Spaces:
Running
on
Zero
Running
on
Zero
# Copyright 2024 The HuggingFace Team. All rights reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
import warnings | |
from typing import Callable, List, Optional, Union | |
import numpy as np | |
import PIL.Image | |
import torch | |
import torch.nn.functional as F | |
from transformers import CLIPTextModel, CLIPTokenizer | |
from ...image_processor import PipelineImageInput, VaeImageProcessor | |
from ...loaders import FromSingleFileMixin | |
from ...models import AutoencoderKL, UNet2DConditionModel | |
from ...schedulers import EulerDiscreteScheduler | |
from ...utils import deprecate, logging | |
from ...utils.torch_utils import randn_tensor | |
from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput, StableDiffusionMixin | |
logger = logging.get_logger(__name__) # pylint: disable=invalid-name | |
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_upscale.preprocess | |
def preprocess(image): | |
warnings.warn( | |
"The preprocess method is deprecated and will be removed in a future version. Please" | |
" use VaeImageProcessor.preprocess instead", | |
FutureWarning, | |
) | |
if isinstance(image, torch.Tensor): | |
return image | |
elif isinstance(image, PIL.Image.Image): | |
image = [image] | |
if isinstance(image[0], PIL.Image.Image): | |
w, h = image[0].size | |
w, h = (x - x % 64 for x in (w, h)) # resize to integer multiple of 64 | |
image = [np.array(i.resize((w, h)))[None, :] for i in image] | |
image = np.concatenate(image, axis=0) | |
image = np.array(image).astype(np.float32) / 255.0 | |
image = image.transpose(0, 3, 1, 2) | |
image = 2.0 * image - 1.0 | |
image = torch.from_numpy(image) | |
elif isinstance(image[0], torch.Tensor): | |
image = torch.cat(image, dim=0) | |
return image | |
class StableDiffusionLatentUpscalePipeline(DiffusionPipeline, StableDiffusionMixin, FromSingleFileMixin): | |
r""" | |
Pipeline for upscaling Stable Diffusion output image resolution by a factor of 2. | |
This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods | |
implemented for all pipelines (downloading, saving, running on a particular device, etc.). | |
The pipeline also inherits the following loading methods: | |
- [`~loaders.FromSingleFileMixin.from_single_file`] for loading `.ckpt` files | |
Args: | |
vae ([`AutoencoderKL`]): | |
Variational Auto-Encoder (VAE) model to encode and decode images to and from latent representations. | |
text_encoder ([`~transformers.CLIPTextModel`]): | |
Frozen text-encoder ([clip-vit-large-patch14](https://huggingface.co./openai/clip-vit-large-patch14)). | |
tokenizer ([`~transformers.CLIPTokenizer`]): | |
A `CLIPTokenizer` to tokenize text. | |
unet ([`UNet2DConditionModel`]): | |
A `UNet2DConditionModel` to denoise the encoded image latents. | |
scheduler ([`SchedulerMixin`]): | |
A [`EulerDiscreteScheduler`] to be used in combination with `unet` to denoise the encoded image latents. | |
""" | |
model_cpu_offload_seq = "text_encoder->unet->vae" | |
def __init__( | |
self, | |
vae: AutoencoderKL, | |
text_encoder: CLIPTextModel, | |
tokenizer: CLIPTokenizer, | |
unet: UNet2DConditionModel, | |
scheduler: EulerDiscreteScheduler, | |
): | |
super().__init__() | |
self.register_modules( | |
vae=vae, | |
text_encoder=text_encoder, | |
tokenizer=tokenizer, | |
unet=unet, | |
scheduler=scheduler, | |
) | |
self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1) | |
self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor, resample="bicubic") | |
def _encode_prompt(self, prompt, device, do_classifier_free_guidance, negative_prompt): | |
r""" | |
Encodes the prompt into text encoder hidden states. | |
Args: | |
prompt (`str` or `list(int)`): | |
prompt to be encoded | |
device: (`torch.device`): | |
torch device | |
do_classifier_free_guidance (`bool`): | |
whether to use classifier free guidance or not | |
