Spaces:
Running
on
Zero
Running
on
Zero
# Copyright 2024 Open AI and The HuggingFace Team. All rights reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
import math | |
from dataclasses import dataclass | |
from typing import Dict, Optional, Tuple | |
import numpy as np | |
import torch | |
import torch.nn.functional as F | |
from torch import nn | |
from ...configuration_utils import ConfigMixin, register_to_config | |
from ...models import ModelMixin | |
from ...utils import BaseOutput | |
from .camera import create_pan_cameras | |
def sample_pmf(pmf: torch.Tensor, n_samples: int) -> torch.Tensor: | |
r""" | |
Sample from the given discrete probability distribution with replacement. | |
The i-th bin is assumed to have mass pmf[i]. | |
Args: | |
pmf: [batch_size, *shape, n_samples, 1] where (pmf.sum(dim=-2) == 1).all() | |
n_samples: number of samples | |
Return: | |
indices sampled with replacement | |
""" | |
*shape, support_size, last_dim = pmf.shape | |
assert last_dim == 1 | |
cdf = torch.cumsum(pmf.view(-1, support_size), dim=1) | |
inds = torch.searchsorted(cdf, torch.rand(cdf.shape[0], n_samples, device=cdf.device)) | |
return inds.view(*shape, n_samples, 1).clamp(0, support_size - 1) | |
def posenc_nerf(x: torch.Tensor, min_deg: int = 0, max_deg: int = 15) -> torch.Tensor: | |
""" | |
Concatenate x and its positional encodings, following NeRF. | |
Reference: https://arxiv.org/pdf/2210.04628.pdf | |
""" | |
if min_deg == max_deg: | |
return x | |
scales = 2.0 ** torch.arange(min_deg, max_deg, dtype=x.dtype, device=x.device) | |
*shape, dim = x.shape | |
xb = (x.reshape(-1, 1, dim) * scales.view(1, -1, 1)).reshape(*shape, -1) | |
assert xb.shape[-1] == dim * (max_deg - min_deg) | |
emb = torch.cat([xb, xb + math.pi / 2.0], axis=-1).sin() | |
return torch.cat([x, emb], dim=-1) | |
def encode_position(position): | |
return posenc_nerf(position, min_deg=0, max_deg=15) | |
def encode_direction(position, direction=None): | |
if direction is None: | |
return torch.zeros_like(posenc_nerf(position, min_deg=0, max_deg=8)) | |
else: | |
return posenc_nerf(direction, min_deg=0, max_deg=8) | |
def _sanitize_name(x: str) -> str: | |
return x.replace(".", "__") | |
def integrate_samples(volume_range, ts, density, channels): | |
r""" | |
Function integrating the model output. | |
Args: | |
volume_range: Specifies the integral range [t0, t1] | |
ts: timesteps | |
density: torch.Tensor [batch_size, *shape, n_samples, 1] | |
channels: torch.Tensor [batch_size, *shape, n_samples, n_channels] | |
returns: | |
channels: integrated rgb output weights: torch.Tensor [batch_size, *shape, n_samples, 1] (density | |
*transmittance)[i] weight for each rgb output at [..., i, :]. transmittance: transmittance of this volume | |
) | |
""" | |
# 1. Calculate the weights | |
_, _, dt = volume_range.partition(ts) | |
ddensity = density * dt | |
mass = torch.cumsum(ddensity, dim=-2) | |
transmittance = torch.exp(-mass[..., -1, :]) | |
alphas = 1.0 - torch.exp(-ddensity) | |
Ts = torch.exp(torch.cat([torch.zeros_like(mass[..., :1, :]), -mass[..., :-1, :]], dim=-2)) | |
# This is the probability of light hitting and reflecting off of | |
# something at depth [..., i, :]. | |
weights = alphas * Ts | |
# 2. Integrate channels | |
channels = torch.sum(channels * weights, dim=-2) | |
return channels, weights, transmittance | |
def volume_query_points(volume, grid_size): | |
indices = torch.arange(grid_size**3, device=volume.bbox_min.device) | |
zs = indices % grid_size | |
ys = torch.div(indices, grid_size, rounding_mode="trunc") % grid_size | |
xs = torch.div(indices, grid_size**2, rounding_mode="trunc") % grid_size | |
combined = torch.stack([xs, ys, zs], dim=1) | |
return (combined.float() / (grid_size - 1)) * (volume.bbox_max - volume.bbox_min) + volume.bbox_min | |
def _convert_srgb_to_linear(u: torch.Tensor): | |
return torch.where(u <= 0.04045, u / 12.92, ((u + 0.055) / 1.055) ** 2.4) | |
def _create_flat_edge_indices( | |
flat_cube_indices: torch.Tensor, | |
grid_size: Tuple[int, int, int], | |
): | |
num_xs = (grid_size[0] - 1) * grid_size[1] * grid_size[2] | |
y_offset = num_xs | |
num_ys = grid_size[0] * (grid_size[1] - 1) * grid_size[2] | |
z_offset = num_xs + num_ys | |
return torch.stack( | |
[ | |
# Edges spanning x-axis. | |
flat_cube_indices[:, 0] * grid_size[1] * grid_size[2] | |
