Spaces:
Restarting
on
Zero
Restarting
on
Zero
# Copy from diffusers.models.attention.py | |
# Copyright 2024 The HuggingFace Team. All rights reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
from typing import Any, Dict, Optional | |
import torch | |
import torch.nn.functional as F | |
from torch import nn | |
from diffusers.utils import deprecate, logging | |
from diffusers.utils.torch_utils import maybe_allow_in_graph | |
from diffusers.models.activations import GEGLU, GELU, ApproximateGELU | |
from diffusers.models.attention_processor import Attention | |
from diffusers.models.embeddings import SinusoidalPositionalEmbedding | |
from diffusers.models.normalization import AdaLayerNorm, AdaLayerNormContinuous, AdaLayerNormZero, RMSNorm | |
from module.min_sdxl import LoRACompatibleLinear, LoRALinearLayer | |
logger = logging.get_logger(__name__) | |
def create_custom_forward(module): | |
def custom_forward(*inputs): | |
return module(*inputs) | |
return custom_forward | |
def get_encoder_trainable_params(encoder): | |
trainable_params = [] | |
for module in encoder.modules(): | |
if isinstance(module, ExtractKVTransformerBlock): | |
# If LORA exists in attn1, train them. Otherwise, attn1 is frozen | |
# NOTE: not sure if we want it under a different subset | |
if module.attn1.to_k.lora_layer is not None: | |
trainable_params.extend(module.attn1.to_k.lora_layer.parameters()) | |
trainable_params.extend(module.attn1.to_v.lora_layer.parameters()) | |
trainable_params.extend(module.attn1.to_q.lora_layer.parameters()) | |
trainable_params.extend(module.attn1.to_out[0].lora_layer.parameters()) | |
if module.attn2.to_k.lora_layer is not None: | |
trainable_params.extend(module.attn2.to_k.lora_layer.parameters()) | |
trainable_params.extend(module.attn2.to_v.lora_layer.parameters()) | |
trainable_params.extend(module.attn2.to_q.lora_layer.parameters()) | |
trainable_params.extend(module.attn2.to_out[0].lora_layer.parameters()) | |
# If LORAs exist in kvcopy layers, train only them | |
if module.extract_kv1.to_k.lora_layer is not None: | |
trainable_params.extend(module.extract_kv1.to_k.lora_layer.parameters()) | |
trainable_params.extend(module.extract_kv1.to_v.lora_layer.parameters()) | |
else: | |
trainable_params.extend(module.extract_kv1.to_k.parameters()) | |
trainable_params.extend(module.extract_kv1.to_v.parameters()) | |
return trainable_params | |
def get_adapter_layers(encoder): | |
adapter_layers = [] | |
for module in encoder.modules(): | |
if isinstance(module, ExtractKVTransformerBlock): | |
adapter_layers.append(module.extract_kv2) | |
return adapter_layers | |
def get_adapter_trainable_params(encoder): | |
adapter_layers = get_adapter_layers(encoder) | |
trainable_params = [] | |
for layer in adapter_layers: | |
trainable_params.extend(layer.to_v.parameters()) | |
trainable_params.extend(layer.to_k.parameters()) | |
return trainable_params | |
def maybe_grad_checkpoint(resnet, attn, hidden_states, temb, encoder_hidden_states, adapter_hidden_states, do_ckpt=True): | |
if do_ckpt: | |
hidden_states = torch.utils.checkpoint.checkpoint(create_custom_forward(resnet), hidden_states, temb) | |
hidden_states, extracted_kv = torch.utils.checkpoint.checkpoint( | |
create_custom_forward(attn), hidden_states, encoder_hidden_states, adapter_hidden_states, use_reentrant=False | |
) | |
else: | |
hidden_states = resnet(hidden_states, temb) | |
hidden_states, extracted_kv = attn( | |
hidden_states, | |
encoder_hidden_states=encoder_hidden_states, | |
adapter_hidden_states=adapter_hidden_states, | |
) | |
return hidden_states, extracted_kv | |
