Spaces:
Running
on
Zero
Running
on
Zero
# Copyright 2024 The HuggingFace Team. All rights reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
from dataclasses import dataclass | |
from typing import Dict, Tuple, Union | |
import torch | |
import torch.utils.checkpoint | |
from torch import nn | |
from ...configuration_utils import ConfigMixin, register_to_config | |
from ...utils import BaseOutput, logging | |
from ..attention_processor import Attention, AttentionProcessor, AttnProcessor | |
from ..embeddings import TimestepEmbedding, Timesteps | |
from ..modeling_utils import ModelMixin | |
logger = logging.get_logger(__name__) # pylint: disable=invalid-name | |
class Kandinsky3UNetOutput(BaseOutput): | |
sample: torch.FloatTensor = None | |
class Kandinsky3EncoderProj(nn.Module): | |
def __init__(self, encoder_hid_dim, cross_attention_dim): | |
super().__init__() | |
self.projection_linear = nn.Linear(encoder_hid_dim, cross_attention_dim, bias=False) | |
self.projection_norm = nn.LayerNorm(cross_attention_dim) | |
def forward(self, x): | |
x = self.projection_linear(x) | |
x = self.projection_norm(x) | |
return x | |
class Kandinsky3UNet(ModelMixin, ConfigMixin): | |
def __init__( | |
self, | |
in_channels: int = 4, | |
time_embedding_dim: int = 1536, | |
groups: int = 32, | |
attention_head_dim: int = 64, | |
layers_per_block: Union[int, Tuple[int]] = 3, | |
block_out_channels: Tuple[int] = (384, 768, 1536, 3072), | |
cross_attention_dim: Union[int, Tuple[int]] = 4096, | |
encoder_hid_dim: int = 4096, | |
): | |
super().__init__() | |
# TOOD(Yiyi): Give better name and put into config for the following 4 parameters | |
expansion_ratio = 4 | |
compression_ratio = 2 | |
add_cross_attention = (False, True, True, True) | |
add_self_attention = (False, True, True, True) | |
out_channels = in_channels | |
init_channels = block_out_channels[0] // 2 | |
self.time_proj = Timesteps(init_channels, flip_sin_to_cos=False, downscale_freq_shift=1) | |
self.time_embedding = TimestepEmbedding( | |
init_channels, | |
time_embedding_dim, | |
) | |
self.add_time_condition = Kandinsky3AttentionPooling( | |
time_embedding_dim, cross_attention_dim, attention_head_dim | |
) | |
self.conv_in = nn.Conv2d(in_channels, init_channels, kernel_size=3, padding=1) | |
self.encoder_hid_proj = Kandinsky3EncoderProj(encoder_hid_dim, cross_attention_dim) | |
hidden_dims = [init_channels] + list(block_out_channels) | |
in_out_dims = list(zip(hidden_dims[:-1], hidden_dims[1:])) | |
text_dims = [cross_attention_dim if is_exist else None for is_exist in add_cross_attention] | |
num_blocks = len(block_out_channels) * [layers_per_block] | |
layer_params = [num_blocks, text_dims, add_self_attention] | |
rev_layer_params = map(reversed, layer_params) | |
cat_dims = [] | |
self.num_levels = len(in_out_dims) | |
self.down_blocks = nn.ModuleList([]) | |
for level, ((in_dim, out_dim), res_block_num, text_dim, self_attention) in enumerate( | |
zip(in_out_dims, *layer_params) | |
): | |
down_sample = level != (self.num_levels - 1) | |
cat_dims.append(out_dim if level != (self.num_levels - 1) else 0) | |
self.down_blocks.append( | |
Kandinsky3DownSampleBlock( | |
in_dim, | |
out_dim, | |
time_embedding_dim, | |
text_dim, | |
res_block_num, | |
groups, | |
attention_head_dim, | |
expansion_ratio, | |
compression_ratio, | |
down_sample, | |
self_attention, | |
) | |
) | |
self.up_blocks = nn.ModuleList([]) | |
for level, ((out_dim, in_dim), res_block_num, text_dim, self_attention) in enumerate( | |