+ flat_cube_indices[:, 1] * grid_size[2] | |
+ flat_cube_indices[:, 2], | |
flat_cube_indices[:, 0] * grid_size[1] * grid_size[2] | |
+ (flat_cube_indices[:, 1] + 1) * grid_size[2] | |
+ flat_cube_indices[:, 2], | |
flat_cube_indices[:, 0] * grid_size[1] * grid_size[2] | |
+ flat_cube_indices[:, 1] * grid_size[2] | |
+ flat_cube_indices[:, 2] | |
+ 1, | |
flat_cube_indices[:, 0] * grid_size[1] * grid_size[2] | |
+ (flat_cube_indices[:, 1] + 1) * grid_size[2] | |
+ flat_cube_indices[:, 2] | |
+ 1, | |
# Edges spanning y-axis. | |
( | |
y_offset | |
+ flat_cube_indices[:, 0] * (grid_size[1] - 1) * grid_size[2] | |
+ flat_cube_indices[:, 1] * grid_size[2] | |
+ flat_cube_indices[:, 2] | |
), | |
( | |
y_offset | |
+ (flat_cube_indices[:, 0] + 1) * (grid_size[1] - 1) * grid_size[2] | |
+ flat_cube_indices[:, 1] * grid_size[2] | |
+ flat_cube_indices[:, 2] | |
), | |
( | |
y_offset | |
+ flat_cube_indices[:, 0] * (grid_size[1] - 1) * grid_size[2] | |
+ flat_cube_indices[:, 1] * grid_size[2] | |
+ flat_cube_indices[:, 2] | |
+ 1 | |
), | |
( | |
y_offset | |
+ (flat_cube_indices[:, 0] + 1) * (grid_size[1] - 1) * grid_size[2] | |
+ flat_cube_indices[:, 1] * grid_size[2] | |
+ flat_cube_indices[:, 2] | |
+ 1 | |
), | |
# Edges spanning z-axis. | |
( | |
z_offset | |
+ flat_cube_indices[:, 0] * grid_size[1] * (grid_size[2] - 1) | |
+ flat_cube_indices[:, 1] * (grid_size[2] - 1) | |
+ flat_cube_indices[:, 2] | |
), | |
( | |
z_offset | |
+ (flat_cube_indices[:, 0] + 1) * grid_size[1] * (grid_size[2] - 1) | |
+ flat_cube_indices[:, 1] * (grid_size[2] - 1) | |
+ flat_cube_indices[:, 2] | |
), | |
( | |
z_offset | |
+ flat_cube_indices[:, 0] * grid_size[1] * (grid_size[2] - 1) | |
+ (flat_cube_indices[:, 1] + 1) * (grid_size[2] - 1) | |
+ flat_cube_indices[:, 2] | |
), | |
( | |
z_offset | |
+ (flat_cube_indices[:, 0] + 1) * grid_size[1] * (grid_size[2] - 1) | |
+ (flat_cube_indices[:, 1] + 1) * (grid_size[2] - 1) | |
+ flat_cube_indices[:, 2] | |
), | |
], | |
dim=-1, | |
) | |
class VoidNeRFModel(nn.Module): | |
""" | |
Implements the default empty space model where all queries are rendered as background. | |
""" | |
def __init__(self, background, channel_scale=255.0): | |
super().__init__() | |
background = nn.Parameter(torch.from_numpy(np.array(background)).to(dtype=torch.float32) / channel_scale) | |
self.register_buffer("background", background) | |
def forward(self, position): | |
background = self.background[None].to(position.device) | |
shape = position.shape[:-1] | |
ones = [1] * (len(shape) - 1) | |
n_channels = background.shape[-1] | |
background = torch.broadcast_to(background.view(background.shape[0], *ones, n_channels), [*shape, n_channels]) | |
return background | |
class VolumeRange: | |
t0: torch.Tensor | |
t1: torch.Tensor | |
intersected: torch.Tensor | |
def __post_init__(self): | |
assert self.t0.shape == self.t1.shape == self.intersected.shape | |
def partition(self, ts): | |
""" | |
Partitions t0 and t1 into n_samples intervals. | |
Args: | |
ts: [batch_size, *shape, n_samples, 1] | |
Return: | |
lower: [batch_size, *shape, n_samples, 1] upper: [batch_size, *shape, n_samples, 1] delta: [batch_size, | |
*shape, n_samples, 1] | |
where | |
ts \\in [lower, upper] deltas = upper - lower | |
""" | |
mids = (ts[..., 1:, :] + ts[..., :-1, :]) * 0.5 | |
lower = torch.cat([self.t0[..., None, :], mids], dim=-2) | |
upper = torch.cat([mids, self.t1[..., None, :]], dim=-2) | |
delta = upper - lower | |
assert lower.shape == upper.shape == delta.shape == ts.shape | |
return lower, upper, delta | |
class BoundingBoxVolume(nn.Module): | |
""" | |
Axis-aligned bounding box defined by the two opposite corners. | |
""" | |
def __init__( | |
self, | |
*, | |
bbox_min, | |
bbox_max, | |
min_dist: float = 0.0, | |
min_t_range: float = 1e-3, | |
): | |
""" | |
Args: | |
bbox_min: the left/bottommost corner of the bounding box | |
bbox_max: the other corner of the bounding box | |
min_dist: all rays should start at least this distance away from the origin. | |
""" | |
super().__init__() | |
self.min_dist = min_dist | |
self.min_t_range = min_t_range | |
self.bbox_min = torch.tensor(bbox_min) | |
self.bbox_max = torch.tensor(bbox_max) | |
self.bbox = torch.stack([self.bbox_min, self.bbox_max]) | |