def init_lora_in_attn(attn_module, rank: int = 4, is_kvcopy=False): | |
# Set the `lora_layer` attribute of the attention-related matrices. | |
attn_module.to_k.set_lora_layer( | |
LoRALinearLayer( | |
in_features=attn_module.to_k.in_features, out_features=attn_module.to_k.out_features, rank=rank | |
) | |
) | |
attn_module.to_v.set_lora_layer( | |
LoRALinearLayer( | |
in_features=attn_module.to_v.in_features, out_features=attn_module.to_v.out_features, rank=rank | |
) | |
) | |
if not is_kvcopy: | |
attn_module.to_q.set_lora_layer( | |
LoRALinearLayer( | |
in_features=attn_module.to_q.in_features, out_features=attn_module.to_q.out_features, rank=rank | |
) | |
) | |
attn_module.to_out[0].set_lora_layer( | |
LoRALinearLayer( | |
in_features=attn_module.to_out[0].in_features, | |
out_features=attn_module.to_out[0].out_features, | |
rank=rank, | |
) | |
) | |
def drop_kvs(encoder_kvs, drop_chance): | |
for layer in encoder_kvs: | |
len_tokens = encoder_kvs[layer].self_attention.k.shape[1] | |
idx_to_keep = (torch.rand(len_tokens) > drop_chance) | |
encoder_kvs[layer].self_attention.k = encoder_kvs[layer].self_attention.k[:, idx_to_keep] | |
encoder_kvs[layer].self_attention.v = encoder_kvs[layer].self_attention.v[:, idx_to_keep] | |
return encoder_kvs | |
def clone_kvs(encoder_kvs): | |
cloned_kvs = {} | |
for layer in encoder_kvs: | |
sa_cpy = KVCache(k=encoder_kvs[layer].self_attention.k.clone(), | |
v=encoder_kvs[layer].self_attention.v.clone()) | |
ca_cpy = KVCache(k=encoder_kvs[layer].cross_attention.k.clone(), | |
v=encoder_kvs[layer].cross_attention.v.clone()) | |
cloned_layer_cache = AttentionCache(self_attention=sa_cpy, cross_attention=ca_cpy) | |
cloned_kvs[layer] = cloned_layer_cache | |
return cloned_kvs | |
class KVCache(object): | |
def __init__(self, k, v): | |
self.k = k | |
self.v = v | |
class AttentionCache(object): | |
def __init__(self, self_attention: KVCache, cross_attention: KVCache): | |
self.self_attention = self_attention | |
self.cross_attention = cross_attention | |
class KVCopy(nn.Module): | |
def __init__( | |
self, inner_dim, cross_attention_dim=None, | |
): | |
super(KVCopy, self).__init__() | |
in_dim = cross_attention_dim or inner_dim | |
self.to_k = LoRACompatibleLinear(in_dim, inner_dim, bias=False) | |
self.to_v = LoRACompatibleLinear(in_dim, inner_dim, bias=False) | |
def forward(self, hidden_states): | |
k = self.to_k(hidden_states) | |
v = self.to_v(hidden_states) | |
return KVCache(k=k, v=v) | |
def init_kv_copy(self, source_attn): | |
with torch.no_grad(): | |
self.to_k.weight.copy_(source_attn.to_k.weight) | |
self.to_v.weight.copy_(source_attn.to_v.weight) | |
class FeedForward(nn.Module): | |
r""" | |
A feed-forward layer. | |
Parameters: | |
dim (`int`): The number of channels in the input. | |
dim_out (`int`, *optional*): The number of channels in the output. If not given, defaults to `dim`. | |
mult (`int`, *optional*, defaults to 4): The multiplier to use for the hidden dimension. | |
dropout (`float`, *optional*, defaults to 0.0): The dropout probability to use. | |
activation_fn (`str`, *optional*, defaults to `"geglu"`): Activation function to be used in feed-forward. | |
final_dropout (`bool` *optional*, defaults to False): Apply a final dropout. | |
bias (`bool`, defaults to True): Whether to use a bias in the linear layer. | |
""" | |
def __init__( | |
self, | |
dim: int, | |
dim_out: Optional[int] = None, | |
mult: int = 4, | |
dropout: float = 0.0, | |
activation_fn: str = "geglu", | |
final_dropout: bool = False, | |
inner_dim=None, | |
bias: bool = True, | |
): | |
