwargs,
added_cond_kwargs=added_cond_kwargs,
return_dict=False,
)[0]
preview_latent = previewer_scheduler.step(
preview_noise,
t.to(dtype=torch.int64),
# torch.cat([latents] * 2) if self.do_classifier_free_guidance else latents,
latent_model_input, # scaled latents here for compatibility
return_dict=False
)[0]
self.unet.disable_adapters()
if self.do_classifier_free_guidance:
preview_row.append(preview_latent.chunk(2)[1].to('cpu'))
else:
preview_row.append(preview_latent.to('cpu'))
# Prepare 2nd order step.
if multistep_restore and i+1 < len(timesteps):
noise_preview = preview_noise.chunk(2)[1] if self.do_classifier_free_guidance else preview_noise
first_step = self.scheduler.step(
noise_preview, t, latents,
**extra_step_kwargs, return_dict=True, step_forward=False
)
prev_t = timesteps[i + 1]
unet_model_input = torch.cat([first_step.prev_sample] * 2) if self.do_classifier_free_guidance else first_step.prev_sample
unet_model_input = self.scheduler.scale_model_input(unet_model_input, prev_t, heun_step=True)
elif reference_latents is not None:
preview_latent = torch.cat([reference_latents] * 2) if self.do_classifier_free_guidance else reference_latents
else:
preview_latent = image
# Add fresh noise
# preview_noise = torch.randn_like(preview_latent)
# preview_latent = self.scheduler.add_noise(preview_latent, preview_noise, t)
preview_latent=preview_latent.to(dtype=next(aggregator.parameters()).dtype)
# Aggregator inference
down_block_res_samples, mid_block_res_sample = aggregator(
image,
prev_t,
encoder_hidden_states=prompt_embeds,
controlnet_cond=preview_latent,
# conditioning_scale=cond_scale,
added_cond_kwargs=aggregator_added_cond_kwargs,
return_dict=False,
)
# aggregator features scaling
down_block_res_samples = [sample*cond_scale for sample in down_block_res_samples]
mid_block_res_sample = mid_block_res_sample*cond_scale
# predict the noise residual
noise_pred = self.unet(
unet_model_input,
prev_t,
encoder_hidden_states=prompt_embeds,
timestep_cond=timestep_cond,
cross_attention_kwargs=self.cross_attention_kwargs,
down_block_additional_residuals=down_block_res_samples,
mid_block_additional_residual=mid_block_res_sample,
added_cond_kwargs=added_cond_kwargs,
return_dict=False,
)[0]
# perform guidance
if self.do_classifier_free_guidance:
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
if self.do_classifier_free_guidance and self.guidance_rescale > 0.0:
# Based on 3.4. in https://arxiv.org/pdf/2305.08891.pdf
noise_pred = rescale_noise_cfg(noise_pred, noise_pred_text, guidance_rescale=self.guidance_rescale)
# compute the previous noisy sample x_t -> x_t-1
latents_dtype = latents.dtype
unet_step = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs, return_dict=True)