assert self.bbox.shape == (2, 3) | |
assert min_dist >= 0.0 | |
assert min_t_range > 0.0 | |
def intersect( | |
self, | |
origin: torch.Tensor, | |
direction: torch.Tensor, | |
t0_lower: Optional[torch.Tensor] = None, | |
epsilon=1e-6, | |
): | |
""" | |
Args: | |
origin: [batch_size, *shape, 3] | |
direction: [batch_size, *shape, 3] | |
t0_lower: Optional [batch_size, *shape, 1] lower bound of t0 when intersecting this volume. | |
params: Optional meta parameters in case Volume is parametric | |
epsilon: to stabilize calculations | |
Return: | |
A tuple of (t0, t1, intersected) where each has a shape [batch_size, *shape, 1]. If a ray intersects with | |
the volume, `o + td` is in the volume for all t in [t0, t1]. If the volume is bounded, t1 is guaranteed to | |
be on the boundary of the volume. | |
""" | |
batch_size, *shape, _ = origin.shape | |
ones = [1] * len(shape) | |
bbox = self.bbox.view(1, *ones, 2, 3).to(origin.device) | |
def _safe_divide(a, b, epsilon=1e-6): | |
return a / torch.where(b < 0, b - epsilon, b + epsilon) | |
ts = _safe_divide(bbox - origin[..., None, :], direction[..., None, :], epsilon=epsilon) | |
# Cases to think about: | |
# | |
# 1. t1 <= t0: the ray does not pass through the AABB. | |
# 2. t0 < t1 <= 0: the ray intersects but the BB is behind the origin. | |
# 3. t0 <= 0 <= t1: the ray starts from inside the BB | |
# 4. 0 <= t0 < t1: the ray is not inside and intersects with the BB twice. | |
# | |
# 1 and 4 are clearly handled from t0 < t1 below. | |
# Making t0 at least min_dist (>= 0) takes care of 2 and 3. | |
t0 = ts.min(dim=-2).values.max(dim=-1, keepdim=True).values.clamp(self.min_dist) | |
t1 = ts.max(dim=-2).values.min(dim=-1, keepdim=True).values | |
assert t0.shape == t1.shape == (batch_size, *shape, 1) | |
if t0_lower is not None: | |
assert t0.shape == t0_lower.shape | |
t0 = torch.maximum(t0, t0_lower) | |
intersected = t0 + self.min_t_range < t1 | |
t0 = torch.where(intersected, t0, torch.zeros_like(t0)) | |
t1 = torch.where(intersected, t1, torch.ones_like(t1)) | |
return VolumeRange(t0=t0, t1=t1, intersected=intersected) | |
class StratifiedRaySampler(nn.Module): | |
""" | |
Instead of fixed intervals, a sample is drawn uniformly at random from each interval. | |
""" | |
def __init__(self, depth_mode: str = "linear"): | |
""" | |
:param depth_mode: linear samples ts linearly in depth. harmonic ensures | |
closer points are sampled more densely. | |
""" | |
self.depth_mode = depth_mode | |
assert self.depth_mode in ("linear", "geometric", "harmonic") | |
def sample( | |
self, | |
t0: torch.Tensor, | |
t1: torch.Tensor, | |
n_samples: int, | |
epsilon: float = 1e-3, | |
) -> torch.Tensor: | |
""" | |
Args: | |
t0: start time has shape [batch_size, *shape, 1] | |
t1: finish time has shape [batch_size, *shape, 1] | |
n_samples: number of ts to sample | |
Return: | |
sampled ts of shape [batch_size, *shape, n_samples, 1] | |
""" | |
ones = [1] * (len(t0.shape) - 1) | |
ts = torch.linspace(0, 1, n_samples).view(*ones, n_samples).to(t0.dtype).to(t0.device) | |
if self.depth_mode == "linear": | |
ts = t0 * (1.0 - ts) + t1 * ts | |
elif self.depth_mode == "geometric": | |
ts = (t0.clamp(epsilon).log() * (1.0 - ts) + t1.clamp(epsilon).log() * ts).exp() | |
elif self.depth_mode == "harmonic": | |
# The original NeRF recommends this interpolation scheme for | |
# spherical scenes, but there could be some weird edge cases when | |
# the observer crosses from the inner to outer volume. | |
ts = 1.0 / (1.0 / t0.clamp(epsilon) * (1.0 - ts) + 1.0 / t1.clamp(epsilon) * ts) | |
mids = 0.5 * (ts[..., 1:] + ts[..., :-1]) | |
upper = torch.cat([mids, t1], dim=-1) | |
lower = torch.cat([t0, mids], dim=-1) | |
# yiyi notes: add a random seed here for testing, don't forget to remove | |
torch.manual_seed(0) | |
t_rand = torch.rand_like(ts) | |
ts = lower + (upper - lower) * t_rand | |
return ts.unsqueeze(-1) | |
class ImportanceRaySampler(nn.Module): | |
""" | |
Given the initial estimate of densities, this samples more from regions/bins expected to have objects. | |
""" | |
def __init__( | |
self, | |
volume_range: VolumeRange, | |
ts: torch.Tensor, | |
weights: torch.Tensor, | |
blur_pool: bool = False, | |
alpha: float = 1e-5, | |
): | |
""" | |
Args: | |
volume_range: the range in which a ray intersects the given volume. | |
