Spaces:
Running
on
Zero
Running
on
Zero
# Copyright 2024 The HuggingFace Team. All rights reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
from dataclasses import dataclass | |
from typing import Optional, Tuple, Union | |
import torch | |
import torch.nn as nn | |
from ...configuration_utils import ConfigMixin, register_to_config | |
from ...utils import BaseOutput | |
from ..embeddings import GaussianFourierProjection, TimestepEmbedding, Timesteps | |
from ..modeling_utils import ModelMixin | |
from .unet_2d_blocks import UNetMidBlock2D, get_down_block, get_up_block | |
class UNet2DOutput(BaseOutput): | |
""" | |
The output of [`UNet2DModel`]. | |
Args: | |
sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`): | |
The hidden states output from the last layer of the model. | |
""" | |
sample: torch.FloatTensor | |
class UNet2DModel(ModelMixin, ConfigMixin): | |
r""" | |
A 2D UNet model that takes a noisy sample and a timestep and returns a sample shaped output. | |
This model inherits from [`ModelMixin`]. Check the superclass documentation for it's generic methods implemented | |
for all models (such as downloading or saving). | |
Parameters: | |
sample_size (`int` or `Tuple[int, int]`, *optional*, defaults to `None`): | |
Height and width of input/output sample. Dimensions must be a multiple of `2 ** (len(block_out_channels) - | |
1)`. | |
in_channels (`int`, *optional*, defaults to 3): Number of channels in the input sample. | |
out_channels (`int`, *optional*, defaults to 3): Number of channels in the output. | |
center_input_sample (`bool`, *optional*, defaults to `False`): Whether to center the input sample. | |
time_embedding_type (`str`, *optional*, defaults to `"positional"`): Type of time embedding to use. | |
freq_shift (`int`, *optional*, defaults to 0): Frequency shift for Fourier time embedding. | |
flip_sin_to_cos (`bool`, *optional*, defaults to `True`): | |
Whether to flip sin to cos for Fourier time embedding. | |
down_block_types (`Tuple[str]`, *optional*, defaults to `("DownBlock2D", "AttnDownBlock2D", "AttnDownBlock2D", "AttnDownBlock2D")`): | |
Tuple of downsample block types. | |
mid_block_type (`str`, *optional*, defaults to `"UNetMidBlock2D"`): | |
Block type for middle of UNet, it can be either `UNetMidBlock2D` or `UnCLIPUNetMidBlock2D`. | |
up_block_types (`Tuple[str]`, *optional*, defaults to `("AttnUpBlock2D", "AttnUpBlock2D", "AttnUpBlock2D", "UpBlock2D")`): | |
Tuple of upsample block types. | |
block_out_channels (`Tuple[int]`, *optional*, defaults to `(224, 448, 672, 896)`): | |
Tuple of block output channels. | |
layers_per_block (`int`, *optional*, defaults to `2`): The number of layers per block. | |
mid_block_scale_factor (`float`, *optional*, defaults to `1`): The scale factor for the mid block. | |
downsample_padding (`int`, *optional*, defaults to `1`): The padding for the downsample convolution. | |
downsample_type (`str`, *optional*, defaults to `conv`): | |
The downsample type for downsampling layers. Choose between "conv" and "resnet" | |
upsample_type (`str`, *optional*, defaults to `conv`): | |
The upsample type for upsampling layers. Choose between "conv" and "resnet" | |
dropout (`float`, *optional*, defaults to 0.0): The dropout probability to use. | |
act_fn (`str`, *optional*, defaults to `"silu"`): The activation function to use. | |
attention_head_dim (`int`, *optional*, defaults to `8`): The attention head dimension. | |
norm_num_groups (`int`, *optional*, defaults to `32`): The number of groups for normalization. | |
attn_norm_num_groups (`int`, *optional*, defaults to `None`): | |
