Spaces:
Running
on
Zero
Running
on
Zero
from typing import Callable, Dict, List, Optional, Union | |
import torch | |
from transformers import T5EncoderModel, T5Tokenizer | |
from ...loaders import LoraLoaderMixin | |
from ...models import Kandinsky3UNet, VQModel | |
from ...schedulers import DDPMScheduler | |
from ...utils import ( | |
deprecate, | |
logging, | |
replace_example_docstring, | |
) | |
from ...utils.torch_utils import randn_tensor | |
from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput | |
logger = logging.get_logger(__name__) # pylint: disable=invalid-name | |
EXAMPLE_DOC_STRING = """ | |
Examples: | |
```py | |
>>> from diffusers import AutoPipelineForText2Image | |
>>> import torch | |
>>> pipe = AutoPipelineForText2Image.from_pretrained( | |
... "kandinsky-community/kandinsky-3", variant="fp16", torch_dtype=torch.float16 | |
... ) | |
>>> pipe.enable_model_cpu_offload() | |
>>> prompt = "A photograph of the inside of a subway train. There are raccoons sitting on the seats. One of them is reading a newspaper. The window shows the city in the background." | |
>>> generator = torch.Generator(device="cpu").manual_seed(0) | |
>>> image = pipe(prompt, num_inference_steps=25, generator=generator).images[0] | |
``` | |
""" | |
def downscale_height_and_width(height, width, scale_factor=8): | |
new_height = height // scale_factor**2 | |
if height % scale_factor**2 != 0: | |
new_height += 1 | |
new_width = width // scale_factor**2 | |
if width % scale_factor**2 != 0: | |
new_width += 1 | |
return new_height * scale_factor, new_width * scale_factor | |
class Kandinsky3Pipeline(DiffusionPipeline, LoraLoaderMixin): | |
model_cpu_offload_seq = "text_encoder->unet->movq" | |
_callback_tensor_inputs = [ | |
"latents", | |
"prompt_embeds", | |
"negative_prompt_embeds", | |
"negative_attention_mask", | |
"attention_mask", | |
] | |
def __init__( | |
self, | |
tokenizer: T5Tokenizer, | |
text_encoder: T5EncoderModel, | |
unet: Kandinsky3UNet, | |
scheduler: DDPMScheduler, | |
movq: VQModel, | |
): | |
super().__init__() | |
self.register_modules( | |
tokenizer=tokenizer, text_encoder=text_encoder, unet=unet, scheduler=scheduler, movq=movq | |
) | |
def process_embeds(self, embeddings, attention_mask, cut_context): | |
if cut_context: | |
embeddings[attention_mask == 0] = torch.zeros_like(embeddings[attention_mask == 0]) | |
max_seq_length = attention_mask.sum(-1).max() + 1 | |
embeddings = embeddings[:, :max_seq_length] | |
attention_mask = attention_mask[:, :max_seq_length] | |
return embeddings, attention_mask | |
def encode_prompt( | |
self, | |
prompt, | |
do_classifier_free_guidance=True, | |
num_images_per_prompt=1, | |
device=None, | |
negative_prompt=None, | |
prompt_embeds: Optional[torch.FloatTensor] = None, | |
negative_prompt_embeds: Optional[torch.FloatTensor] = None, | |
_cut_context=False, | |
attention_mask: Optional[torch.FloatTensor] = None, | |
negative_attention_mask: Optional[torch.FloatTensor] = None, | |
): | |
r""" | |
Encodes the prompt into text encoder hidden states. | |
Args: | |
prompt (`str` or `List[str]`, *optional*): | |
prompt to be encoded | |
device: (`torch.device`, *optional*): | |
torch device to place the resulting embeddings on | |
num_images_per_prompt (`int`, *optional*, defaults to 1): | |
number of images that should be generated per prompt | |
do_classifier_free_guidance (`bool`, *optional*, defaults to `True`): | |
whether to use classifier free guidance or not | |
negative_prompt (`str` or `List[str]`, *optional*): | |
The prompt or prompts not to guide the image generation. If not defined, one has to pass | |
`negative_prompt_embeds`. instead. If not defined, one has to pass `negative_prompt_embeds`. instead. | |
Ignored when not using guidance (i.e., ignored if `guidance_scale` is less than `1`). | |
prompt_embeds (`torch.FloatTensor`, *optional*): | |
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not | |
provided, text embeddings will be generated from `prompt` input argument. | |
negative_prompt_embeds (`torch.FloatTensor`, *optional*): | |
Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt | |
weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input | |
argument. | |
attention_mask (`torch.FloatTensor`, *optional*): | |
Pre-generated attention mask. Must provide if passing `prompt_embeds` directly. | |
negative_attention_mask (`torch.FloatTensor`, *optional*): | |