ts: earlier samples from the coarse rendering step | |
weights: discretized version of density * transmittance | |
blur_pool: if true, use 2-tap max + 2-tap blur filter from mip-NeRF. | |
alpha: small value to add to weights. | |
""" | |
self.volume_range = volume_range | |
self.ts = ts.clone().detach() | |
self.weights = weights.clone().detach() | |
self.blur_pool = blur_pool | |
self.alpha = alpha | |
def sample(self, t0: torch.Tensor, t1: torch.Tensor, n_samples: int) -> torch.Tensor: | |
""" | |
Args: | |
t0: start time has shape [batch_size, *shape, 1] | |
t1: finish time has shape [batch_size, *shape, 1] | |
n_samples: number of ts to sample | |
Return: | |
sampled ts of shape [batch_size, *shape, n_samples, 1] | |
""" | |
lower, upper, _ = self.volume_range.partition(self.ts) | |
batch_size, *shape, n_coarse_samples, _ = self.ts.shape | |
weights = self.weights | |
if self.blur_pool: | |
padded = torch.cat([weights[..., :1, :], weights, weights[..., -1:, :]], dim=-2) | |
maxes = torch.maximum(padded[..., :-1, :], padded[..., 1:, :]) | |
weights = 0.5 * (maxes[..., :-1, :] + maxes[..., 1:, :]) | |
weights = weights + self.alpha | |
pmf = weights / weights.sum(dim=-2, keepdim=True) | |
inds = sample_pmf(pmf, n_samples) | |
assert inds.shape == (batch_size, *shape, n_samples, 1) | |
assert (inds >= 0).all() and (inds < n_coarse_samples).all() | |
t_rand = torch.rand(inds.shape, device=inds.device) | |
lower_ = torch.gather(lower, -2, inds) | |
upper_ = torch.gather(upper, -2, inds) | |
ts = lower_ + (upper_ - lower_) * t_rand | |
ts = torch.sort(ts, dim=-2).values | |
return ts | |
class MeshDecoderOutput(BaseOutput): | |
""" | |
A 3D triangle mesh with optional data at the vertices and faces. | |
Args: | |
verts (`torch.Tensor` of shape `(N, 3)`): | |
array of vertext coordinates | |
faces (`torch.Tensor` of shape `(N, 3)`): | |
array of triangles, pointing to indices in verts. | |
vertext_channels (Dict): | |
vertext coordinates for each color channel | |
""" | |
verts: torch.Tensor | |
faces: torch.Tensor | |
vertex_channels: Dict[str, torch.Tensor] | |
class MeshDecoder(nn.Module): | |
""" | |
Construct meshes from Signed distance functions (SDFs) using marching cubes method | |
""" | |
def __init__(self): | |
super().__init__() | |
cases = torch.zeros(256, 5, 3, dtype=torch.long) | |
masks = torch.zeros(256, 5, dtype=torch.bool) | |
self.register_buffer("cases", cases) | |
self.register_buffer("masks", masks) | |
def forward(self, field: torch.Tensor, min_point: torch.Tensor, size: torch.Tensor): | |
""" | |
For a signed distance field, produce a mesh using marching cubes. | |
:param field: a 3D tensor of field values, where negative values correspond | |
to the outside of the shape. The dimensions correspond to the x, y, and z directions, respectively. | |
:param min_point: a tensor of shape [3] containing the point corresponding | |
to (0, 0, 0) in the field. | |
:param size: a tensor of shape [3] containing the per-axis distance from the | |
(0, 0, 0) field corner and the (-1, -1, -1) field corner. | |
""" | |
assert len(field.shape) == 3, "input must be a 3D scalar field" | |
dev = field.device | |
cases = self.cases.to(dev) | |
masks = self.masks.to(dev) | |
min_point = min_point.to(dev) | |
size = size.to(dev) | |
grid_size = field.shape | |
grid_size_tensor = torch.tensor(grid_size).to(size) | |
# Create bitmasks between 0 and 255 (inclusive) indicating the state | |
# of the eight corners of each cube. | |
bitmasks = (field > 0).to(torch.uint8) | |
bitmasks = bitmasks[:-1, :, :] | (bitmasks[1:, :, :] << 1) | |
bitmasks = bitmasks[:, :-1, :] | (bitmasks[:, 1:, :] << 2) | |
bitmasks = bitmasks[:, :, :-1] | (bitmasks[:, :, 1:] << 4) | |
# Compute corner coordinates across the entire grid. | |
corner_coords = torch.empty(*grid_size, 3, device=dev, dtype=field.dtype) | |
corner_coords[range(grid_size[0]), :, :, 0] = torch.arange(grid_size[0], device=dev, dtype=field.dtype)[ | |
:, None, None | |
] | |
corner_coords[:, range(grid_size[1]), :, 1] = torch.arange(grid_size[1], device=dev, dtype=field.dtype)[ | |
:, None | |
] | |
corner_coords[:, :, range(grid_size[2]), 2] = torch.arange(grid_size[2], device=dev, dtype=field.dtype) | |