super().__init__() | |
if inner_dim is None: | |
inner_dim = int(dim * mult) | |
dim_out = dim_out if dim_out is not None else dim | |
if activation_fn == "gelu": | |
act_fn = GELU(dim, inner_dim, bias=bias) | |
if activation_fn == "gelu-approximate": | |
act_fn = GELU(dim, inner_dim, approximate="tanh", bias=bias) | |
elif activation_fn == "geglu": | |
act_fn = GEGLU(dim, inner_dim, bias=bias) | |
elif activation_fn == "geglu-approximate": | |
act_fn = ApproximateGELU(dim, inner_dim, bias=bias) | |
self.net = nn.ModuleList([]) | |
# project in | |
self.net.append(act_fn) | |
# project dropout | |
self.net.append(nn.Dropout(dropout)) | |
# project out | |
self.net.append(nn.Linear(inner_dim, dim_out, bias=bias)) | |
# FF as used in Vision Transformer, MLP-Mixer, etc. have a final dropout | |
if final_dropout: | |
self.net.append(nn.Dropout(dropout)) | |
def forward(self, hidden_states: torch.Tensor, *args, **kwargs) -> torch.Tensor: | |
if len(args) > 0 or kwargs.get("scale", None) is not None: | |
deprecation_message = "The `scale` argument is deprecated and will be ignored. Please remove it, as passing it will raise an error in the future. `scale` should directly be passed while calling the underlying pipeline component i.e., via `cross_attention_kwargs`." | |
deprecate("scale", "1.0.0", deprecation_message) | |
for module in self.net: | |
hidden_states = module(hidden_states) | |
return hidden_states | |
def _chunked_feed_forward(ff: nn.Module, hidden_states: torch.Tensor, chunk_dim: int, chunk_size: int): | |
# "feed_forward_chunk_size" can be used to save memory | |
if hidden_states.shape[chunk_dim] % chunk_size != 0: | |
raise ValueError( | |
f"`hidden_states` dimension to be chunked: {hidden_states.shape[chunk_dim]} has to be divisible by chunk size: {chunk_size}. Make sure to set an appropriate `chunk_size` when calling `unet.enable_forward_chunking`." | |
) | |
num_chunks = hidden_states.shape[chunk_dim] // chunk_size | |
ff_output = torch.cat( | |
[ff(hid_slice) for hid_slice in hidden_states.chunk(num_chunks, dim=chunk_dim)], | |
dim=chunk_dim, | |
) | |
return ff_output | |
class GatedSelfAttentionDense(nn.Module): | |
r""" | |
A gated self-attention dense layer that combines visual features and object features. | |
Parameters: | |
query_dim (`int`): The number of channels in the query. | |
context_dim (`int`): The number of channels in the context. | |
n_heads (`int`): The number of heads to use for attention. | |
d_head (`int`): The number of channels in each head. | |
""" | |
def __init__(self, query_dim: int, context_dim: int, n_heads: int, d_head: int): | |
super().__init__() | |
# we need a linear projection since we need cat visual feature and obj feature | |
self.linear = nn.Linear(context_dim, query_dim) | |
self.attn = Attention(query_dim=query_dim, heads=n_heads, dim_head=d_head) | |
self.ff = FeedForward(query_dim, activation_fn="geglu") | |
self.norm1 = nn.LayerNorm(query_dim) | |
self.norm2 = nn.LayerNorm(query_dim) | |
self.register_parameter("alpha_attn", nn.Parameter(torch.tensor(0.0))) | |
self.register_parameter("alpha_dense", nn.Parameter(torch.tensor(0.0))) | |
self.enabled = True | |
def forward(self, x: torch.Tensor, objs: torch.Tensor) -> torch.Tensor: | |
if not self.enabled: | |
return x | |
n_visual = x.shape[1] | |
objs = self.linear(objs) | |
x = x + self.alpha_attn.tanh() * self.attn(self.norm1(torch.cat([x, objs], dim=1)))[:, :n_visual, :] | |
x = x + self.alpha_dense.tanh() * self.ff(self.norm2(x)) | |
return x | |
class ExtractKVTransformerBlock(nn.Module): | |
r""" | |