Pre-generated negative attention mask. Must provide if passing `negative_prompt_embeds` directly. | |
""" | |
if prompt is not None and negative_prompt is not None: | |
if type(prompt) is not type(negative_prompt): | |
raise TypeError( | |
f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !=" | |
f" {type(prompt)}." | |
) | |
if device is None: | |
device = self._execution_device | |
if prompt is not None and isinstance(prompt, str): | |
batch_size = 1 | |
elif prompt is not None and isinstance(prompt, list): | |
batch_size = len(prompt) | |
else: | |
batch_size = prompt_embeds.shape[0] | |
max_length = 128 | |
if prompt_embeds is None: | |
text_inputs = self.tokenizer( | |
prompt, | |
padding="max_length", | |
max_length=max_length, | |
truncation=True, | |
return_tensors="pt", | |
) | |
text_input_ids = text_inputs.input_ids.to(device) | |
attention_mask = text_inputs.attention_mask.to(device) | |
prompt_embeds = self.text_encoder( | |
text_input_ids, | |
attention_mask=attention_mask, | |
) | |
prompt_embeds = prompt_embeds[0] | |
prompt_embeds, attention_mask = self.process_embeds(prompt_embeds, attention_mask, _cut_context) | |
prompt_embeds = prompt_embeds * attention_mask.unsqueeze(2) | |
if self.text_encoder is not None: | |
dtype = self.text_encoder.dtype | |
else: | |
dtype = None | |
prompt_embeds = prompt_embeds.to(dtype=dtype, device=device) | |
bs_embed, seq_len, _ = prompt_embeds.shape | |
# duplicate text embeddings for each generation per prompt, using mps friendly method | |
prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1) | |
prompt_embeds = prompt_embeds.view(bs_embed * num_images_per_prompt, seq_len, -1) | |
attention_mask = attention_mask.repeat(num_images_per_prompt, 1) | |
# get unconditional embeddings for classifier free guidance | |
if do_classifier_free_guidance and negative_prompt_embeds is None: | |
uncond_tokens: List[str] | |
if negative_prompt is None: | |
uncond_tokens = [""] * batch_size | |
elif isinstance(negative_prompt, str): | |
uncond_tokens = [negative_prompt] | |
elif batch_size != len(negative_prompt): | |
raise ValueError( | |
f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:" | |
f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches" | |
" the batch size of `prompt`." | |
) | |
else: | |
uncond_tokens = negative_prompt | |
if negative_prompt is not None: | |
uncond_input = self.tokenizer( | |
uncond_tokens, | |
padding="max_length", | |
max_length=128, | |
truncation=True, | |
return_attention_mask=True, | |
return_tensors="pt", | |
) | |
text_input_ids = uncond_input.input_ids.to(device) | |
negative_attention_mask = uncond_input.attention_mask.to(device) | |
negative_prompt_embeds = self.text_encoder( | |
text_input_ids, | |
attention_mask=negative_attention_mask, | |
) | |
negative_prompt_embeds = negative_prompt_embeds[0] | |
negative_prompt_embeds = negative_prompt_embeds[:, : prompt_embeds.shape[1]] | |
negative_attention_mask = negative_attention_mask[:, : prompt_embeds.shape[1]] | |
negative_prompt_embeds = negative_prompt_embeds * negative_attention_mask.unsqueeze(2) | |
else: | |
negative_prompt_embeds = torch.zeros_like(prompt_embeds) | |
negative_attention_mask = torch.zeros_like(attention_mask) | |
if do_classifier_free_guidance: | |
# duplicate unconditional embeddings for each generation per prompt, using mps friendly method | |
seq_len = negative_prompt_embeds.shape[1] | |
negative_prompt_embeds = negative_prompt_embeds.to(dtype=dtype, device=device) | |
if negative_prompt_embeds.shape != prompt_embeds.shape: | |
negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt, 1) | |
negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1) | |
negative_attention_mask = negative_attention_mask.repeat(num_images_per_prompt, 1) | |
# For classifier free guidance, we need to do two forward passes. | |
# Here we concatenate the unconditional and text embeddings into a single batch | |
# to avoid doing two forward passes | |
else: | |
negative_prompt_embeds = None | |
negative_attention_mask = None | |
return prompt_embeds, negative_prompt_embeds, attention_mask, negative_attention_mask | |
def prepare_latents(self, shape, dtype, device, generator, latents, scheduler): | |
if latents is None: | |
latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype) | |
else: | |
if latents.shape != shape: | |
raise ValueError(f"Unexpected latents shape, got {latents.shape}, expected {shape}") | |
latents = latents.to(device) | |
latents = latents * scheduler.init_noise_sigma | |