zip(reversed(in_out_dims), *rev_layer_params) | |
): | |
up_sample = level != 0 | |
self.up_blocks.append( | |
Kandinsky3UpSampleBlock( | |
in_dim, | |
cat_dims.pop(), | |
out_dim, | |
time_embedding_dim, | |
text_dim, | |
res_block_num, | |
groups, | |
attention_head_dim, | |
expansion_ratio, | |
compression_ratio, | |
up_sample, | |
self_attention, | |
) | |
) | |
self.conv_norm_out = nn.GroupNorm(groups, init_channels) | |
self.conv_act_out = nn.SiLU() | |
self.conv_out = nn.Conv2d(init_channels, out_channels, kernel_size=3, padding=1) | |
def attn_processors(self) -> Dict[str, AttentionProcessor]: | |
r""" | |
Returns: | |
`dict` of attention processors: A dictionary containing all attention processors used in the model with | |
indexed by its weight name. | |
""" | |
# set recursively | |
processors = {} | |
def fn_recursive_add_processors(name: str, module: torch.nn.Module, processors: Dict[str, AttentionProcessor]): | |
if hasattr(module, "set_processor"): | |
processors[f"{name}.processor"] = module.processor | |
for sub_name, child in module.named_children(): | |
fn_recursive_add_processors(f"{name}.{sub_name}", child, processors) | |
return processors | |
for name, module in self.named_children(): | |
fn_recursive_add_processors(name, module, processors) | |
return processors | |
def set_attn_processor(self, processor: Union[AttentionProcessor, Dict[str, AttentionProcessor]]): | |
r""" | |
Sets the attention processor to use to compute attention. | |
Parameters: | |
processor (`dict` of `AttentionProcessor` or only `AttentionProcessor`): | |
The instantiated processor class or a dictionary of processor classes that will be set as the processor | |
for **all** `Attention` layers. | |
If `processor` is a dict, the key needs to define the path to the corresponding cross attention | |
processor. This is strongly recommended when setting trainable attention processors. | |
""" | |
count = len(self.attn_processors.keys()) | |
if isinstance(processor, dict) and len(processor) != count: | |
raise ValueError( | |
f"A dict of processors was passed, but the number of processors {len(processor)} does not match the" | |
f" number of attention layers: {count}. Please make sure to pass {count} processor classes." | |
) | |
def fn_recursive_attn_processor(name: str, module: torch.nn.Module, processor): | |
if hasattr(module, "set_processor"): | |
if not isinstance(processor, dict): | |
module.set_processor(processor) | |
else: | |
module.set_processor(processor.pop(f"{name}.processor")) | |
for sub_name, child in module.named_children(): | |
fn_recursive_attn_processor(f"{name}.{sub_name}", child, processor) | |
for name, module in self.named_children(): | |
fn_recursive_attn_processor(name, module, processor) | |
def set_default_attn_processor(self): | |
""" | |
Disables custom attention processors and sets the default attention implementation. | |
""" | |
self.set_attn_processor(AttnProcessor()) | |
def _set_gradient_checkpointing(self, module, value=False): | |
if hasattr(module, "gradient_checkpointing"): | |
module.gradient_checkpointing = value | |
def forward(self, sample, timestep, encoder_hidden_states=None, encoder_attention_mask=None, return_dict=True): | |
if encoder_attention_mask is not None: | |
encoder_attention_mask = (1 - encoder_attention_mask.to(sample.dtype)) * -10000.0 | |
encoder_attention_mask = encoder_attention_mask.unsqueeze(1) | |
if not torch.is_tensor(timestep): | |
dtype = torch.float32 if isinstance(timestep, float) else torch.int32 | |
