Spaces:
Running
on
Zero
Running
on
Zero
# Copyright 2024 The HuggingFace Team. All rights reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
from dataclasses import dataclass | |
from typing import Optional, Tuple, Union | |
import torch | |
import torch.nn as nn | |
from ...configuration_utils import ConfigMixin, register_to_config | |
from ...utils import BaseOutput | |
from ..embeddings import GaussianFourierProjection, TimestepEmbedding, Timesteps | |
from ..modeling_utils import ModelMixin | |
from .unet_1d_blocks import get_down_block, get_mid_block, get_out_block, get_up_block | |
class UNet1DOutput(BaseOutput): | |
""" | |
The output of [`UNet1DModel`]. | |
Args: | |
sample (`torch.FloatTensor` of shape `(batch_size, num_channels, sample_size)`): | |
The hidden states output from the last layer of the model. | |
""" | |
sample: torch.FloatTensor | |
class UNet1DModel(ModelMixin, ConfigMixin): | |
r""" | |
A 1D UNet model that takes a noisy sample and a timestep and returns a sample shaped output. | |
This model inherits from [`ModelMixin`]. Check the superclass documentation for it's generic methods implemented | |
for all models (such as downloading or saving). | |
Parameters: | |
sample_size (`int`, *optional*): Default length of sample. Should be adaptable at runtime. | |
in_channels (`int`, *optional*, defaults to 2): Number of channels in the input sample. | |
out_channels (`int`, *optional*, defaults to 2): Number of channels in the output. | |
extra_in_channels (`int`, *optional*, defaults to 0): | |
Number of additional channels to be added to the input of the first down block. Useful for cases where the | |
input data has more channels than what the model was initially designed for. | |
time_embedding_type (`str`, *optional*, defaults to `"fourier"`): Type of time embedding to use. | |
freq_shift (`float`, *optional*, defaults to 0.0): Frequency shift for Fourier time embedding. | |
flip_sin_to_cos (`bool`, *optional*, defaults to `False`): | |
Whether to flip sin to cos for Fourier time embedding. | |
down_block_types (`Tuple[str]`, *optional*, defaults to `("DownBlock1DNoSkip", "DownBlock1D", "AttnDownBlock1D")`): | |
Tuple of downsample block types. | |
up_block_types (`Tuple[str]`, *optional*, defaults to `("AttnUpBlock1D", "UpBlock1D", "UpBlock1DNoSkip")`): | |
Tuple of upsample block types. | |
block_out_channels (`Tuple[int]`, *optional*, defaults to `(32, 32, 64)`): | |
Tuple of block output channels. | |
mid_block_type (`str`, *optional*, defaults to `"UNetMidBlock1D"`): Block type for middle of UNet. | |
out_block_type (`str`, *optional*, defaults to `None`): Optional output processing block of UNet. | |
act_fn (`str`, *optional*, defaults to `None`): Optional activation function in UNet blocks. | |
norm_num_groups (`int`, *optional*, defaults to 8): The number of groups for normalization. | |
layers_per_block (`int`, *optional*, defaults to 1): The number of layers per block. | |
downsample_each_block (`int`, *optional*, defaults to `False`): | |
Experimental feature for using a UNet without upsampling. | |
""" | |
def __init__( | |
self, | |
sample_size: int = 65536, | |
sample_rate: Optional[int] = None, | |
in_channels: int = 2, | |
out_channels: int = 2, | |
extra_in_channels: int = 0, | |
time_embedding_type: str = "fourier", | |
flip_sin_to_cos: bool = True, | |
use_timestep_embedding: bool = False, | |
freq_shift: float = 0.0, | |
down_block_types: Tuple[str] = ("DownBlock1DNoSkip", "DownBlock1D", "AttnDownBlock1D"), | |
up_block_types: Tuple[str] = ("AttnUpBlock1D", "UpBlock1D", "UpBlock1DNoSkip"), | |
mid_block_type: Tuple[str] = "UNetMidBlock1D", | |
out_block_type: str = None, | |
block_out_channels: Tuple[int] = (32, 32, 64), | |
act_fn: str = None, | |
norm_num_groups: int = 8, | |
layers_per_block: int = 1, | |
downsample_each_block: bool = False, | |
): | |
super().__init__() | |
self.sample_size = sample_size | |
# time | |
if time_embedding_type == "fourier": | |
self.time_proj = GaussianFourierProjection( | |
embedding_size=8, set_W_to_weight=False, log=False, flip_sin_to_cos=flip_sin_to_cos | |
) | |
timestep_input_dim = 2 * block_out_channels[0] | |
elif time_embedding_type == "positional": | |
self.time_proj = Timesteps( | |
block_out_channels[0], flip_sin_to_cos=flip_sin_to_cos, downscale_freq_shift=freq_shift | |
) | |
timestep_input_dim = block_out_channels[0] | |
if use_timestep_embedding: | |
time_embed_dim = block_out_channels[0] * 4 | |
self.time_mlp = TimestepEmbedding( | |
in_channels=timestep_input_dim, | |