negative_prompt (`str` or `List[str]`): | |
The prompt or prompts not to guide the image generation. Ignored when not using guidance (i.e., ignored | |
if `guidance_scale` is less than `1`). | |
""" | |
batch_size = len(prompt) if isinstance(prompt, list) else 1 | |
text_inputs = self.tokenizer( | |
prompt, | |
padding="max_length", | |
max_length=self.tokenizer.model_max_length, | |
truncation=True, | |
return_length=True, | |
return_tensors="pt", | |
) | |
text_input_ids = text_inputs.input_ids | |
untruncated_ids = self.tokenizer(prompt, padding="longest", return_tensors="pt").input_ids | |
if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(text_input_ids, untruncated_ids): | |
removed_text = self.tokenizer.batch_decode(untruncated_ids[:, self.tokenizer.model_max_length - 1 : -1]) | |
logger.warning( | |
"The following part of your input was truncated because CLIP can only handle sequences up to" | |
f" {self.tokenizer.model_max_length} tokens: {removed_text}" | |
) | |
text_encoder_out = self.text_encoder( | |
text_input_ids.to(device), | |
output_hidden_states=True, | |
) | |
text_embeddings = text_encoder_out.hidden_states[-1] | |
text_pooler_out = text_encoder_out.pooler_output | |
# get unconditional embeddings for classifier free guidance | |
if do_classifier_free_guidance: | |
uncond_tokens: List[str] | |
if negative_prompt is None: | |
uncond_tokens = [""] * batch_size | |
elif type(prompt) is not type(negative_prompt): | |
raise TypeError( | |
f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !=" | |
f" {type(prompt)}." | |
) | |
elif isinstance(negative_prompt, str): | |
uncond_tokens = [negative_prompt] | |
elif batch_size != len(negative_prompt): | |
raise ValueError( | |
f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:" | |
f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches" | |
" the batch size of `prompt`." | |
) | |
else: | |
uncond_tokens = negative_prompt | |
max_length = text_input_ids.shape[-1] | |
uncond_input = self.tokenizer( | |
uncond_tokens, | |
padding="max_length", | |
max_length=max_length, | |
truncation=True, | |
return_length=True, | |
return_tensors="pt", | |
) | |
uncond_encoder_out = self.text_encoder( | |
uncond_input.input_ids.to(device), | |
output_hidden_states=True, | |
) | |
uncond_embeddings = uncond_encoder_out.hidden_states[-1] | |
uncond_pooler_out = uncond_encoder_out.pooler_output | |
# For classifier free guidance, we need to do two forward passes. | |
# Here we concatenate the unconditional and text embeddings into a single batch | |
# to avoid doing two forward passes | |
text_embeddings = torch.cat([uncond_embeddings, text_embeddings]) | |
text_pooler_out = torch.cat([uncond_pooler_out, text_pooler_out]) | |
return text_embeddings, text_pooler_out | |
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.decode_latents | |
def decode_latents(self, latents): | |
deprecation_message = "The decode_latents method is deprecated and will be removed in 1.0.0. Please use VaeImageProcessor.postprocess(...) instead" | |
deprecate("decode_latents", "1.0.0", deprecation_message, standard_warn=False) | |
latents = 1 / self.vae.config.scaling_factor * latents | |
image = self.vae.decode(latents, return_dict=False)[0] | |
image = (image / 2 + 0.5).clamp(0, 1) | |
# we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16 | |
image = image.cpu().permute(0, 2, 3, 1).float().numpy() | |
return image | |
def check_inputs(self, prompt, image, callback_steps): | |
if not isinstance(prompt, str) and not isinstance(prompt, list): | |
raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}") | |
if ( | |
not isinstance(image, torch.Tensor) | |
and not isinstance(image, PIL.Image.Image) | |
and not isinstance(image, list) | |
): | |
raise ValueError( | |