timestep = torch.tensor([timestep], dtype=dtype, device=sample.device) | |
elif len(timestep.shape) == 0: | |
timestep = timestep[None].to(sample.device) | |
# broadcast to batch dimension in a way that's compatible with ONNX/Core ML | |
timestep = timestep.expand(sample.shape[0]) | |
time_embed_input = self.time_proj(timestep).to(sample.dtype) | |
time_embed = self.time_embedding(time_embed_input) | |
encoder_hidden_states = self.encoder_hid_proj(encoder_hidden_states) | |
if encoder_hidden_states is not None: | |
time_embed = self.add_time_condition(time_embed, encoder_hidden_states, encoder_attention_mask) | |
hidden_states = [] | |
sample = self.conv_in(sample) | |
for level, down_sample in enumerate(self.down_blocks): | |
sample = down_sample(sample, time_embed, encoder_hidden_states, encoder_attention_mask) | |
if level != self.num_levels - 1: | |
hidden_states.append(sample) | |
for level, up_sample in enumerate(self.up_blocks): | |
if level != 0: | |
sample = torch.cat([sample, hidden_states.pop()], dim=1) | |
sample = up_sample(sample, time_embed, encoder_hidden_states, encoder_attention_mask) | |
sample = self.conv_norm_out(sample) | |
sample = self.conv_act_out(sample) | |
sample = self.conv_out(sample) | |
if not return_dict: | |
return (sample,) | |
return Kandinsky3UNetOutput(sample=sample) | |
class Kandinsky3UpSampleBlock(nn.Module): | |
def __init__( | |
self, | |
in_channels, | |
cat_dim, | |
out_channels, | |
time_embed_dim, | |
context_dim=None, | |
num_blocks=3, | |
groups=32, | |
head_dim=64, | |
expansion_ratio=4, | |
compression_ratio=2, | |
up_sample=True, | |
self_attention=True, | |
): | |
super().__init__() | |
up_resolutions = [[None, True if up_sample else None, None, None]] + [[None] * 4] * (num_blocks - 1) | |
hidden_channels = ( | |
[(in_channels + cat_dim, in_channels)] | |
+ [(in_channels, in_channels)] * (num_blocks - 2) | |
+ [(in_channels, out_channels)] | |
) | |
attentions = [] | |
resnets_in = [] | |
resnets_out = [] | |
self.self_attention = self_attention | |
self.context_dim = context_dim | |
if self_attention: | |
attentions.append( | |
Kandinsky3AttentionBlock(out_channels, time_embed_dim, None, groups, head_dim, expansion_ratio) | |
) | |
else: | |
attentions.append(nn.Identity()) | |
for (in_channel, out_channel), up_resolution in zip(hidden_channels, up_resolutions): | |
resnets_in.append( | |
Kandinsky3ResNetBlock(in_channel, in_channel, time_embed_dim, groups, compression_ratio, up_resolution) | |
) | |
if context_dim is not None: | |
attentions.append( | |
Kandinsky3AttentionBlock( | |
in_channel, time_embed_dim, context_dim, groups, head_dim, expansion_ratio | |
) | |
) | |
else: | |
attentions.append(nn.Identity()) | |
resnets_out.append( | |
Kandinsky3ResNetBlock(in_channel, out_channel, time_embed_dim, groups, compression_ratio) | |
) | |
self.attentions = nn.ModuleList(attentions) | |
self.resnets_in = nn.ModuleList(resnets_in) | |
self.resnets_out = nn.ModuleList(resnets_out) | |
def forward(self, x, time_embed, context=None, context_mask=None, image_mask=None): | |
for attention, resnet_in, resnet_out in zip(self.attentions[1:], self.resnets_in, self.resnets_out): | |
x = resnet_in(x, time_embed) | |
if self.context_dim is not None: | |
x = attention(x, time_embed, context, context_mask, image_mask) | |
x = resnet_out(x, time_embed) | |
if self.self_attention: | |
x = self.attentions[0](x, time_embed, image_mask=image_mask) | |
return x | |
class Kandinsky3DownSampleBlock(nn.Module): | |
def __init__( | |
self, | |
in_channels, | |