# Compute all vertices across all edges in the grid, even though we will | |
# throw some out later. We have (X-1)*Y*Z + X*(Y-1)*Z + X*Y*(Z-1) vertices. | |
# These are all midpoints, and don't account for interpolation (which is | |
# done later based on the used edge midpoints). | |
edge_midpoints = torch.cat( | |
[ | |
((corner_coords[:-1] + corner_coords[1:]) / 2).reshape(-1, 3), | |
((corner_coords[:, :-1] + corner_coords[:, 1:]) / 2).reshape(-1, 3), | |
((corner_coords[:, :, :-1] + corner_coords[:, :, 1:]) / 2).reshape(-1, 3), | |
], | |
dim=0, | |
) | |
# Create a flat array of [X, Y, Z] indices for each cube. | |
cube_indices = torch.zeros( | |
grid_size[0] - 1, grid_size[1] - 1, grid_size[2] - 1, 3, device=dev, dtype=torch.long | |
) | |
cube_indices[range(grid_size[0] - 1), :, :, 0] = torch.arange(grid_size[0] - 1, device=dev)[:, None, None] | |
cube_indices[:, range(grid_size[1] - 1), :, 1] = torch.arange(grid_size[1] - 1, device=dev)[:, None] | |
cube_indices[:, :, range(grid_size[2] - 1), 2] = torch.arange(grid_size[2] - 1, device=dev) | |
flat_cube_indices = cube_indices.reshape(-1, 3) | |
# Create a flat array mapping each cube to 12 global edge indices. | |
edge_indices = _create_flat_edge_indices(flat_cube_indices, grid_size) | |
# Apply the LUT to figure out the triangles. | |
flat_bitmasks = bitmasks.reshape(-1).long() # must cast to long for indexing to believe this not a mask | |
local_tris = cases[flat_bitmasks] | |
local_masks = masks[flat_bitmasks] | |
# Compute the global edge indices for the triangles. | |
global_tris = torch.gather(edge_indices, 1, local_tris.reshape(local_tris.shape[0], -1)).reshape( | |
local_tris.shape | |
) | |
# Select the used triangles for each cube. | |
selected_tris = global_tris.reshape(-1, 3)[local_masks.reshape(-1)] | |
# Now we have a bunch of indices into the full list of possible vertices, | |
# but we want to reduce this list to only the used vertices. | |
used_vertex_indices = torch.unique(selected_tris.view(-1)) | |
used_edge_midpoints = edge_midpoints[used_vertex_indices] | |
old_index_to_new_index = torch.zeros(len(edge_midpoints), device=dev, dtype=torch.long) | |
old_index_to_new_index[used_vertex_indices] = torch.arange( | |
len(used_vertex_indices), device=dev, dtype=torch.long | |
) | |
# Rewrite the triangles to use the new indices | |
faces = torch.gather(old_index_to_new_index, 0, selected_tris.view(-1)).reshape(selected_tris.shape) | |
# Compute the actual interpolated coordinates corresponding to edge midpoints. | |
v1 = torch.floor(used_edge_midpoints).to(torch.long) | |
v2 = torch.ceil(used_edge_midpoints).to(torch.long) | |
s1 = field[v1[:, 0], v1[:, 1], v1[:, 2]] | |
s2 = field[v2[:, 0], v2[:, 1], v2[:, 2]] | |
p1 = (v1.float() / (grid_size_tensor - 1)) * size + min_point | |
p2 = (v2.float() / (grid_size_tensor - 1)) * size + min_point | |
# The signs of s1 and s2 should be different. We want to find | |
# t such that t*s2 + (1-t)*s1 = 0. | |
t = (s1 / (s1 - s2))[:, None] | |
verts = t * p2 + (1 - t) * p1 | |
return MeshDecoderOutput(verts=verts, faces=faces, vertex_channels=None) | |
class MLPNeRFModelOutput(BaseOutput): | |
density: torch.Tensor | |
signed_distance: torch.Tensor | |
channels: torch.Tensor | |
ts: torch.Tensor | |
class MLPNeRSTFModel(ModelMixin, ConfigMixin): | |
def __init__( | |
self, | |
d_hidden: int = 256, | |
n_output: int = 12, | |
n_hidden_layers: int = 6, | |
act_fn: str = "swish", | |
insert_direction_at: int = 4, | |
): | |
super().__init__() | |
# Instantiate the MLP | |
# Find out the dimension of encoded position and direction | |
dummy = torch.eye(1, 3) | |
d_posenc_pos = encode_position(position=dummy).shape[-1] | |
d_posenc_dir = encode_direction(position=dummy).shape[-1] | |
mlp_widths = [d_hidden] * n_hidden_layers | |
input_widths = [d_posenc_pos] + mlp_widths | |
output_widths = mlp_widths + [n_output] | |
if insert_direction_at is not None: | |
input_widths[insert_direction_at] += d_posenc_dir | |
self.mlp = nn.ModuleList([nn.Linear(d_in, d_out) for d_in, d_out in zip(input_widths, output_widths)]) | |
if act_fn == "swish": | |
# self.activation = swish | |
# yiyi testing: | |
self.activation = lambda x: F.silu(x) | |
else: | |
raise ValueError(f"Unsupported activation function {act_fn}") | |
self.sdf_activation = torch.tanh | |
self.density_activation = torch.nn.functional.relu | |