return latents | |
def check_inputs( | |
self, | |
prompt, | |
callback_steps, | |
negative_prompt=None, | |
prompt_embeds=None, | |
negative_prompt_embeds=None, | |
callback_on_step_end_tensor_inputs=None, | |
attention_mask=None, | |
negative_attention_mask=None, | |
): | |
if callback_steps is not None and (not isinstance(callback_steps, int) or callback_steps <= 0): | |
raise ValueError( | |
f"`callback_steps` has to be a positive integer but is {callback_steps} of type" | |
f" {type(callback_steps)}." | |
) | |
if callback_on_step_end_tensor_inputs is not None and not all( | |
k in self._callback_tensor_inputs for k in callback_on_step_end_tensor_inputs | |
): | |
raise ValueError( | |
f"`callback_on_step_end_tensor_inputs` has to be in {self._callback_tensor_inputs}, but found {[k for k in callback_on_step_end_tensor_inputs if k not in self._callback_tensor_inputs]}" | |
) | |
if prompt is not None and prompt_embeds is not None: | |
raise ValueError( | |
f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to" | |
" only forward one of the two." | |
) | |
elif prompt is None and prompt_embeds is None: | |
raise ValueError( | |
"Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined." | |
) | |
elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)): | |
raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}") | |
if negative_prompt is not None and negative_prompt_embeds is not None: | |
raise ValueError( | |
f"Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`:" | |
f" {negative_prompt_embeds}. Please make sure to only forward one of the two." | |
) | |
if prompt_embeds is not None and negative_prompt_embeds is not None: | |
if prompt_embeds.shape != negative_prompt_embeds.shape: | |
raise ValueError( | |
"`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but" | |
f" got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds`" | |
f" {negative_prompt_embeds.shape}." | |
) | |
if negative_prompt_embeds is not None and negative_attention_mask is None: | |
raise ValueError("Please provide `negative_attention_mask` along with `negative_prompt_embeds`") | |
if negative_prompt_embeds is not None and negative_attention_mask is not None: | |
if negative_prompt_embeds.shape[:2] != negative_attention_mask.shape: | |
raise ValueError( | |
"`negative_prompt_embeds` and `negative_attention_mask` must have the same batch_size and token length when passed directly, but" | |
f" got: `negative_prompt_embeds` {negative_prompt_embeds.shape[:2]} != `negative_attention_mask`" | |
f" {negative_attention_mask.shape}." | |
) | |
if prompt_embeds is not None and attention_mask is None: | |
raise ValueError("Please provide `attention_mask` along with `prompt_embeds`") | |
if prompt_embeds is not None and attention_mask is not None: | |
if prompt_embeds.shape[:2] != attention_mask.shape: | |
raise ValueError( | |
"`prompt_embeds` and `attention_mask` must have the same batch_size and token length when passed directly, but" | |
f" got: `prompt_embeds` {prompt_embeds.shape[:2]} != `attention_mask`" | |
f" {attention_mask.shape}." | |
) | |
def guidance_scale(self): | |
return self._guidance_scale | |
def do_classifier_free_guidance(self): | |
return self._guidance_scale > 1 | |
def num_timesteps(self): | |
return self._num_timesteps | |
def __call__( | |
self, | |
prompt: Union[str, List[str]] = None, | |
num_inference_steps: int = 25, | |
guidance_scale: float = 3.0, | |
negative_prompt: Optional[Union[str, List[str]]] = None, | |
num_images_per_prompt: Optional[int] = 1, | |
height: Optional[int] = 1024, | |
width: Optional[int] = 1024, | |
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None, | |
prompt_embeds: Optional[torch.FloatTensor] = None, | |
negative_prompt_embeds: Optional[torch.FloatTensor] = None, | |
attention_mask: Optional[torch.FloatTensor] = None, | |
negative_attention_mask: Optional[torch.FloatTensor] = None, | |
output_type: Optional[str] = "pil", | |
return_dict: bool = True, | |
latents=None, | |
callback_on_step_end: Optional[Callable[[int, int, Dict], None]] = None, | |
callback_on_step_end_tensor_inputs: List[str] = ["latents"], | |
**kwargs, | |
): | |
""" | |
Function invoked when calling the pipeline for generation. | |
Args: | |
prompt (`str` or `List[str]`, *optional*): | |
The prompt or prompts to guide the image generation. If not defined, one has to pass `prompt_embeds`. | |
instead. | |
num_inference_steps (`int`, *optional*, defaults to 25): | |