f"`image` has to be of type `torch.Tensor`, `PIL.Image.Image` or `list` but is {type(image)}" | |
) | |
# verify batch size of prompt and image are same if image is a list or tensor | |
if isinstance(image, list) or isinstance(image, torch.Tensor): | |
if isinstance(prompt, str): | |
batch_size = 1 | |
else: | |
batch_size = len(prompt) | |
if isinstance(image, list): | |
image_batch_size = len(image) | |
else: | |
image_batch_size = image.shape[0] if image.ndim == 4 else 1 | |
if batch_size != image_batch_size: | |
raise ValueError( | |
f"`prompt` has batch size {batch_size} and `image` has batch size {image_batch_size}." | |
" Please make sure that passed `prompt` matches the batch size of `image`." | |
) | |
if (callback_steps is None) or ( | |
callback_steps is not None and (not isinstance(callback_steps, int) or callback_steps <= 0) | |
): | |
raise ValueError( | |
f"`callback_steps` has to be a positive integer but is {callback_steps} of type" | |
f" {type(callback_steps)}." | |
) | |
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_upscale.StableDiffusionUpscalePipeline.prepare_latents | |
def prepare_latents(self, batch_size, num_channels_latents, height, width, dtype, device, generator, latents=None): | |
shape = (batch_size, num_channels_latents, height, width) | |
if latents is None: | |
latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype) | |
else: | |
if latents.shape != shape: | |
raise ValueError(f"Unexpected latents shape, got {latents.shape}, expected {shape}") | |
latents = latents.to(device) | |
# scale the initial noise by the standard deviation required by the scheduler | |
latents = latents * self.scheduler.init_noise_sigma | |
return latents | |
def __call__( | |
self, | |
prompt: Union[str, List[str]], | |
image: PipelineImageInput = None, | |
num_inference_steps: int = 75, | |
guidance_scale: float = 9.0, | |
negative_prompt: Optional[Union[str, List[str]]] = None, | |
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None, | |
latents: Optional[torch.FloatTensor] = None, | |
output_type: Optional[str] = "pil", | |
return_dict: bool = True, | |
callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None, | |
callback_steps: int = 1, | |
): | |
r""" | |
The call function to the pipeline for generation. | |
Args: | |
prompt (`str` or `List[str]`): | |
The prompt or prompts to guide image upscaling. | |
image (`torch.FloatTensor`, `PIL.Image.Image`, `np.ndarray`, `List[torch.FloatTensor]`, `List[PIL.Image.Image]`, or `List[np.ndarray]`): | |
`Image` or tensor representing an image batch to be upscaled. If it's a tensor, it can be either a | |
latent output from a Stable Diffusion model or an image tensor in the range `[-1, 1]`. It is considered | |
a `latent` if `image.shape[1]` is `4`; otherwise, it is considered to be an image representation and | |
encoded using this pipeline's `vae` encoder. | |
num_inference_steps (`int`, *optional*, defaults to 50): | |
The number of denoising steps. More denoising steps usually lead to a higher quality image at the | |
expense of slower inference. | |
guidance_scale (`float`, *optional*, defaults to 7.5): | |
A higher guidance scale value encourages the model to generate images closely linked to the text | |
`prompt` at the expense of lower image quality. Guidance scale is enabled when `guidance_scale > 1`. | |
negative_prompt (`str` or `List[str]`, *optional*): | |
The prompt or prompts to guide what to not include in image generation. If not defined, you need to | |
pass `negative_prompt_embeds` instead. Ignored when not using guidance (`guidance_scale < 1`). | |
eta (`float`, *optional*, defaults to 0.0): | |
Corresponds to parameter eta (η) from the [DDIM](https://arxiv.org/abs/2010.02502) paper. Only applies | |
to the [`~schedulers.DDIMScheduler`], and is ignored in other schedulers. | |
generator (`torch.Generator` or `List[torch.Generator]`, *optional*): | |