A Transformer block that also outputs KV metrics. | |
Parameters: | |
dim (`int`): The number of channels in the input and output. | |
num_attention_heads (`int`): The number of heads to use for multi-head attention. | |
attention_head_dim (`int`): The number of channels in each head. | |
dropout (`float`, *optional*, defaults to 0.0): The dropout probability to use. | |
cross_attention_dim (`int`, *optional*): The size of the encoder_hidden_states vector for cross attention. | |
activation_fn (`str`, *optional*, defaults to `"geglu"`): Activation function to be used in feed-forward. | |
num_embeds_ada_norm (: | |
obj: `int`, *optional*): The number of diffusion steps used during training. See `Transformer2DModel`. | |
attention_bias (: | |
obj: `bool`, *optional*, defaults to `False`): Configure if the attentions should contain a bias parameter. | |
only_cross_attention (`bool`, *optional*): | |
Whether to use only cross-attention layers. In this case two cross attention layers are used. | |
double_self_attention (`bool`, *optional*): | |
Whether to use two self-attention layers. In this case no cross attention layers are used. | |
upcast_attention (`bool`, *optional*): | |
Whether to upcast the attention computation to float32. This is useful for mixed precision training. | |
norm_elementwise_affine (`bool`, *optional*, defaults to `True`): | |
Whether to use learnable elementwise affine parameters for normalization. | |
norm_type (`str`, *optional*, defaults to `"layer_norm"`): | |
The normalization layer to use. Can be `"layer_norm"`, `"ada_norm"` or `"ada_norm_zero"`. | |
final_dropout (`bool` *optional*, defaults to False): | |
Whether to apply a final dropout after the last feed-forward layer. | |
attention_type (`str`, *optional*, defaults to `"default"`): | |
The type of attention to use. Can be `"default"` or `"gated"` or `"gated-text-image"`. | |
positional_embeddings (`str`, *optional*, defaults to `None`): | |
The type of positional embeddings to apply to. | |
num_positional_embeddings (`int`, *optional*, defaults to `None`): | |
The maximum number of positional embeddings to apply. | |
""" | |
def __init__( | |
self, | |
dim: int, # Originally hidden_size | |
num_attention_heads: int, | |
attention_head_dim: int, | |
dropout=0.0, | |
cross_attention_dim: Optional[int] = None, | |
activation_fn: str = "geglu", | |
num_embeds_ada_norm: Optional[int] = None, | |
attention_bias: bool = False, | |
only_cross_attention: bool = False, | |
double_self_attention: bool = False, | |
upcast_attention: bool = False, | |
norm_elementwise_affine: bool = True, | |
norm_type: str = "layer_norm", # 'layer_norm', 'ada_norm', 'ada_norm_zero', 'ada_norm_single', 'ada_norm_continuous', 'layer_norm_i2vgen' | |
norm_eps: float = 1e-5, | |
final_dropout: bool = False, | |
attention_type: str = "default", | |
positional_embeddings: Optional[str] = None, | |
num_positional_embeddings: Optional[int] = None, | |
ada_norm_continous_conditioning_embedding_dim: Optional[int] = None, | |
ada_norm_bias: Optional[int] = None, | |
ff_inner_dim: Optional[int] = None, | |
ff_bias: bool = True, | |
attention_out_bias: bool = True, | |
extract_self_attention_kv: bool = False, | |
extract_cross_attention_kv: bool = False, | |
): | |
super().__init__() | |
self.only_cross_attention = only_cross_attention | |
# We keep these boolean flags for backward-compatibility. | |
self.use_ada_layer_norm_zero = (num_embeds_ada_norm is not None) and norm_type == "ada_norm_zero" | |
self.use_ada_layer_norm = (num_embeds_ada_norm is not None) and norm_type == "ada_norm" | |