self.channel_activation = torch.sigmoid | |
def map_indices_to_keys(self, output): | |
h_map = { | |
"sdf": (0, 1), | |
"density_coarse": (1, 2), | |
"density_fine": (2, 3), | |
"stf": (3, 6), | |
"nerf_coarse": (6, 9), | |
"nerf_fine": (9, 12), | |
} | |
mapped_output = {k: output[..., start:end] for k, (start, end) in h_map.items()} | |
return mapped_output | |
def forward(self, *, position, direction, ts, nerf_level="coarse", rendering_mode="nerf"): | |
h = encode_position(position) | |
h_preact = h | |
h_directionless = None | |
for i, layer in enumerate(self.mlp): | |
if i == self.config.insert_direction_at: # 4 in the config | |
h_directionless = h_preact | |
h_direction = encode_direction(position, direction=direction) | |
h = torch.cat([h, h_direction], dim=-1) | |
h = layer(h) | |
h_preact = h | |
if i < len(self.mlp) - 1: | |
h = self.activation(h) | |
h_final = h | |
if h_directionless is None: | |
h_directionless = h_preact | |
activation = self.map_indices_to_keys(h_final) | |
if nerf_level == "coarse": | |
h_density = activation["density_coarse"] | |
else: | |
h_density = activation["density_fine"] | |
if rendering_mode == "nerf": | |
if nerf_level == "coarse": | |
h_channels = activation["nerf_coarse"] | |
else: | |
h_channels = activation["nerf_fine"] | |
elif rendering_mode == "stf": | |
h_channels = activation["stf"] | |
density = self.density_activation(h_density) | |
signed_distance = self.sdf_activation(activation["sdf"]) | |
channels = self.channel_activation(h_channels) | |
# yiyi notes: I think signed_distance is not used | |
return MLPNeRFModelOutput(density=density, signed_distance=signed_distance, channels=channels, ts=ts) | |
class ChannelsProj(nn.Module): | |
def __init__( | |
self, | |
*, | |
vectors: int, | |
channels: int, | |
d_latent: int, | |
): | |
super().__init__() | |
self.proj = nn.Linear(d_latent, vectors * channels) | |
self.norm = nn.LayerNorm(channels) | |
self.d_latent = d_latent | |
self.vectors = vectors | |
self.channels = channels | |
def forward(self, x: torch.Tensor) -> torch.Tensor: | |
x_bvd = x | |
w_vcd = self.proj.weight.view(self.vectors, self.channels, self.d_latent) | |
b_vc = self.proj.bias.view(1, self.vectors, self.channels) | |
h = torch.einsum("bvd,vcd->bvc", x_bvd, w_vcd) | |
h = self.norm(h) | |
h = h + b_vc | |
return h | |
class ShapEParamsProjModel(ModelMixin, ConfigMixin): | |
""" | |
project the latent representation of a 3D asset to obtain weights of a multi-layer perceptron (MLP). | |
For more details, see the original paper: | |
""" | |
def __init__( | |
self, | |
*, | |
param_names: Tuple[str] = ( | |
"nerstf.mlp.0.weight", | |
"nerstf.mlp.1.weight", | |
"nerstf.mlp.2.weight", | |
"nerstf.mlp.3.weight", | |
), | |
param_shapes: Tuple[Tuple[int]] = ( | |
(256, 93), | |
(256, 256), | |
(256, 256), | |
(256, 256), | |
), | |
d_latent: int = 1024, | |
): | |
super().__init__() | |
# check inputs | |
if len(param_names) != len(param_shapes): | |
raise ValueError("Must provide same number of `param_names` as `param_shapes`") | |
self.projections = nn.ModuleDict({}) | |
for k, (vectors, channels) in zip(param_names, param_shapes): | |
self.projections[_sanitize_name(k)] = ChannelsProj( | |
vectors=vectors, | |
channels=channels, | |
d_latent=d_latent, | |
) | |
def forward(self, x: torch.Tensor): | |
out = {} | |
start = 0 | |
for k, shape in zip(self.config.param_names, self.config.param_shapes): | |
vectors, _ = shape | |
end = start + vectors | |
x_bvd = x[:, start:end] | |
out[k] = self.projections[_sanitize_name(k)](x_bvd).reshape(len(x), *shape) | |
start = end | |
return out | |
class ShapERenderer(ModelMixin, ConfigMixin): | |
def __init__( | |
self, | |
*, | |
param_names: Tuple[str] = ( | |
"nerstf.mlp.0.weight", | |
"nerstf.mlp.1.weight", | |
"nerstf.mlp.2.weight", | |
"nerstf.mlp.3.weight", | |
), | |
param_shapes: Tuple[Tuple[int]] = ( | |
(256, 93), | |
(256, 256), | |
(256, 256), | |
(256, 256), | |
), | |
d_latent: int = 1024, | |
d_hidden: int = 256, | |
n_output: int = 12, | |
n_hidden_layers: int = 6, | |
act_fn: str = "swish", | |
insert_direction_at: int = 4, | |
background: Tuple[float] = ( | |
255.0, | |
255.0, | |
255.0, | |
), | |
): | |
super().__init__() | |
self.params_proj = ShapEParamsProjModel( | |
param_names=param_names, | |
param_shapes=param_shapes, | |