The number of denoising steps. More denoising steps usually lead to a higher quality image at the | |
expense of slower inference. | |
timesteps (`List[int]`, *optional*): | |
Custom timesteps to use for the denoising process. If not defined, equal spaced `num_inference_steps` | |
timesteps are used. Must be in descending order. | |
guidance_scale (`float`, *optional*, defaults to 3.0): | |
Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598). | |
`guidance_scale` is defined as `w` of equation 2. of [Imagen | |
Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale > | |
1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`, | |
usually at the expense of lower image quality. | |
negative_prompt (`str` or `List[str]`, *optional*): | |
The prompt or prompts not to guide the image generation. If not defined, one has to pass | |
`negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is | |
less than `1`). | |
num_images_per_prompt (`int`, *optional*, defaults to 1): | |
The number of images to generate per prompt. | |
height (`int`, *optional*, defaults to self.unet.config.sample_size): | |
The height in pixels of the generated image. | |
width (`int`, *optional*, defaults to self.unet.config.sample_size): | |
The width in pixels of the generated image. | |
eta (`float`, *optional*, defaults to 0.0): | |
Corresponds to parameter eta (η) in the DDIM paper: https://arxiv.org/abs/2010.02502. Only applies to | |
[`schedulers.DDIMScheduler`], will be ignored for others. | |
generator (`torch.Generator` or `List[torch.Generator]`, *optional*): | |
One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html) | |
to make generation deterministic. | |
prompt_embeds (`torch.FloatTensor`, *optional*): | |
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not | |
provided, text embeddings will be generated from `prompt` input argument. | |
negative_prompt_embeds (`torch.FloatTensor`, *optional*): | |
Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt | |
weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input | |
argument. | |
attention_mask (`torch.FloatTensor`, *optional*): | |
Pre-generated attention mask. Must provide if passing `prompt_embeds` directly. | |
negative_attention_mask (`torch.FloatTensor`, *optional*): | |
Pre-generated negative attention mask. Must provide if passing `negative_prompt_embeds` directly. | |
output_type (`str`, *optional*, defaults to `"pil"`): | |
The output format of the generate image. Choose between | |
[PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`. | |
return_dict (`bool`, *optional*, defaults to `True`): | |
Whether or not to return a [`~pipelines.stable_diffusion.IFPipelineOutput`] instead of a plain tuple. | |
callback (`Callable`, *optional*): | |
A function that will be called every `callback_steps` steps during inference. The function will be | |
called with the following arguments: `callback(step: int, timestep: int, latents: torch.FloatTensor)`. | |
callback_steps (`int`, *optional*, defaults to 1): | |
The frequency at which the `callback` function will be called. If not specified, the callback will be | |
called at every step. | |
clean_caption (`bool`, *optional*, defaults to `True`): | |
Whether or not to clean the caption before creating embeddings. Requires `beautifulsoup4` and `ftfy` to | |
be installed. If the dependencies are not installed, the embeddings will be created from the raw | |
prompt. | |
cross_attention_kwargs (`dict`, *optional*): | |
A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under | |
`self.processor` in | |
[diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py). | |
Examples: | |
Returns: | |
[`~pipelines.ImagePipelineOutput`] or `tuple` | |
""" | |
callback = kwargs.pop("callback", None) | |
callback_steps = kwargs.pop("callback_steps", None) | |
if callback is not None: | |
deprecate( | |
"callback", | |
"1.0.0", | |
"Passing `callback` as an input argument to `__call__` is deprecated, consider use `callback_on_step_end`", | |
) | |
if callback_steps is not None: | |
deprecate( | |
"callback_steps", | |
"1.0.0", | |
"Passing `callback_steps` as an input argument to `__call__` is deprecated, consider use `callback_on_step_end`", | |
) | |
if callback_on_step_end_tensor_inputs is not None and not all( | |
k in self._callback_tensor_inputs for k in callback_on_step_end_tensor_inputs | |
): | |
raise ValueError( | |
