InstantIR / diffusers /loaders /textual_inversion.py
JOY-Huang's picture
add local diffusers
62c110b
raw
history blame
26.9 kB
# Copyright 2024 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import Dict, List, Optional, Union
import safetensors
import torch
from huggingface_hub.utils import validate_hf_hub_args
from torch import nn
from ..models.modeling_utils import load_state_dict
from ..utils import _get_model_file, is_accelerate_available, is_transformers_available, logging
if is_transformers_available():
from transformers import PreTrainedModel, PreTrainedTokenizer
if is_accelerate_available():
from accelerate.hooks import AlignDevicesHook, CpuOffload, remove_hook_from_module
logger = logging.get_logger(__name__)
TEXT_INVERSION_NAME = "learned_embeds.bin"
TEXT_INVERSION_NAME_SAFE = "learned_embeds.safetensors"
@validate_hf_hub_args
def load_textual_inversion_state_dicts(pretrained_model_name_or_paths, **kwargs):
cache_dir = kwargs.pop("cache_dir", None)
force_download = kwargs.pop("force_download", False)
resume_download = kwargs.pop("resume_download", None)
proxies = kwargs.pop("proxies", None)
local_files_only = kwargs.pop("local_files_only", None)
token = kwargs.pop("token", None)
revision = kwargs.pop("revision", None)
subfolder = kwargs.pop("subfolder", None)
weight_name = kwargs.pop("weight_name", None)
use_safetensors = kwargs.pop("use_safetensors", None)
allow_pickle = False
if use_safetensors is None:
use_safetensors = True
allow_pickle = True
user_agent = {
"file_type": "text_inversion",
"framework": "pytorch",
}
state_dicts = []
for pretrained_model_name_or_path in pretrained_model_name_or_paths:
if not isinstance(pretrained_model_name_or_path, (dict, torch.Tensor)):
# 3.1. Load textual inversion file
model_file = None
# Let's first try to load .safetensors weights
if (use_safetensors and weight_name is None) or (
weight_name is not None and weight_name.endswith(".safetensors")
):
try:
model_file = _get_model_file(
pretrained_model_name_or_path,
weights_name=weight_name or TEXT_INVERSION_NAME_SAFE,
cache_dir=cache_dir,
force_download=force_download,
resume_download=resume_download,
proxies=proxies,
local_files_only=local_files_only,
token=token,
revision=revision,
subfolder=subfolder,
user_agent=user_agent,
)
state_dict = safetensors.torch.load_file(model_file, device="cpu")
except Exception as e:
if not allow_pickle:
raise e
model_file = None
if model_file is None:
model_file = _get_model_file(
pretrained_model_name_or_path,
weights_name=weight_name or TEXT_INVERSION_NAME,
cache_dir=cache_dir,
force_download=force_download,
resume_download=resume_download,
proxies=proxies,
local_files_only=local_files_only,
token=token,
revision=revision,
subfolder=subfolder,
user_agent=user_agent,
)
state_dict = load_state_dict(model_file)
else:
state_dict = pretrained_model_name_or_path
state_dicts.append(state_dict)
return state_dicts
class TextualInversionLoaderMixin:
r"""
Load Textual Inversion tokens and embeddings to the tokenizer and text encoder.
"""
def maybe_convert_prompt(self, prompt: Union[str, List[str]], tokenizer: "PreTrainedTokenizer"): # noqa: F821
r"""
Processes prompts that include a special token corresponding to a multi-vector textual inversion embedding to
be replaced with multiple special tokens each corresponding to one of the vectors. If the prompt has no textual
inversion token or if the textual inversion token is a single vector, the input prompt is returned.
Parameters:
prompt (`str` or list of `str`):
The prompt or prompts to guide the image generation.
tokenizer (`PreTrainedTokenizer`):
The tokenizer responsible for encoding the prompt into input tokens.
Returns:
`str` or list of `str`: The converted prompt
"""
if not isinstance(prompt, List):
prompts = [prompt]
else:
prompts = prompt
prompts = [self._maybe_convert_prompt(p, tokenizer) for p in prompts]
if not isinstance(prompt, List):
return prompts[0]
return prompts
def _maybe_convert_prompt(self, prompt: str, tokenizer: "PreTrainedTokenizer"): # noqa: F821
r"""
Maybe convert a prompt into a "multi vector"-compatible prompt. If the prompt includes a token that corresponds
to a multi-vector textual inversion embedding, this function will process the prompt so that the special token
is replaced with multiple special tokens each corresponding to one of the vectors. If the prompt has no textual
inversion token or a textual inversion token that is a single vector, the input prompt is simply returned.