out_channels, | |
time_embed_dim, | |
context_dim=None, | |
num_blocks=3, | |
groups=32, | |
head_dim=64, | |
expansion_ratio=4, | |
compression_ratio=2, | |
down_sample=True, | |
self_attention=True, | |
): | |
super().__init__() | |
attentions = [] | |
resnets_in = [] | |
resnets_out = [] | |
self.self_attention = self_attention | |
self.context_dim = context_dim | |
if self_attention: | |
attentions.append( | |
Kandinsky3AttentionBlock(in_channels, time_embed_dim, None, groups, head_dim, expansion_ratio) | |
) | |
else: | |
attentions.append(nn.Identity()) | |
up_resolutions = [[None] * 4] * (num_blocks - 1) + [[None, None, False if down_sample else None, None]] | |
hidden_channels = [(in_channels, out_channels)] + [(out_channels, out_channels)] * (num_blocks - 1) | |
for (in_channel, out_channel), up_resolution in zip(hidden_channels, up_resolutions): | |
resnets_in.append( | |
Kandinsky3ResNetBlock(in_channel, out_channel, time_embed_dim, groups, compression_ratio) | |
) | |
if context_dim is not None: | |
attentions.append( | |
Kandinsky3AttentionBlock( | |
out_channel, time_embed_dim, context_dim, groups, head_dim, expansion_ratio | |
) | |
) | |
else: | |
attentions.append(nn.Identity()) | |
resnets_out.append( | |
Kandinsky3ResNetBlock( | |
out_channel, out_channel, time_embed_dim, groups, compression_ratio, up_resolution | |
) | |
) | |
self.attentions = nn.ModuleList(attentions) | |
self.resnets_in = nn.ModuleList(resnets_in) | |
self.resnets_out = nn.ModuleList(resnets_out) | |
def forward(self, x, time_embed, context=None, context_mask=None, image_mask=None): | |
if self.self_attention: | |
x = self.attentions[0](x, time_embed, image_mask=image_mask) | |
for attention, resnet_in, resnet_out in zip(self.attentions[1:], self.resnets_in, self.resnets_out): | |
x = resnet_in(x, time_embed) | |
if self.context_dim is not None: | |
x = attention(x, time_embed, context, context_mask, image_mask) | |
x = resnet_out(x, time_embed) | |
return x | |
class Kandinsky3ConditionalGroupNorm(nn.Module): | |
def __init__(self, groups, normalized_shape, context_dim): | |
super().__init__() | |
self.norm = nn.GroupNorm(groups, normalized_shape, affine=False) | |
self.context_mlp = nn.Sequential(nn.SiLU(), nn.Linear(context_dim, 2 * normalized_shape)) | |
self.context_mlp[1].weight.data.zero_() | |
self.context_mlp[1].bias.data.zero_() | |
def forward(self, x, context): | |
context = self.context_mlp(context) | |
for _ in range(len(x.shape[2:])): | |
context = context.unsqueeze(-1) | |
scale, shift = context.chunk(2, dim=1) | |
x = self.norm(x) * (scale + 1.0) + shift | |
return x | |
class Kandinsky3Block(nn.Module): | |
def __init__(self, in_channels, out_channels, time_embed_dim, kernel_size=3, norm_groups=32, up_resolution=None): | |
super().__init__() | |
self.group_norm = Kandinsky3ConditionalGroupNorm(norm_groups, in_channels, time_embed_dim) | |
self.activation = nn.SiLU() | |
if up_resolution is not None and up_resolution: | |
self.up_sample = nn.ConvTranspose2d(in_channels, in_channels, kernel_size=2, stride=2) | |
else: | |
self.up_sample = nn.Identity() | |
padding = int(kernel_size > 1) | |
self.projection = nn.Conv2d(in_channels, out_channels, kernel_size=kernel_size, padding=padding) | |
if up_resolution is not None and not up_resolution: | |
self.down_sample = nn.Conv2d(out_channels, out_channels, kernel_size=2, stride=2) | |
else: | |
self.down_sample = nn.Identity() | |
def forward(self, x, time_embed): | |
x = self.group_norm(x, time_embed) | |