If set to an integer, a group norm layer will be created in the mid block's [`Attention`] layer with the | |
given number of groups. If left as `None`, the group norm layer will only be created if | |
`resnet_time_scale_shift` is set to `default`, and if created will have `norm_num_groups` groups. | |
norm_eps (`float`, *optional*, defaults to `1e-5`): The epsilon for normalization. | |
resnet_time_scale_shift (`str`, *optional*, defaults to `"default"`): Time scale shift config | |
for ResNet blocks (see [`~models.resnet.ResnetBlock2D`]). Choose from `default` or `scale_shift`. | |
class_embed_type (`str`, *optional*, defaults to `None`): | |
The type of class embedding to use which is ultimately summed with the time embeddings. Choose from `None`, | |
`"timestep"`, or `"identity"`. | |
num_class_embeds (`int`, *optional*, defaults to `None`): | |
Input dimension of the learnable embedding matrix to be projected to `time_embed_dim` when performing class | |
conditioning with `class_embed_type` equal to `None`. | |
""" | |
def __init__( | |
self, | |
sample_size: Optional[Union[int, Tuple[int, int]]] = None, | |
in_channels: int = 3, | |
out_channels: int = 3, | |
center_input_sample: bool = False, | |
time_embedding_type: str = "positional", | |
freq_shift: int = 0, | |
flip_sin_to_cos: bool = True, | |
down_block_types: Tuple[str, ...] = ("DownBlock2D", "AttnDownBlock2D", "AttnDownBlock2D", "AttnDownBlock2D"), | |
up_block_types: Tuple[str, ...] = ("AttnUpBlock2D", "AttnUpBlock2D", "AttnUpBlock2D", "UpBlock2D"), | |
block_out_channels: Tuple[int, ...] = (224, 448, 672, 896), | |
layers_per_block: int = 2, | |
mid_block_scale_factor: float = 1, | |
downsample_padding: int = 1, | |
downsample_type: str = "conv", | |
upsample_type: str = "conv", | |
dropout: float = 0.0, | |
act_fn: str = "silu", | |
attention_head_dim: Optional[int] = 8, | |
norm_num_groups: int = 32, | |
attn_norm_num_groups: Optional[int] = None, | |
norm_eps: float = 1e-5, | |
resnet_time_scale_shift: str = "default", | |
add_attention: bool = True, | |
class_embed_type: Optional[str] = None, | |
num_class_embeds: Optional[int] = None, | |
num_train_timesteps: Optional[int] = None, | |
): | |
super().__init__() | |
self.sample_size = sample_size | |
time_embed_dim = block_out_channels[0] * 4 | |
# Check inputs | |
if len(down_block_types) != len(up_block_types): | |
raise ValueError( | |
f"Must provide the same number of `down_block_types` as `up_block_types`. `down_block_types`: {down_block_types}. `up_block_types`: {up_block_types}." | |
) | |
if len(block_out_channels) != len(down_block_types): | |
raise ValueError( | |
f"Must provide the same number of `block_out_channels` as `down_block_types`. `block_out_channels`: {block_out_channels}. `down_block_types`: {down_block_types}." | |
) | |
# input | |
self.conv_in = nn.Conv2d(in_channels, block_out_channels[0], kernel_size=3, padding=(1, 1)) | |
# time | |
if time_embedding_type == "fourier": | |
self.time_proj = GaussianFourierProjection(embedding_size=block_out_channels[0], scale=16) | |
timestep_input_dim = 2 * block_out_channels[0] | |
elif time_embedding_type == "positional": | |
self.time_proj = Timesteps(block_out_channels[0], flip_sin_to_cos, freq_shift) | |
timestep_input_dim = block_out_channels[0] | |
elif time_embedding_type == "learned": | |
self.time_proj = nn.Embedding(num_train_timesteps, block_out_channels[0]) | |
timestep_input_dim = block_out_channels[0] | |
self.time_embedding = TimestepEmbedding(timestep_input_dim, time_embed_dim) | |