Parameters:
prompt (`str`):
The prompt to guide the image generation.
tokenizer (`PreTrainedTokenizer`):
The tokenizer responsible for encoding the prompt into input tokens.
Returns:
`str`: The converted prompt
"""
tokens = tokenizer.tokenize(prompt)
unique_tokens = set(tokens)
for token in unique_tokens:
if token in tokenizer.added_tokens_encoder:
replacement = token
i = 1
while f"{token}_{i}" in tokenizer.added_tokens_encoder:
replacement += f" {token}_{i}"
i += 1
prompt = prompt.replace(token, replacement)
return prompt
def _check_text_inv_inputs(self, tokenizer, text_encoder, pretrained_model_name_or_paths, tokens):
if tokenizer is None:
raise ValueError(
f"{self.__class__.__name__} requires `self.tokenizer` or passing a `tokenizer` of type `PreTrainedTokenizer` for calling"
f" `{self.load_textual_inversion.__name__}`"
)
if text_encoder is None:
raise ValueError(
f"{self.__class__.__name__} requires `self.text_encoder` or passing a `text_encoder` of type `PreTrainedModel` for calling"
f" `{self.load_textual_inversion.__name__}`"
)
if len(pretrained_model_name_or_paths) > 1 and len(pretrained_model_name_or_paths) != len(tokens):
raise ValueError(
f"You have passed a list of models of length {len(pretrained_model_name_or_paths)}, and list of tokens of length {len(tokens)} "
f"Make sure both lists have the same length."
)
valid_tokens = [t for t in tokens if t is not None]
if len(set(valid_tokens)) < len(valid_tokens):
raise ValueError(f"You have passed a list of tokens that contains duplicates: {tokens}")
@staticmethod
def _retrieve_tokens_and_embeddings(tokens, state_dicts, tokenizer):
all_tokens = []
all_embeddings = []
for state_dict, token in zip(state_dicts, tokens):
if isinstance(state_dict, torch.Tensor):
if token is None:
raise ValueError(
"You are trying to load a textual inversion embedding that has been saved as a PyTorch tensor. Make sure to pass the name of the corresponding token in this case: `token=...`."
)
loaded_token = token
embedding = state_dict
elif len(state_dict) == 1:
# diffusers
loaded_token, embedding = next(iter(state_dict.items()))
elif "string_to_param" in state_dict:
# A1111
loaded_token = state_dict["name"]
embedding = state_dict["string_to_param"]["*"]
else:
raise ValueError(
f"Loaded state dictionary is incorrect: {state_dict}. \n\n"
"Please verify that the loaded state dictionary of the textual embedding either only has a single key or includes the `string_to_param`"
" input key."
)
if token is not None and loaded_token != token:
logger.info(f"The loaded token: {loaded_token} is overwritten by the passed token {token}.")
else:
token = loaded_token
if token in tokenizer.get_vocab():
raise ValueError(
f"Token {token} already in tokenizer vocabulary. Please choose a different token name or remove {token} and embedding from the tokenizer and text encoder."
)
all_tokens.append(token)
all_embeddings.append(embedding)
return all_tokens, all_embeddings
@staticmethod
def _extend_tokens_and_embeddings(tokens, embeddings, tokenizer):
all_tokens = []
all_embeddings = []
for embedding, token in zip(embeddings, tokens):
if f"{token}_1" in tokenizer.get_vocab():
multi_vector_tokens = [token]
i = 1
while f"{token}_{i}" in tokenizer.added_tokens_encoder:
multi_vector_tokens.append(f"{token}_{i}")
i += 1
raise ValueError(
f"Multi-vector Token {multi_vector_tokens} already in tokenizer vocabulary. Please choose a different token name or remove the {multi_vector_tokens} and embedding from the tokenizer and text encoder."
)
is_multi_vector = len(embedding.shape) > 1 and embedding.shape[0] > 1
if is_multi_vector:
all_tokens += [token] + [f"{token}_{i}" for i in range(1, embedding.shape[0])]
all_embeddings += [e for e in embedding] # noqa: C416
else:
all_tokens += [token]
all_embeddings += [embedding[0]] if len(embedding.shape) > 1 else [embedding]
return all_tokens, all_embeddings
@validate_hf_hub_args
def load_textual_inversion(
self,
pretrained_model_name_or_path: Union[str, List[str], Dict[str, torch.Tensor], List[Dict[str, torch.Tensor]]],
token: Optional[Union[str, List[str]]] = None,
tokenizer: Optional["PreTrainedTokenizer"] = None, # noqa: F821
text_encoder: Optional["PreTrainedModel"] = None, # noqa: F821
**kwargs,
):
r"""
Load Textual Inversion embeddings into the text encoder of [`StableDiffusionPipeline`] (both 🤗 Diffusers and
Automatic1111 formats are supported).