self.use_ada_layer_norm_single = norm_type == "ada_norm_single" | |
self.use_layer_norm = norm_type == "layer_norm" | |
self.use_ada_layer_norm_continuous = norm_type == "ada_norm_continuous" | |
if norm_type in ("ada_norm", "ada_norm_zero") and num_embeds_ada_norm is None: | |
raise ValueError( | |
f"`norm_type` is set to {norm_type}, but `num_embeds_ada_norm` is not defined. Please make sure to" | |
f" define `num_embeds_ada_norm` if setting `norm_type` to {norm_type}." | |
) | |
self.norm_type = norm_type | |
self.num_embeds_ada_norm = num_embeds_ada_norm | |
if positional_embeddings and (num_positional_embeddings is None): | |
raise ValueError( | |
"If `positional_embedding` type is defined, `num_positition_embeddings` must also be defined." | |
) | |
if positional_embeddings == "sinusoidal": | |
self.pos_embed = SinusoidalPositionalEmbedding(dim, max_seq_length=num_positional_embeddings) | |
else: | |
self.pos_embed = None | |
# Define 3 blocks. Each block has its own normalization layer. | |
# 1. Self-Attn | |
if norm_type == "ada_norm": | |
self.norm1 = AdaLayerNorm(dim, num_embeds_ada_norm) | |
elif norm_type == "ada_norm_zero": | |
self.norm1 = AdaLayerNormZero(dim, num_embeds_ada_norm) | |
elif norm_type == "ada_norm_continuous": | |
self.norm1 = AdaLayerNormContinuous( | |
dim, | |
ada_norm_continous_conditioning_embedding_dim, | |
norm_elementwise_affine, | |
norm_eps, | |
ada_norm_bias, | |
"rms_norm", | |
) | |
else: | |
self.norm1 = nn.LayerNorm(dim, elementwise_affine=norm_elementwise_affine, eps=norm_eps) | |
self.attn1 = Attention( | |
query_dim=dim, | |
heads=num_attention_heads, | |
dim_head=attention_head_dim, | |
dropout=dropout, | |
bias=attention_bias, | |
cross_attention_dim=cross_attention_dim if only_cross_attention else None, | |
upcast_attention=upcast_attention, | |
out_bias=attention_out_bias, | |
) | |
if extract_self_attention_kv: | |
self.extract_kv1 = KVCopy(cross_attention_dim=cross_attention_dim if only_cross_attention else None, inner_dim=dim) | |
# 2. Cross-Attn | |
if cross_attention_dim is not None or double_self_attention: | |
# We currently only use AdaLayerNormZero for self attention where there will only be one attention block. | |
# I.e. the number of returned modulation chunks from AdaLayerZero would not make sense if returned during | |
# the second cross attention block. | |
if norm_type == "ada_norm": | |
self.norm2 = AdaLayerNorm(dim, num_embeds_ada_norm) | |
elif norm_type == "ada_norm_continuous": | |
self.norm2 = AdaLayerNormContinuous( | |
dim, | |
ada_norm_continous_conditioning_embedding_dim, | |
norm_elementwise_affine, | |
norm_eps, | |
ada_norm_bias, | |
"rms_norm", | |
) | |
else: | |
self.norm2 = nn.LayerNorm(dim, norm_eps, norm_elementwise_affine) | |
self.attn2 = Attention( | |
query_dim=dim, | |
cross_attention_dim=cross_attention_dim if not double_self_attention else None, | |
heads=num_attention_heads, | |
dim_head=attention_head_dim, | |
dropout=dropout, | |
bias=attention_bias, | |
upcast_attention=upcast_attention, | |
out_bias=attention_out_bias, | |
) # is self-attn if encoder_hidden_states is none | |
if extract_cross_attention_kv: | |
self.extract_kv2 = KVCopy(cross_attention_dim=None, inner_dim=dim) | |
else: | |
self.norm2 = None | |
self.attn2 = None | |
# 3. Feed-forward | |
if norm_type == "ada_norm_continuous": | |
self.norm3 = AdaLayerNormContinuous( | |
dim, | |
ada_norm_continous_conditioning_embedding_dim, | |
norm_elementwise_affine, | |
norm_eps, | |
ada_norm_bias, | |
"layer_norm", | |
) | |
elif norm_type in ["ada_norm_zero", "ada_norm", "layer_norm", "ada_norm_continuous"]: | |