# class embedding | |
if class_embed_type is None and num_class_embeds is not None: | |
self.class_embedding = nn.Embedding(num_class_embeds, time_embed_dim) | |
elif class_embed_type == "timestep": | |
self.class_embedding = TimestepEmbedding(timestep_input_dim, time_embed_dim) | |
elif class_embed_type == "identity": | |
self.class_embedding = nn.Identity(time_embed_dim, time_embed_dim) | |
else: | |
self.class_embedding = None | |
self.down_blocks = nn.ModuleList([]) | |
self.mid_block = None | |
self.up_blocks = nn.ModuleList([]) | |
# down | |
output_channel = block_out_channels[0] | |
for i, down_block_type in enumerate(down_block_types): | |
input_channel = output_channel | |
output_channel = block_out_channels[i] | |
is_final_block = i == len(block_out_channels) - 1 | |
down_block = get_down_block( | |
down_block_type, | |
num_layers=layers_per_block, | |
in_channels=input_channel, | |
out_channels=output_channel, | |
temb_channels=time_embed_dim, | |
add_downsample=not is_final_block, | |
resnet_eps=norm_eps, | |
resnet_act_fn=act_fn, | |
resnet_groups=norm_num_groups, | |
attention_head_dim=attention_head_dim if attention_head_dim is not None else output_channel, | |
downsample_padding=downsample_padding, | |
resnet_time_scale_shift=resnet_time_scale_shift, | |
downsample_type=downsample_type, | |
dropout=dropout, | |
) | |
self.down_blocks.append(down_block) | |
# mid | |
self.mid_block = UNetMidBlock2D( | |
in_channels=block_out_channels[-1], | |
temb_channels=time_embed_dim, | |
dropout=dropout, | |
resnet_eps=norm_eps, | |
resnet_act_fn=act_fn, | |
output_scale_factor=mid_block_scale_factor, | |
resnet_time_scale_shift=resnet_time_scale_shift, | |
attention_head_dim=attention_head_dim if attention_head_dim is not None else block_out_channels[-1], | |
resnet_groups=norm_num_groups, | |
attn_groups=attn_norm_num_groups, | |
add_attention=add_attention, | |
) | |
# up | |
reversed_block_out_channels = list(reversed(block_out_channels)) | |
output_channel = reversed_block_out_channels[0] | |
for i, up_block_type in enumerate(up_block_types): | |
prev_output_channel = output_channel | |
output_channel = reversed_block_out_channels[i] | |
input_channel = reversed_block_out_channels[min(i + 1, len(block_out_channels) - 1)] | |
is_final_block = i == len(block_out_channels) - 1 | |
up_block = get_up_block( | |
up_block_type, | |
num_layers=layers_per_block + 1, | |
in_channels=input_channel, | |
out_channels=output_channel, | |
prev_output_channel=prev_output_channel, | |
temb_channels=time_embed_dim, | |
add_upsample=not is_final_block, | |
resnet_eps=norm_eps, | |
resnet_act_fn=act_fn, | |
resnet_groups=norm_num_groups, | |
attention_head_dim=attention_head_dim if attention_head_dim is not None else output_channel, | |
resnet_time_scale_shift=resnet_time_scale_shift, | |
upsample_type=upsample_type, | |
dropout=dropout, | |
) | |
self.up_blocks.append(up_block) | |
prev_output_channel = output_channel | |
# out | |
num_groups_out = norm_num_groups if norm_num_groups is not None else min(block_out_channels[0] // 4, 32) | |
self.conv_norm_out = nn.GroupNorm(num_channels=block_out_channels[0], num_groups=num_groups_out, eps=norm_eps) | |
self.conv_act = nn.SiLU() | |
self.conv_out = nn.Conv2d(block_out_channels[0], out_channels, kernel_size=3, padding=1) | |
def forward( | |
self, | |
sample: torch.FloatTensor, | |
timestep: Union[torch.Tensor, float, int], | |
class_labels: Optional[torch.Tensor] = None, | |
return_dict: bool = True, | |
) -> Union[UNet2DOutput, Tuple]: | |
r""" | |
The [`UNet2DModel`] forward method. | |
Args: | |