Parameters:
pretrained_model_name_or_path (`str` or `os.PathLike` or `List[str or os.PathLike]` or `Dict` or `List[Dict]`):
Can be either one of the following or a list of them:
- A string, the *model id* (for example `sd-concepts-library/low-poly-hd-logos-icons`) of a
pretrained model hosted on the Hub.
- A path to a *directory* (for example `./my_text_inversion_directory/`) containing the textual
inversion weights.
- A path to a *file* (for example `./my_text_inversions.pt`) containing textual inversion weights.
- A [torch state
dict](https://pytorch.org/tutorials/beginner/saving_loading_models.html#what-is-a-state-dict).
token (`str` or `List[str]`, *optional*):
Override the token to use for the textual inversion weights. If `pretrained_model_name_or_path` is a
list, then `token` must also be a list of equal length.
text_encoder ([`~transformers.CLIPTextModel`], *optional*):
Frozen text-encoder ([clip-vit-large-patch14](https://huggingface.co./openai/clip-vit-large-patch14)).
If not specified, function will take self.tokenizer.
tokenizer ([`~transformers.CLIPTokenizer`], *optional*):
A `CLIPTokenizer` to tokenize text. If not specified, function will take self.tokenizer.
weight_name (`str`, *optional*):
Name of a custom weight file. This should be used when:
- The saved textual inversion file is in 🤗 Diffusers format, but was saved under a specific weight
name such as `text_inv.bin`.
- The saved textual inversion file is in the Automatic1111 format.
cache_dir (`Union[str, os.PathLike]`, *optional*):
Path to a directory where a downloaded pretrained model configuration is cached if the standard cache
is not used.
force_download (`bool`, *optional*, defaults to `False`):
Whether or not to force the (re-)download of the model weights and configuration files, overriding the
cached versions if they exist.
resume_download:
Deprecated and ignored. All downloads are now resumed by default when possible. Will be removed in v1
of Diffusers.
proxies (`Dict[str, str]`, *optional*):
A dictionary of proxy servers to use by protocol or endpoint, for example, `{'http': 'foo.bar:3128',
'http://hostname': 'foo.bar:4012'}`. The proxies are used on each request.
local_files_only (`bool`, *optional*, defaults to `False`):
Whether to only load local model weights and configuration files or not. If set to `True`, the model
won't be downloaded from the Hub.
token (`str` or *bool*, *optional*):
The token to use as HTTP bearer authorization for remote files. If `True`, the token generated from
`diffusers-cli login` (stored in `~/.huggingface`) is used.
revision (`str`, *optional*, defaults to `"main"`):
The specific model version to use. It can be a branch name, a tag name, a commit id, or any identifier
allowed by Git.
subfolder (`str`, *optional*, defaults to `""`):
The subfolder location of a model file within a larger model repository on the Hub or locally.
mirror (`str`, *optional*):
Mirror source to resolve accessibility issues if you're downloading a model in China. We do not
guarantee the timeliness or safety of the source, and you should refer to the mirror site for more
information.
Example:
To load a Textual Inversion embedding vector in 🤗 Diffusers format:
```py
from diffusers import StableDiffusionPipeline
import torch
model_id = "runwayml/stable-diffusion-v1-5"
pipe = StableDiffusionPipeline.from_pretrained(model_id, torch_dtype=torch.float16).to("cuda")
pipe.load_textual_inversion("sd-concepts-library/cat-toy")
prompt = "A <cat-toy> backpack"
image = pipe(prompt, num_inference_steps=50).images[0]
image.save("cat-backpack.png")
```
To load a Textual Inversion embedding vector in Automatic1111 format, make sure to download the vector first
(for example from [civitAI](https://civitai.com/models/3036?modelVersionId=9857)) and then load the vector
locally:
```py
from diffusers import StableDiffusionPipeline
import torch
model_id = "runwayml/stable-diffusion-v1-5"
pipe = StableDiffusionPipeline.from_pretrained(model_id, torch_dtype=torch.float16).to("cuda")
pipe.load_textual_inversion("./charturnerv2.pt", token="charturnerv2")
prompt = "charturnerv2, multiple views of the same character in the same outfit, a character turnaround of a woman wearing a black jacket and red shirt, best quality, intricate details."