d_latent=d_latent, | |
) | |
self.mlp = MLPNeRSTFModel(d_hidden, n_output, n_hidden_layers, act_fn, insert_direction_at) | |
self.void = VoidNeRFModel(background=background, channel_scale=255.0) | |
self.volume = BoundingBoxVolume(bbox_max=[1.0, 1.0, 1.0], bbox_min=[-1.0, -1.0, -1.0]) | |
self.mesh_decoder = MeshDecoder() | |
def render_rays(self, rays, sampler, n_samples, prev_model_out=None, render_with_direction=False): | |
""" | |
Perform volumetric rendering over a partition of possible t's in the union of rendering volumes (written below | |
with some abuse of notations) | |
C(r) := sum( | |
transmittance(t[i]) * integrate( | |
lambda t: density(t) * channels(t) * transmittance(t), [t[i], t[i + 1]], | |
) for i in range(len(parts)) | |
) + transmittance(t[-1]) * void_model(t[-1]).channels | |
where | |
1) transmittance(s) := exp(-integrate(density, [t[0], s])) calculates the probability of light passing through | |
the volume specified by [t[0], s]. (transmittance of 1 means light can pass freely) 2) density and channels are | |
obtained by evaluating the appropriate part.model at time t. 3) [t[i], t[i + 1]] is defined as the range of t | |
where the ray intersects (parts[i].volume \\ union(part.volume for part in parts[:i])) at the surface of the | |
shell (if bounded). If the ray does not intersect, the integral over this segment is evaluated as 0 and | |
transmittance(t[i + 1]) := transmittance(t[i]). 4) The last term is integration to infinity (e.g. [t[-1], | |
math.inf]) that is evaluated by the void_model (i.e. we consider this space to be empty). | |
args: | |
rays: [batch_size x ... x 2 x 3] origin and direction. sampler: disjoint volume integrals. n_samples: | |
number of ts to sample. prev_model_outputs: model outputs from the previous rendering step, including | |
:return: A tuple of | |
- `channels` | |
- A importance samplers for additional fine-grained rendering | |
- raw model output | |
""" | |
origin, direction = rays[..., 0, :], rays[..., 1, :] | |
# Integrate over [t[i], t[i + 1]] | |
# 1 Intersect the rays with the current volume and sample ts to integrate along. | |
vrange = self.volume.intersect(origin, direction, t0_lower=None) | |
ts = sampler.sample(vrange.t0, vrange.t1, n_samples) | |
ts = ts.to(rays.dtype) | |
if prev_model_out is not None: | |
# Append the previous ts now before fprop because previous | |
# rendering used a different model and we can't reuse the output. | |
ts = torch.sort(torch.cat([ts, prev_model_out.ts], dim=-2), dim=-2).values | |
batch_size, *_shape, _t0_dim = vrange.t0.shape | |
_, *ts_shape, _ts_dim = ts.shape | |
# 2. Get the points along the ray and query the model | |
directions = torch.broadcast_to(direction.unsqueeze(-2), [batch_size, *ts_shape, 3]) | |
positions = origin.unsqueeze(-2) + ts * directions | |
directions = directions.to(self.mlp.dtype) | |
positions = positions.to(self.mlp.dtype) | |
optional_directions = directions if render_with_direction else None | |
model_out = self.mlp( | |
position=positions, | |
direction=optional_directions, | |
ts=ts, | |
nerf_level="coarse" if prev_model_out is None else "fine", | |
) | |
# 3. Integrate the model results | |
channels, weights, transmittance = integrate_samples( | |
vrange, model_out.ts, model_out.density, model_out.channels | |
) | |
# 4. Clean up results that do not intersect with the volume. | |
transmittance = torch.where(vrange.intersected, transmittance, torch.ones_like(transmittance)) | |
channels = torch.where(vrange.intersected, channels, torch.zeros_like(channels)) | |
# 5. integration to infinity (e.g. [t[-1], math.inf]) that is evaluated by the void_model (i.e. we consider this space to be empty). | |
channels = channels + transmittance * self.void(origin) | |
weighted_sampler = ImportanceRaySampler(vrange, ts=model_out.ts, weights=weights) | |
return channels, weighted_sampler, model_out | |
def decode_to_image( | |
self, | |
latents, | |
device, | |
size: int = 64, | |
ray_batch_size: int = 4096, | |
n_coarse_samples=64, | |
n_fine_samples=128, | |
): | |
# project the parameters from the generated latents | |
projected_params = self.params_proj(latents) | |
# update the mlp layers of the renderer | |
for name, param in self.mlp.state_dict().items(): | |
if f"nerstf.{name}" in projected_params.keys(): | |