sample (`torch.FloatTensor`): | |
The noisy input tensor with the following shape `(batch, channel, height, width)`. | |
timestep (`torch.FloatTensor` or `float` or `int`): The number of timesteps to denoise an input. | |
class_labels (`torch.FloatTensor`, *optional*, defaults to `None`): | |
Optional class labels for conditioning. Their embeddings will be summed with the timestep embeddings. | |
return_dict (`bool`, *optional*, defaults to `True`): | |
Whether or not to return a [`~models.unet_2d.UNet2DOutput`] instead of a plain tuple. | |
Returns: | |
[`~models.unet_2d.UNet2DOutput`] or `tuple`: | |
If `return_dict` is True, an [`~models.unet_2d.UNet2DOutput`] is returned, otherwise a `tuple` is | |
returned where the first element is the sample tensor. | |
""" | |
# 0. center input if necessary | |
if self.config.center_input_sample: | |
sample = 2 * sample - 1.0 | |
# 1. time | |
timesteps = timestep | |
if not torch.is_tensor(timesteps): | |
timesteps = torch.tensor([timesteps], dtype=torch.long, device=sample.device) | |
elif torch.is_tensor(timesteps) and len(timesteps.shape) == 0: | |
timesteps = timesteps[None].to(sample.device) | |
# broadcast to batch dimension in a way that's compatible with ONNX/Core ML | |
timesteps = timesteps * torch.ones(sample.shape[0], dtype=timesteps.dtype, device=timesteps.device) | |
t_emb = self.time_proj(timesteps) | |
# timesteps does not contain any weights and will always return f32 tensors | |
# but time_embedding might actually be running in fp16. so we need to cast here. | |
# there might be better ways to encapsulate this. | |
t_emb = t_emb.to(dtype=self.dtype) | |
emb = self.time_embedding(t_emb) | |
if self.class_embedding is not None: | |
if class_labels is None: | |
raise ValueError("class_labels should be provided when doing class conditioning") | |
if self.config.class_embed_type == "timestep": | |
class_labels = self.time_proj(class_labels) | |
class_emb = self.class_embedding(class_labels).to(dtype=self.dtype) | |
emb = emb + class_emb | |
elif self.class_embedding is None and class_labels is not None: | |
raise ValueError("class_embedding needs to be initialized in order to use class conditioning") | |
# 2. pre-process | |
skip_sample = sample | |
sample = self.conv_in(sample) | |
# 3. down | |
down_block_res_samples = (sample,) | |
for downsample_block in self.down_blocks: | |
if hasattr(downsample_block, "skip_conv"): | |
sample, res_samples, skip_sample = downsample_block( | |
hidden_states=sample, temb=emb, skip_sample=skip_sample | |
) | |
else: | |
sample, res_samples = downsample_block(hidden_states=sample, temb=emb) | |
down_block_res_samples += res_samples | |
# 4. mid | |
sample = self.mid_block(sample, emb) | |
# 5. up | |
skip_sample = None | |
for upsample_block in self.up_blocks: | |
res_samples = down_block_res_samples[-len(upsample_block.resnets) :] | |
down_block_res_samples = down_block_res_samples[: -len(upsample_block.resnets)] | |
if hasattr(upsample_block, "skip_conv"): | |
sample, skip_sample = upsample_block(sample, res_samples, emb, skip_sample) | |
else: | |
sample = upsample_block(sample, res_samples, emb) | |
# 6. post-process | |
sample = self.conv_norm_out(sample) | |
sample = self.conv_act(sample) | |
sample = self.conv_out(sample) | |
if skip_sample is not None: | |
sample += skip_sample | |
if self.config.time_embedding_type == "fourier": | |
timesteps = timesteps.reshape((sample.shape[0], *([1] * len(sample.shape[1:])))) | |
sample = sample / timesteps | |
if not return_dict: | |
return (sample,) | |
return UNet2DOutput(sample=sample) | |