image = pipe(prompt, num_inference_steps=50).images[0]
image.save("character.png")
```
"""
# 1. Set correct tokenizer and text encoder
tokenizer = tokenizer or getattr(self, "tokenizer", None)
text_encoder = text_encoder or getattr(self, "text_encoder", None)
# 2. Normalize inputs
pretrained_model_name_or_paths = (
[pretrained_model_name_or_path]
if not isinstance(pretrained_model_name_or_path, list)
else pretrained_model_name_or_path
)
tokens = [token] if not isinstance(token, list) else token
if tokens[0] is None:
tokens = tokens * len(pretrained_model_name_or_paths)
# 3. Check inputs
self._check_text_inv_inputs(tokenizer, text_encoder, pretrained_model_name_or_paths, tokens)
# 4. Load state dicts of textual embeddings
state_dicts = load_textual_inversion_state_dicts(pretrained_model_name_or_paths, **kwargs)
# 4.1 Handle the special case when state_dict is a tensor that contains n embeddings for n tokens
if len(tokens) > 1 and len(state_dicts) == 1:
if isinstance(state_dicts[0], torch.Tensor):
state_dicts = list(state_dicts[0])
if len(tokens) != len(state_dicts):
raise ValueError(
f"You have passed a state_dict contains {len(state_dicts)} embeddings, and list of tokens of length {len(tokens)} "
f"Make sure both have the same length."
)
# 4. Retrieve tokens and embeddings
tokens, embeddings = self._retrieve_tokens_and_embeddings(tokens, state_dicts, tokenizer)
# 5. Extend tokens and embeddings for multi vector
tokens, embeddings = self._extend_tokens_and_embeddings(tokens, embeddings, tokenizer)
# 6. Make sure all embeddings have the correct size
expected_emb_dim = text_encoder.get_input_embeddings().weight.shape[-1]
if any(expected_emb_dim != emb.shape[-1] for emb in embeddings):
raise ValueError(
"Loaded embeddings are of incorrect shape. Expected each textual inversion embedding "
"to be of shape {input_embeddings.shape[-1]}, but are {embeddings.shape[-1]} "
)
# 7. Now we can be sure that loading the embedding matrix works
# < Unsafe code:
# 7.1 Offload all hooks in case the pipeline was cpu offloaded before make sure, we offload and onload again
is_model_cpu_offload = False
is_sequential_cpu_offload = False
for _, component in self.components.items():
if isinstance(component, nn.Module):
if hasattr(component, "_hf_hook"):
is_model_cpu_offload = isinstance(getattr(component, "_hf_hook"), CpuOffload)
is_sequential_cpu_offload = (
isinstance(getattr(component, "_hf_hook"), AlignDevicesHook)
or hasattr(component._hf_hook, "hooks")
and isinstance(component._hf_hook.hooks[0], AlignDevicesHook)
)
logger.info(
"Accelerate hooks detected. Since you have called `load_textual_inversion()`, the previous hooks will be first removed. Then the textual inversion parameters will be loaded and the hooks will be applied again."
)
remove_hook_from_module(component, recurse=is_sequential_cpu_offload)
# 7.2 save expected device and dtype
device = text_encoder.device
dtype = text_encoder.dtype
# 7.3 Increase token embedding matrix
text_encoder.resize_token_embeddings(len(tokenizer) + len(tokens))
input_embeddings = text_encoder.get_input_embeddings().weight
# 7.4 Load token and embedding
for token, embedding in zip(tokens, embeddings):
# add tokens and get ids
tokenizer.add_tokens(token)
token_id = tokenizer.convert_tokens_to_ids(token)
input_embeddings.data[token_id] = embedding
logger.info(f"Loaded textual inversion embedding for {token}.")