time_embed_dim=time_embed_dim, | |
act_fn=act_fn, | |
out_dim=block_out_channels[0], | |
) | |
self.down_blocks = nn.ModuleList([]) | |
self.mid_block = None | |
self.up_blocks = nn.ModuleList([]) | |
self.out_block = None | |
# down | |
output_channel = in_channels | |
for i, down_block_type in enumerate(down_block_types): | |
input_channel = output_channel | |
output_channel = block_out_channels[i] | |
if i == 0: | |
input_channel += extra_in_channels | |
is_final_block = i == len(block_out_channels) - 1 | |
down_block = get_down_block( | |
down_block_type, | |
num_layers=layers_per_block, | |
in_channels=input_channel, | |
out_channels=output_channel, | |
temb_channels=block_out_channels[0], | |
add_downsample=not is_final_block or downsample_each_block, | |
) | |
self.down_blocks.append(down_block) | |
# mid | |
self.mid_block = get_mid_block( | |
mid_block_type, | |
in_channels=block_out_channels[-1], | |
mid_channels=block_out_channels[-1], | |
out_channels=block_out_channels[-1], | |
embed_dim=block_out_channels[0], | |
num_layers=layers_per_block, | |
add_downsample=downsample_each_block, | |
) | |
# up | |
reversed_block_out_channels = list(reversed(block_out_channels)) | |
output_channel = reversed_block_out_channels[0] | |
if out_block_type is None: | |
final_upsample_channels = out_channels | |
else: | |
final_upsample_channels = block_out_channels[0] | |
for i, up_block_type in enumerate(up_block_types): | |
prev_output_channel = output_channel | |
output_channel = ( | |
reversed_block_out_channels[i + 1] if i < len(up_block_types) - 1 else final_upsample_channels | |
) | |
is_final_block = i == len(block_out_channels) - 1 | |
up_block = get_up_block( | |
up_block_type, | |
num_layers=layers_per_block, | |
in_channels=prev_output_channel, | |
out_channels=output_channel, | |
temb_channels=block_out_channels[0], | |
add_upsample=not is_final_block, | |
) | |
self.up_blocks.append(up_block) | |
prev_output_channel = output_channel | |
# out | |
num_groups_out = norm_num_groups if norm_num_groups is not None else min(block_out_channels[0] // 4, 32) | |
self.out_block = get_out_block( | |
out_block_type=out_block_type, | |
num_groups_out=num_groups_out, | |
embed_dim=block_out_channels[0], | |
out_channels=out_channels, | |
act_fn=act_fn, | |
fc_dim=block_out_channels[-1] // 4, | |
) | |
def forward( | |
self, | |
sample: torch.FloatTensor, | |
timestep: Union[torch.Tensor, float, int], | |
return_dict: bool = True, | |
) -> Union[UNet1DOutput, Tuple]: | |
r""" | |
The [`UNet1DModel`] forward method. | |
Args: | |
sample (`torch.FloatTensor`): | |
The noisy input tensor with the following shape `(batch_size, num_channels, sample_size)`. | |
timestep (`torch.FloatTensor` or `float` or `int`): The number of timesteps to denoise an input. | |
return_dict (`bool`, *optional*, defaults to `True`): | |
Whether or not to return a [`~models.unet_1d.UNet1DOutput`] instead of a plain tuple. | |
Returns: | |
[`~models.unet_1d.UNet1DOutput`] or `tuple`: | |
If `return_dict` is True, an [`~models.unet_1d.UNet1DOutput`] is returned, otherwise a `tuple` is | |
returned where the first element is the sample tensor. | |
""" | |
# 1. time | |
timesteps = timestep | |
if not torch.is_tensor(timesteps): | |
timesteps = torch.tensor([timesteps], dtype=torch.long, device=sample.device) | |
elif torch.is_tensor(timesteps) and len(timesteps.shape) == 0: | |
timesteps = timesteps[None].to(sample.device) | |
timestep_embed = self.time_proj(timesteps) | |
if self.config.use_timestep_embedding: | |
timestep_embed = self.time_mlp(timestep_embed) | |
else: | |
timestep_embed = timestep_embed[..., None] | |
timestep_embed = timestep_embed.repeat([1, 1, sample.shape[2]]).to(sample.dtype) | |
timestep_embed = timestep_embed.broadcast_to((sample.shape[:1] + timestep_embed.shape[1:])) | |
# 2. down | |
down_block_res_samples = () | |
for downsample_block in self.down_blocks: | |
sample, res_samples = downsample_block(hidden_states=sample, temb=timestep_embed) | |
down_block_res_samples += res_samples | |
# 3. mid | |
if self.mid_block: | |
sample = self.mid_block(sample, timestep_embed) | |
# 4. up | |
for i, upsample_block in enumerate(self.up_blocks): | |
res_samples = down_block_res_samples[-1:] | |
down_block_res_samples = down_block_res_samples[:-1] | |
sample = upsample_block(sample, res_hidden_states_tuple=res_samples, temb=timestep_embed) | |
# 5. post-process | |
if self.out_block: | |
sample = self.out_block(sample, timestep_embed) | |
if not return_dict: | |
return (sample,) | |
return UNet1DOutput(sample=sample) | |