self.norm3 = nn.LayerNorm(dim, norm_eps, norm_elementwise_affine) | |
elif norm_type == "layer_norm_i2vgen": | |
self.norm3 = None | |
self.ff = FeedForward( | |
dim, | |
dropout=dropout, | |
activation_fn=activation_fn, | |
final_dropout=final_dropout, | |
inner_dim=ff_inner_dim, | |
bias=ff_bias, | |
) | |
# 4. Fuser | |
if attention_type == "gated" or attention_type == "gated-text-image": | |
self.fuser = GatedSelfAttentionDense(dim, cross_attention_dim, num_attention_heads, attention_head_dim) | |
# 5. Scale-shift for PixArt-Alpha. | |
if norm_type == "ada_norm_single": | |
self.scale_shift_table = nn.Parameter(torch.randn(6, dim) / dim**0.5) | |
# let chunk size default to None | |
self._chunk_size = None | |
self._chunk_dim = 0 | |
def set_chunk_feed_forward(self, chunk_size: Optional[int], dim: int = 0): | |
# Sets chunk feed-forward | |
self._chunk_size = chunk_size | |
self._chunk_dim = dim | |
def forward( | |
self, | |
hidden_states: torch.FloatTensor, | |
attention_mask: Optional[torch.FloatTensor] = None, | |
encoder_hidden_states: Optional[torch.FloatTensor] = None, | |
encoder_attention_mask: Optional[torch.FloatTensor] = None, | |
timestep: Optional[torch.LongTensor] = None, | |
cross_attention_kwargs: Dict[str, Any] = None, | |
class_labels: Optional[torch.LongTensor] = None, | |
added_cond_kwargs: Optional[Dict[str, torch.Tensor]] = None, | |
) -> torch.FloatTensor: | |
if cross_attention_kwargs is not None: | |
if cross_attention_kwargs.get("scale", None) is not None: | |
logger.warning("Passing `scale` to `cross_attention_kwargs` is deprecated. `scale` will be ignored.") | |
# Notice that normalization is always applied before the real computation in the following blocks. | |
# 0. Self-Attention | |
batch_size = hidden_states.shape[0] | |
if self.norm_type == "ada_norm": | |
norm_hidden_states = self.norm1(hidden_states, timestep) | |
elif self.norm_type == "ada_norm_zero": | |
norm_hidden_states, gate_msa, shift_mlp, scale_mlp, gate_mlp = self.norm1( | |
hidden_states, timestep, class_labels, hidden_dtype=hidden_states.dtype | |
) | |
elif self.norm_type in ["layer_norm", "layer_norm_i2vgen"]: | |
norm_hidden_states = self.norm1(hidden_states) | |
elif self.norm_type == "ada_norm_continuous": | |
norm_hidden_states = self.norm1(hidden_states, added_cond_kwargs["pooled_text_emb"]) | |
elif self.norm_type == "ada_norm_single": | |
shift_msa, scale_msa, gate_msa, shift_mlp, scale_mlp, gate_mlp = ( | |
self.scale_shift_table[None] + timestep.reshape(batch_size, 6, -1) | |
).chunk(6, dim=1) | |
norm_hidden_states = self.norm1(hidden_states) | |
norm_hidden_states = norm_hidden_states * (1 + scale_msa) + shift_msa | |
norm_hidden_states = norm_hidden_states.squeeze(1) | |
else: | |
raise ValueError("Incorrect norm used") | |
if self.pos_embed is not None: | |
norm_hidden_states = self.pos_embed(norm_hidden_states) | |
# 1. Prepare GLIGEN inputs | |
cross_attention_kwargs = cross_attention_kwargs.copy() if cross_attention_kwargs is not None else {} | |
gligen_kwargs = cross_attention_kwargs.pop("gligen", None) | |
kv_drop_idx = cross_attention_kwargs.pop("kv_drop_idx", None) | |
if hasattr(self, "extract_kv1"): | |
kv_out_self = self.extract_kv1(norm_hidden_states) | |
if kv_drop_idx is not None: | |
zero_kv_out_self_k = torch.zeros_like(kv_out_self.k) | |
kv_out_self.k[kv_drop_idx] = zero_kv_out_self_k[kv_drop_idx] | |
zero_kv_out_self_v = torch.zeros_like(kv_out_self.v) | |
kv_out_self.v[kv_drop_idx] = zero_kv_out_self_v[kv_drop_idx] | |
else: | |
kv_out_self = None | |
attn_output = self.attn1( | |