latents = unet_step.prev_sample
# Update adaRes factors
unet_pred_latent = unet_step.pred_original_sample
# Adaptive restoration.
if adastep_restore:
pred_x0_l2 = ((preview_latent[latents.shape[0]:].float()-unet_pred_latent.float())).pow(2).sum(dim=(1,2,3))
previewer_l2 = ((preview_latent[latents.shape[0]:].float()-previewer_mean.float())).pow(2).sum(dim=(1,2,3))
# unet_l2 = ((unet_pred_latent.float()-unet_mean.float())).pow(2).sum(dim=(1,2,3)).sqrt()
# l2_error = (((preview_latent[latents.shape[0]:]-previewer_mean) - (unet_pred_latent-unet_mean))).pow(2).mean(dim=(1,2,3))
# preview_error = torch.nn.functional.cosine_similarity(preview_latent[latents.shape[0]:].reshape(latents.shape[0], -1), unet_pred_latent.reshape(latents.shape[0],-1))
previewer_mean = preview_latent[latents.shape[0]:]
unet_mean = unet_pred_latent
preview_factor = (pred_x0_l2 / previewer_l2).reshape(-1, 1, 1, 1)
if latents.dtype != latents_dtype:
if torch.backends.mps.is_available():
# some platforms (eg. apple mps) misbehave due to a pytorch bug: https://github.com/pytorch/pytorch/pull/99272
latents = latents.to(latents_dtype)
if callback_on_step_end is not None:
callback_kwargs = {}
for k in callback_on_step_end_tensor_inputs:
callback_kwargs[k] = locals()[k]
callback_outputs = callback_on_step_end(self, i, t, callback_kwargs)
latents = callback_outputs.pop("latents", latents)
prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds)
negative_prompt_embeds = callback_outputs.pop("negative_prompt_embeds", negative_prompt_embeds)
# call the callback, if provided
if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
progress_bar.update()
if callback is not None and i % callback_steps == 0:
step_idx = i // getattr(self.scheduler, "order", 1)
callback(step_idx, t, latents)
if not output_type == "latent":
# make sure the VAE is in float32 mode, as it overflows in float16
needs_upcasting = self.vae.dtype == torch.float16 and self.vae.config.force_upcast
if needs_upcasting:
self.upcast_vae()
latents = latents.to(next(iter(self.vae.post_quant_conv.parameters())).dtype)
# unscale/denormalize the latents
# denormalize with the mean and std if available and not None
has_latents_mean = hasattr(self.vae.config, "latents_mean") and self.vae.config.latents_mean is not None
has_latents_std = hasattr(self.vae.config, "latents_std") and self.vae.config.latents_std is not None
if has_latents_mean and has_latents_std:
latents_mean = (
torch.tensor(self.vae.config.latents_mean).view(1, 4, 1, 1).to(latents.device, latents.dtype)
)
latents_std = (
torch.tensor(self.vae.config.latents_std).view(1, 4, 1, 1).to(latents.device, latents.dtype)
)
latents = latents * latents_std / self.vae.config.scaling_factor + latents_mean
else:
latents = latents / self.vae.config.scaling_factor
image = self.vae.decode(latents, return_dict=False)[0]
# cast back to fp16 if needed
if needs_upcasting:
self.vae.to(dtype=torch.float16)
else:
image = latents
if not output_type == "latent":
# apply watermark if available
if self.watermark is not None:
image = self.watermark.apply_watermark(image)
image = self.image_processor.postprocess(image, output_type=output_type)
if save_preview_row:
preview_image_row = []
if needs_upcasting:
self.upcast_vae()
for preview_latents in preview_row:
preview_latents = preview_latents.to(device=self.device, dtype=next(iter(self.vae.post_quant_conv.parameters())).dtype)
if has_latents_mean and has_latents_std:
latents_mean = (
torch.tensor(self.vae.config.latents_mean).view(1, 4, 1, 1).to(preview_latents.device, preview_latents.dtype)
)
latents_std = (
torch.tensor(self.vae.config.latents_std).view(1, 4, 1, 1).to(preview_latents.device, preview_latents.dtype)
)
preview_latents = preview_latents * latents_std / self.vae.config.scaling_factor + latents_mean
else:
preview_latents = preview_latents / self.vae.config.scaling_factor
preview_image = self.vae.decode(preview_latents, return_dict=False)[0]
preview_image = self.image_processor.postprocess(preview_image, output_type=output_type)
preview_image_row.append(preview_image)
# cast back to fp16 if needed
if needs_upcasting:
self.vae.to(dtype=torch.float16)
# Offload all models
self.maybe_free_model_hooks()
if not return_dict:
if save_preview_row:
return (image, preview_image_row)
return (image,)
return StableDiffusionXLPipelineOutput(images=image)