input_embeddings.to(dtype=dtype, device=device)
# 7.5 Offload the model again
if is_model_cpu_offload:
self.enable_model_cpu_offload()
elif is_sequential_cpu_offload:
self.enable_sequential_cpu_offload()
# / Unsafe Code >
def unload_textual_inversion(
self,
tokens: Optional[Union[str, List[str]]] = None,
tokenizer: Optional["PreTrainedTokenizer"] = None,
text_encoder: Optional["PreTrainedModel"] = None,
):
r"""
Unload Textual Inversion embeddings from the text encoder of [`StableDiffusionPipeline`]
Example:
```py
from diffusers import AutoPipelineForText2Image
import torch
pipeline = AutoPipelineForText2Image.from_pretrained("runwayml/stable-diffusion-v1-5")
# Example 1
pipeline.load_textual_inversion("sd-concepts-library/gta5-artwork")
pipeline.load_textual_inversion("sd-concepts-library/moeb-style")
# Remove all token embeddings
pipeline.unload_textual_inversion()
# Example 2
pipeline.load_textual_inversion("sd-concepts-library/moeb-style")
pipeline.load_textual_inversion("sd-concepts-library/gta5-artwork")
# Remove just one token
pipeline.unload_textual_inversion("<moe-bius>")
# Example 3: unload from SDXL
pipeline = AutoPipelineForText2Image.from_pretrained("stabilityai/stable-diffusion-xl-base-1.0")
embedding_path = hf_hub_download(
repo_id="linoyts/web_y2k", filename="web_y2k_emb.safetensors", repo_type="model"
)
# load embeddings to the text encoders
state_dict = load_file(embedding_path)
# load embeddings of text_encoder 1 (CLIP ViT-L/14)
pipeline.load_textual_inversion(
state_dict["clip_l"],
token=["<s0>", "<s1>"],
text_encoder=pipeline.text_encoder,
tokenizer=pipeline.tokenizer,
)
# load embeddings of text_encoder 2 (CLIP ViT-G/14)
pipeline.load_textual_inversion(
state_dict["clip_g"],
token=["<s0>", "<s1>"],
text_encoder=pipeline.text_encoder_2,
tokenizer=pipeline.tokenizer_2,
)
# Unload explicitly from both text encoders abd tokenizers
pipeline.unload_textual_inversion(
tokens=["<s0>", "<s1>"], text_encoder=pipeline.text_encoder, tokenizer=pipeline.tokenizer
)
pipeline.unload_textual_inversion(
tokens=["<s0>", "<s1>"], text_encoder=pipeline.text_encoder_2, tokenizer=pipeline.tokenizer_2
)
```
"""
tokenizer = tokenizer or getattr(self, "tokenizer", None)
text_encoder = text_encoder or getattr(self, "text_encoder", None)
# Get textual inversion tokens and ids
token_ids = []
last_special_token_id = None
if tokens:
if isinstance(tokens, str):
tokens = [tokens]
for added_token_id, added_token in tokenizer.added_tokens_decoder.items():
if not added_token.special:
if added_token.content in tokens:
token_ids.append(added_token_id)
else:
last_special_token_id = added_token_id
if len(token_ids) == 0:
raise ValueError("No tokens to remove found")
else:
tokens = []
for added_token_id, added_token in tokenizer.added_tokens_decoder.items():
if not added_token.special:
token_ids.append(added_token_id)
tokens.append(added_token.content)
else:
last_special_token_id = added_token_id
# Delete from tokenizer
for token_id, token_to_remove in zip(token_ids, tokens):
del tokenizer._added_tokens_decoder[token_id]
del tokenizer._added_tokens_encoder[token_to_remove]
# Make all token ids sequential in tokenizer
key_id = 1
for token_id in tokenizer.added_tokens_decoder:
if token_id > last_special_token_id and token_id > last_special_token_id + key_id:
token = tokenizer._added_tokens_decoder[token_id]
tokenizer._added_tokens_decoder[last_special_token_id + key_id] = token
del tokenizer._added_tokens_decoder[token_id]
tokenizer._added_tokens_encoder[token.content] = last_special_token_id + key_id
key_id += 1
tokenizer._update_trie()
# Delete from text encoder
text_embedding_dim = text_encoder.get_input_embeddings().embedding_dim
temp_text_embedding_weights = text_encoder.get_input_embeddings().weight
text_embedding_weights = temp_text_embedding_weights[: last_special_token_id + 1]
to_append = []
for i in range(last_special_token_id + 1, temp_text_embedding_weights.shape[0]):
if i not in token_ids:
to_append.append(temp_text_embedding_weights[i].unsqueeze(0))
if len(to_append) > 0:
to_append = torch.cat(to_append, dim=0)
text_embedding_weights = torch.cat([text_embedding_weights, to_append], dim=0)
text_embeddings_filtered = nn.Embedding(text_embedding_weights.shape[0], text_embedding_dim)
text_embeddings_filtered.weight.data = text_embedding_weights
text_encoder.set_input_embeddings(text_embeddings_filtered)