A [`torch.Generator`](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make | |
generation deterministic. | |
latents (`torch.FloatTensor`, *optional*): | |
Pre-generated noisy latents sampled from a Gaussian distribution, to be used as inputs for image | |
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents | |
tensor is generated by sampling using the supplied random `generator`. | |
output_type (`str`, *optional*, defaults to `"pil"`): | |
The output format of the generated image. Choose between `PIL.Image` or `np.array`. | |
return_dict (`bool`, *optional*, defaults to `True`): | |
Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] instead of a | |
plain tuple. | |
callback (`Callable`, *optional*): | |
A function that calls every `callback_steps` steps during inference. The function is called with the | |
following arguments: `callback(step: int, timestep: int, latents: torch.FloatTensor)`. | |
callback_steps (`int`, *optional*, defaults to 1): | |
The frequency at which the `callback` function is called. If not specified, the callback is called at | |
every step. | |
Examples: | |
```py | |
>>> from diffusers import StableDiffusionLatentUpscalePipeline, StableDiffusionPipeline | |
>>> import torch | |
>>> pipeline = StableDiffusionPipeline.from_pretrained( | |
... "CompVis/stable-diffusion-v1-4", torch_dtype=torch.float16 | |
... ) | |
>>> pipeline.to("cuda") | |
>>> model_id = "stabilityai/sd-x2-latent-upscaler" | |
>>> upscaler = StableDiffusionLatentUpscalePipeline.from_pretrained(model_id, torch_dtype=torch.float16) | |
>>> upscaler.to("cuda") | |
>>> prompt = "a photo of an astronaut high resolution, unreal engine, ultra realistic" | |
>>> generator = torch.manual_seed(33) | |
>>> low_res_latents = pipeline(prompt, generator=generator, output_type="latent").images | |
>>> with torch.no_grad(): | |
... image = pipeline.decode_latents(low_res_latents) | |
>>> image = pipeline.numpy_to_pil(image)[0] | |
>>> image.save("../images/a1.png") | |
>>> upscaled_image = upscaler( | |
... prompt=prompt, | |
... image=low_res_latents, | |
... num_inference_steps=20, | |
... guidance_scale=0, | |
... generator=generator, | |
... ).images[0] | |
>>> upscaled_image.save("../images/a2.png") | |
``` | |
Returns: | |
[`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] or `tuple`: | |
If `return_dict` is `True`, [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] is returned, | |
otherwise a `tuple` is returned where the first element is a list with the generated images. | |
""" | |
# 1. Check inputs | |
self.check_inputs(prompt, image, callback_steps) | |
# 2. Define call parameters | |
batch_size = 1 if isinstance(prompt, str) else len(prompt) | |
device = self._execution_device | |
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) | |
# of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` | |
# corresponds to doing no classifier free guidance. | |
do_classifier_free_guidance = guidance_scale > 1.0 | |
if guidance_scale == 0: | |
prompt = [""] * batch_size | |
# 3. Encode input prompt | |
text_embeddings, text_pooler_out = self._encode_prompt( | |
prompt, device, do_classifier_free_guidance, negative_prompt | |
) | |
# 4. Preprocess image | |
image = self.image_processor.preprocess(image) | |
image = image.to(dtype=text_embeddings.dtype, device=device) | |
if image.shape[1] == 3: | |
# encode image if not in latent-space yet | |
image = self.vae.encode(image).latent_dist.sample() * self.vae.config.scaling_factor | |
# 5. set timesteps | |
self.scheduler.set_timesteps(num_inference_steps, device=device) | |
timesteps = self.scheduler.timesteps | |
batch_multiplier = 2 if do_classifier_free_guidance else 1 | |
image = image[None, :] if image.ndim == 3 else image | |
image = torch.cat([image] * batch_multiplier) | |