x = self.activation(x) | |
x = self.up_sample(x) | |
x = self.projection(x) | |
x = self.down_sample(x) | |
return x | |
class Kandinsky3ResNetBlock(nn.Module): | |
def __init__( | |
self, in_channels, out_channels, time_embed_dim, norm_groups=32, compression_ratio=2, up_resolutions=4 * [None] | |
): | |
super().__init__() | |
kernel_sizes = [1, 3, 3, 1] | |
hidden_channel = max(in_channels, out_channels) // compression_ratio | |
hidden_channels = ( | |
[(in_channels, hidden_channel)] + [(hidden_channel, hidden_channel)] * 2 + [(hidden_channel, out_channels)] | |
) | |
self.resnet_blocks = nn.ModuleList( | |
[ | |
Kandinsky3Block(in_channel, out_channel, time_embed_dim, kernel_size, norm_groups, up_resolution) | |
for (in_channel, out_channel), kernel_size, up_resolution in zip( | |
hidden_channels, kernel_sizes, up_resolutions | |
) | |
] | |
) | |
self.shortcut_up_sample = ( | |
nn.ConvTranspose2d(in_channels, in_channels, kernel_size=2, stride=2) | |
if True in up_resolutions | |
else nn.Identity() | |
) | |
self.shortcut_projection = ( | |
nn.Conv2d(in_channels, out_channels, kernel_size=1) if in_channels != out_channels else nn.Identity() | |
) | |
self.shortcut_down_sample = ( | |
nn.Conv2d(out_channels, out_channels, kernel_size=2, stride=2) | |
if False in up_resolutions | |
else nn.Identity() | |
) | |
def forward(self, x, time_embed): | |
out = x | |
for resnet_block in self.resnet_blocks: | |
out = resnet_block(out, time_embed) | |
x = self.shortcut_up_sample(x) | |
x = self.shortcut_projection(x) | |
x = self.shortcut_down_sample(x) | |
x = x + out | |
return x | |
class Kandinsky3AttentionPooling(nn.Module): | |
def __init__(self, num_channels, context_dim, head_dim=64): | |
super().__init__() | |
self.attention = Attention( | |
context_dim, | |
context_dim, | |
dim_head=head_dim, | |
out_dim=num_channels, | |
out_bias=False, | |
) | |
def forward(self, x, context, context_mask=None): | |
context_mask = context_mask.to(dtype=context.dtype) | |
context = self.attention(context.mean(dim=1, keepdim=True), context, context_mask) | |
return x + context.squeeze(1) | |
class Kandinsky3AttentionBlock(nn.Module): | |
def __init__(self, num_channels, time_embed_dim, context_dim=None, norm_groups=32, head_dim=64, expansion_ratio=4): | |
super().__init__() | |
self.in_norm = Kandinsky3ConditionalGroupNorm(norm_groups, num_channels, time_embed_dim) | |
self.attention = Attention( | |
num_channels, | |
context_dim or num_channels, | |
dim_head=head_dim, | |
out_dim=num_channels, | |
out_bias=False, | |
) | |
hidden_channels = expansion_ratio * num_channels | |
self.out_norm = Kandinsky3ConditionalGroupNorm(norm_groups, num_channels, time_embed_dim) | |
self.feed_forward = nn.Sequential( | |
nn.Conv2d(num_channels, hidden_channels, kernel_size=1, bias=False), | |
nn.SiLU(), | |
nn.Conv2d(hidden_channels, num_channels, kernel_size=1, bias=False), | |
) | |
def forward(self, x, time_embed, context=None, context_mask=None, image_mask=None): | |
height, width = x.shape[-2:] | |
out = self.in_norm(x, time_embed) | |
out = out.reshape(x.shape[0], -1, height * width).permute(0, 2, 1) | |
context = context if context is not None else out | |
if context_mask is not None: | |
context_mask = context_mask.to(dtype=context.dtype) | |
out = self.attention(out, context, context_mask) | |
out = out.permute(0, 2, 1).unsqueeze(-1).reshape(out.shape[0], -1, height, width) | |
x = x + out | |
out = self.out_norm(x, time_embed) | |
out = self.feed_forward(out) | |
x = x + out | |
return x | |