norm_hidden_states, | |
encoder_hidden_states=encoder_hidden_states if self.only_cross_attention else None, | |
attention_mask=attention_mask, | |
**cross_attention_kwargs, | |
) | |
if self.norm_type == "ada_norm_zero": | |
attn_output = gate_msa.unsqueeze(1) * attn_output | |
elif self.norm_type == "ada_norm_single": | |
attn_output = gate_msa * attn_output | |
hidden_states = attn_output + hidden_states | |
if hidden_states.ndim == 4: | |
hidden_states = hidden_states.squeeze(1) | |
# 1.2 GLIGEN Control | |
if gligen_kwargs is not None: | |
hidden_states = self.fuser(hidden_states, gligen_kwargs["objs"]) | |
# 3. Cross-Attention | |
if self.attn2 is not None: | |
if self.norm_type == "ada_norm": | |
norm_hidden_states = self.norm2(hidden_states, timestep) | |
elif self.norm_type in ["ada_norm_zero", "layer_norm", "layer_norm_i2vgen"]: | |
norm_hidden_states = self.norm2(hidden_states) | |
elif self.norm_type == "ada_norm_single": | |
# For PixArt norm2 isn't applied here: | |
# https://github.com/PixArt-alpha/PixArt-alpha/blob/0f55e922376d8b797edd44d25d0e7464b260dcab/diffusion/model/nets/PixArtMS.py#L70C1-L76C103 | |
norm_hidden_states = hidden_states | |
elif self.norm_type == "ada_norm_continuous": | |
norm_hidden_states = self.norm2(hidden_states, added_cond_kwargs["pooled_text_emb"]) | |
else: | |
raise ValueError("Incorrect norm") | |
if self.pos_embed is not None and self.norm_type != "ada_norm_single": | |
norm_hidden_states = self.pos_embed(norm_hidden_states) | |
attn_output = self.attn2( | |
norm_hidden_states, | |
encoder_hidden_states=encoder_hidden_states, | |
attention_mask=encoder_attention_mask, | |
temb=timestep, | |
**cross_attention_kwargs, | |
) | |
hidden_states = attn_output + hidden_states | |
if hasattr(self, "extract_kv2"): | |
kv_out_cross = self.extract_kv2(hidden_states) | |
if kv_drop_idx is not None: | |
zero_kv_out_cross_k = torch.zeros_like(kv_out_cross.k) | |
kv_out_cross.k[kv_drop_idx] = zero_kv_out_cross_k[kv_drop_idx] | |
zero_kv_out_cross_v = torch.zeros_like(kv_out_cross.v) | |
kv_out_cross.v[kv_drop_idx] = zero_kv_out_cross_v[kv_drop_idx] | |
else: | |
kv_out_cross = None | |
# 4. Feed-forward | |
# i2vgen doesn't have this norm 🤷♂️ | |
if self.norm_type == "ada_norm_continuous": | |
norm_hidden_states = self.norm3(hidden_states, added_cond_kwargs["pooled_text_emb"]) | |
elif not self.norm_type == "ada_norm_single": | |
norm_hidden_states = self.norm3(hidden_states) | |
if self.norm_type == "ada_norm_zero": | |
norm_hidden_states = norm_hidden_states * (1 + scale_mlp[:, None]) + shift_mlp[:, None] | |
if self.norm_type == "ada_norm_single": | |
norm_hidden_states = self.norm2(hidden_states) | |
norm_hidden_states = norm_hidden_states * (1 + scale_mlp) + shift_mlp | |
if self._chunk_size is not None: | |
# "feed_forward_chunk_size" can be used to save memory | |
ff_output = _chunked_feed_forward(self.ff, norm_hidden_states, self._chunk_dim, self._chunk_size) | |
else: | |
ff_output = self.ff(norm_hidden_states) | |
if self.norm_type == "ada_norm_zero": | |
ff_output = gate_mlp.unsqueeze(1) * ff_output | |
elif self.norm_type == "ada_norm_single": | |
ff_output = gate_mlp * ff_output | |
hidden_states = ff_output + hidden_states | |
if hidden_states.ndim == 4: | |
hidden_states = hidden_states.squeeze(1) | |
return hidden_states, AttentionCache(self_attention=kv_out_self, cross_attention=kv_out_cross) | |
def init_kv_extraction(self): | |
if hasattr(self, "extract_kv1"): | |
self.extract_kv1.init_kv_copy(self.attn1) | |
if hasattr(self, "extract_kv2"): | |
self.extract_kv2.init_kv_copy(self.attn1) | |