# 5. Add noise to image (set to be 0): | |
# (see below notes from the author): | |
# "the This step theoretically can make the model work better on out-of-distribution inputs, but mostly just seems to make it match the input less, so it's turned off by default." | |
noise_level = torch.tensor([0.0], dtype=torch.float32, device=device) | |
noise_level = torch.cat([noise_level] * image.shape[0]) | |
inv_noise_level = (noise_level**2 + 1) ** (-0.5) | |
image_cond = F.interpolate(image, scale_factor=2, mode="nearest") * inv_noise_level[:, None, None, None] | |
image_cond = image_cond.to(text_embeddings.dtype) | |
noise_level_embed = torch.cat( | |
[ | |
torch.ones(text_pooler_out.shape[0], 64, dtype=text_pooler_out.dtype, device=device), | |
torch.zeros(text_pooler_out.shape[0], 64, dtype=text_pooler_out.dtype, device=device), | |
], | |
dim=1, | |
) | |
timestep_condition = torch.cat([noise_level_embed, text_pooler_out], dim=1) | |
# 6. Prepare latent variables | |
height, width = image.shape[2:] | |
num_channels_latents = self.vae.config.latent_channels | |
latents = self.prepare_latents( | |
batch_size, | |
num_channels_latents, | |
height * 2, # 2x upscale | |
width * 2, | |
text_embeddings.dtype, | |
device, | |
generator, | |
latents, | |
) | |
# 7. Check that sizes of image and latents match | |
num_channels_image = image.shape[1] | |
if num_channels_latents + num_channels_image != self.unet.config.in_channels: | |
raise ValueError( | |
f"Incorrect configuration settings! The config of `pipeline.unet`: {self.unet.config} expects" | |
f" {self.unet.config.in_channels} but received `num_channels_latents`: {num_channels_latents} +" | |
f" `num_channels_image`: {num_channels_image} " | |
f" = {num_channels_latents+num_channels_image}. Please verify the config of" | |
" `pipeline.unet` or your `image` input." | |
) | |
# 9. Denoising loop | |
num_warmup_steps = 0 | |
with self.progress_bar(total=num_inference_steps) as progress_bar: | |
for i, t in enumerate(timesteps): | |
sigma = self.scheduler.sigmas[i] | |
# expand the latents if we are doing classifier free guidance | |
latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents | |
scaled_model_input = self.scheduler.scale_model_input(latent_model_input, t) | |
scaled_model_input = torch.cat([scaled_model_input, image_cond], dim=1) | |
# preconditioning parameter based on Karras et al. (2022) (table 1) | |
timestep = torch.log(sigma) * 0.25 | |
noise_pred = self.unet( | |
scaled_model_input, | |
timestep, | |
encoder_hidden_states=text_embeddings, | |
timestep_cond=timestep_condition, | |
).sample | |
# in original repo, the output contains a variance channel that's not used | |
noise_pred = noise_pred[:, :-1] | |
# apply preconditioning, based on table 1 in Karras et al. (2022) | |
inv_sigma = 1 / (sigma**2 + 1) | |
noise_pred = inv_sigma * latent_model_input + self.scheduler.scale_model_input(sigma, t) * noise_pred | |
# perform guidance | |
if do_classifier_free_guidance: | |
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2) | |
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) | |
# compute the previous noisy sample x_t -> x_t-1 | |
latents = self.scheduler.step(noise_pred, t, latents).prev_sample | |
# call the callback, if provided | |
if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0): | |
progress_bar.update() | |
if callback is not None and i % callback_steps == 0: | |
step_idx = i // getattr(self.scheduler, "order", 1) | |
callback(step_idx, t, latents) | |
if not output_type == "latent": | |
image = self.vae.decode(latents / self.vae.config.scaling_factor, return_dict=False)[0] | |
else: | |
image = latents | |
image = self.image_processor.postprocess(image, output_type=output_type) | |
self.maybe_free_model_hooks() | |
if not return_dict: | |
return (image,) | |
return ImagePipelineOutput(images=image) | |