f"`callback_on_step_end_tensor_inputs` has to be in {self._callback_tensor_inputs}, but found {[k for k in callback_on_step_end_tensor_inputs if k not in self._callback_tensor_inputs]}" | |
) | |
cut_context = True | |
device = self._execution_device | |
# 1. Check inputs. Raise error if not correct | |
self.check_inputs( | |
prompt, | |
callback_steps, | |
negative_prompt, | |
prompt_embeds, | |
negative_prompt_embeds, | |
callback_on_step_end_tensor_inputs, | |
attention_mask, | |
negative_attention_mask, | |
) | |
self._guidance_scale = guidance_scale | |
if prompt is not None and isinstance(prompt, str): | |
batch_size = 1 | |
elif prompt is not None and isinstance(prompt, list): | |
batch_size = len(prompt) | |
else: | |
batch_size = prompt_embeds.shape[0] | |
# 3. Encode input prompt | |
prompt_embeds, negative_prompt_embeds, attention_mask, negative_attention_mask = self.encode_prompt( | |
prompt, | |
self.do_classifier_free_guidance, | |
num_images_per_prompt=num_images_per_prompt, | |
device=device, | |
negative_prompt=negative_prompt, | |
prompt_embeds=prompt_embeds, | |
negative_prompt_embeds=negative_prompt_embeds, | |
_cut_context=cut_context, | |
attention_mask=attention_mask, | |
negative_attention_mask=negative_attention_mask, | |
) | |
if self.do_classifier_free_guidance: | |
prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds]) | |
attention_mask = torch.cat([negative_attention_mask, attention_mask]).bool() | |
# 4. Prepare timesteps | |
self.scheduler.set_timesteps(num_inference_steps, device=device) | |
timesteps = self.scheduler.timesteps | |
# 5. Prepare latents | |
height, width = downscale_height_and_width(height, width, 8) | |
latents = self.prepare_latents( | |
(batch_size * num_images_per_prompt, 4, height, width), | |
prompt_embeds.dtype, | |
device, | |
generator, | |
latents, | |
self.scheduler, | |
) | |
if hasattr(self, "text_encoder_offload_hook") and self.text_encoder_offload_hook is not None: | |
self.text_encoder_offload_hook.offload() | |
# 7. Denoising loop | |
num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order | |
self._num_timesteps = len(timesteps) | |
with self.progress_bar(total=num_inference_steps) as progress_bar: | |
for i, t in enumerate(timesteps): | |
latent_model_input = torch.cat([latents] * 2) if self.do_classifier_free_guidance else latents | |
# predict the noise residual | |
noise_pred = self.unet( | |
latent_model_input, | |
t, | |
encoder_hidden_states=prompt_embeds, | |
encoder_attention_mask=attention_mask, | |
return_dict=False, | |
)[0] | |
if self.do_classifier_free_guidance: | |
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2) | |
noise_pred = (guidance_scale + 1.0) * noise_pred_text - guidance_scale * noise_pred_uncond | |
# noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) | |
# compute the previous noisy sample x_t -> x_t-1 | |
latents = self.scheduler.step( | |
noise_pred, | |
t, | |
latents, | |
generator=generator, | |
).prev_sample | |
if callback_on_step_end is not None: | |
callback_kwargs = {} | |
for k in callback_on_step_end_tensor_inputs: | |
callback_kwargs[k] = locals()[k] | |
callback_outputs = callback_on_step_end(self, i, t, callback_kwargs) | |
latents = callback_outputs.pop("latents", latents) | |
prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds) | |
negative_prompt_embeds = callback_outputs.pop("negative_prompt_embeds", negative_prompt_embeds) | |
attention_mask = callback_outputs.pop("attention_mask", attention_mask) | |
negative_attention_mask = callback_outputs.pop("negative_attention_mask", negative_attention_mask) | |
if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0): | |
progress_bar.update() | |
if callback is not None and i % callback_steps == 0: | |
step_idx = i // getattr(self.scheduler, "order", 1) | |
callback(step_idx, t, latents) | |
# post-processing | |
if output_type not in ["pt", "np", "pil", "latent"]: | |
raise ValueError( | |
f"Only the output types `pt`, `pil`, `np` and `latent` are supported not output_type={output_type}" | |
) | |
if not output_type == "latent": | |
image = self.movq.decode(latents, force_not_quantize=True)["sample"] | |
if output_type in ["np", "pil"]: | |
image = image * 0.5 + 0.5 | |
image = image.clamp(0, 1) | |
image = image.cpu().permute(0, 2, 3, 1).float().numpy() | |
if output_type == "pil": | |
image = self.numpy_to_pil(image) | |
else: | |
image = latents | |
self.maybe_free_model_hooks() | |
if not return_dict: | |
return (image,) | |
return ImagePipelineOutput(images=image) | |