param.copy_(projected_params[f"nerstf.{name}"].squeeze(0)) | |
# create cameras object | |
camera = create_pan_cameras(size) | |
rays = camera.camera_rays | |
rays = rays.to(device) | |
n_batches = rays.shape[1] // ray_batch_size | |
coarse_sampler = StratifiedRaySampler() | |
images = [] | |
for idx in range(n_batches): | |
rays_batch = rays[:, idx * ray_batch_size : (idx + 1) * ray_batch_size] | |
# render rays with coarse, stratified samples. | |
_, fine_sampler, coarse_model_out = self.render_rays(rays_batch, coarse_sampler, n_coarse_samples) | |
# Then, render with additional importance-weighted ray samples. | |
channels, _, _ = self.render_rays( | |
rays_batch, fine_sampler, n_fine_samples, prev_model_out=coarse_model_out | |
) | |
images.append(channels) | |
images = torch.cat(images, dim=1) | |
images = images.view(*camera.shape, camera.height, camera.width, -1).squeeze(0) | |
return images | |
def decode_to_mesh( | |
self, | |
latents, | |
device, | |
grid_size: int = 128, | |
query_batch_size: int = 4096, | |
texture_channels: Tuple = ("R", "G", "B"), | |
): | |
# 1. project the parameters from the generated latents | |
projected_params = self.params_proj(latents) | |
# 2. update the mlp layers of the renderer | |
for name, param in self.mlp.state_dict().items(): | |
if f"nerstf.{name}" in projected_params.keys(): | |
param.copy_(projected_params[f"nerstf.{name}"].squeeze(0)) | |
# 3. decoding with STF rendering | |
# 3.1 query the SDF values at vertices along a regular 128**3 grid | |
query_points = volume_query_points(self.volume, grid_size) | |
query_positions = query_points[None].repeat(1, 1, 1).to(device=device, dtype=self.mlp.dtype) | |
fields = [] | |
for idx in range(0, query_positions.shape[1], query_batch_size): | |
query_batch = query_positions[:, idx : idx + query_batch_size] | |
model_out = self.mlp( | |
position=query_batch, direction=None, ts=None, nerf_level="fine", rendering_mode="stf" | |
) | |
fields.append(model_out.signed_distance) | |
# predicted SDF values | |
fields = torch.cat(fields, dim=1) | |
fields = fields.float() | |
assert ( | |
len(fields.shape) == 3 and fields.shape[-1] == 1 | |
), f"expected [meta_batch x inner_batch] SDF results, but got {fields.shape}" | |
fields = fields.reshape(1, *([grid_size] * 3)) | |
# create grid 128 x 128 x 128 | |
# - force a negative border around the SDFs to close off all the models. | |
full_grid = torch.zeros( | |
1, | |
grid_size + 2, | |
grid_size + 2, | |
grid_size + 2, | |
device=fields.device, | |
dtype=fields.dtype, | |
) | |
full_grid.fill_(-1.0) | |
full_grid[:, 1:-1, 1:-1, 1:-1] = fields | |
fields = full_grid | |
# apply a differentiable implementation of Marching Cubes to construct meshs | |
raw_meshes = [] | |
mesh_mask = [] | |
for field in fields: | |
raw_mesh = self.mesh_decoder(field, self.volume.bbox_min, self.volume.bbox_max - self.volume.bbox_min) | |
mesh_mask.append(True) | |
raw_meshes.append(raw_mesh) | |
mesh_mask = torch.tensor(mesh_mask, device=fields.device) | |
max_vertices = max(len(m.verts) for m in raw_meshes) | |
# 3.2. query the texture color head at each vertex of the resulting mesh. | |
texture_query_positions = torch.stack( | |
[m.verts[torch.arange(0, max_vertices) % len(m.verts)] for m in raw_meshes], | |
dim=0, | |
) | |
texture_query_positions = texture_query_positions.to(device=device, dtype=self.mlp.dtype) | |
textures = [] | |
for idx in range(0, texture_query_positions.shape[1], query_batch_size): | |
query_batch = texture_query_positions[:, idx : idx + query_batch_size] | |
texture_model_out = self.mlp( | |
position=query_batch, direction=None, ts=None, nerf_level="fine", rendering_mode="stf" | |
) | |
textures.append(texture_model_out.channels) | |
# predict texture color | |
textures = torch.cat(textures, dim=1) | |
textures = _convert_srgb_to_linear(textures) | |
textures = textures.float() | |
# 3.3 augument the mesh with texture data | |
assert len(textures.shape) == 3 and textures.shape[-1] == len( | |
texture_channels | |
), f"expected [meta_batch x inner_batch x texture_channels] field results, but got {textures.shape}" | |
for m, texture in zip(raw_meshes, textures): | |
texture = texture[: len(m.verts)] | |
m.vertex_channels = dict(zip(texture_channels, texture.unbind(-1))) | |
return raw_meshes[0] | |