Spaces:
Running
on
Zero
Running
on
Zero
# coding=utf-8 | |
# Copyright 2024 The HuggingFace Inc. team. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
"""Conversion script for the Stable Diffusion checkpoints.""" | |
import os | |
import re | |
from contextlib import nullcontext | |
from io import BytesIO | |
from urllib.parse import urlparse | |
import requests | |
import yaml | |
from ..models.modeling_utils import load_state_dict | |
from ..schedulers import ( | |
DDIMScheduler, | |
DDPMScheduler, | |
DPMSolverMultistepScheduler, | |
EDMDPMSolverMultistepScheduler, | |
EulerAncestralDiscreteScheduler, | |
EulerDiscreteScheduler, | |
HeunDiscreteScheduler, | |
LMSDiscreteScheduler, | |
PNDMScheduler, | |
) | |
from ..utils import is_accelerate_available, is_transformers_available, logging | |
from ..utils.hub_utils import _get_model_file | |
if is_transformers_available(): | |
from transformers import ( | |
CLIPTextConfig, | |
CLIPTextModel, | |
CLIPTextModelWithProjection, | |
CLIPTokenizer, | |
) | |
if is_accelerate_available(): | |
from accelerate import init_empty_weights | |
from ..models.modeling_utils import load_model_dict_into_meta | |
logger = logging.get_logger(__name__) # pylint: disable=invalid-name | |
CONFIG_URLS = { | |
"v1": "https://raw.githubusercontent.com/CompVis/stable-diffusion/main/configs/stable-diffusion/v1-inference.yaml", | |
"v2": "https://raw.githubusercontent.com/Stability-AI/stablediffusion/main/configs/stable-diffusion/v2-inference-v.yaml", | |
"xl": "https://raw.githubusercontent.com/Stability-AI/generative-models/main/configs/inference/sd_xl_base.yaml", | |
"xl_refiner": "https://raw.githubusercontent.com/Stability-AI/generative-models/main/configs/inference/sd_xl_refiner.yaml", | |
"upscale": "https://raw.githubusercontent.com/Stability-AI/stablediffusion/main/configs/stable-diffusion/x4-upscaling.yaml", | |
"controlnet": "https://raw.githubusercontent.com/lllyasviel/ControlNet/main/models/cldm_v15.yaml", | |
} | |
CHECKPOINT_KEY_NAMES = { | |
"v2": "model.diffusion_model.input_blocks.2.1.transformer_blocks.0.attn2.to_k.weight", | |
"xl_base": "conditioner.embedders.1.model.transformer.resblocks.9.mlp.c_proj.bias", | |
"xl_refiner": "conditioner.embedders.0.model.transformer.resblocks.9.mlp.c_proj.bias", | |
} | |
SCHEDULER_DEFAULT_CONFIG = { | |
"beta_schedule": "scaled_linear", | |
"beta_start": 0.00085, | |
"beta_end": 0.012, | |
"interpolation_type": "linear", | |
"num_train_timesteps": 1000, | |
"prediction_type": "epsilon", | |
"sample_max_value": 1.0, | |
"set_alpha_to_one": False, | |
"skip_prk_steps": True, | |
"steps_offset": 1, | |
"timestep_spacing": "leading", | |
} | |
STABLE_CASCADE_DEFAULT_CONFIGS = { | |
"stage_c": {"pretrained_model_name_or_path": "diffusers/stable-cascade-configs", "subfolder": "prior"}, | |
"stage_c_lite": {"pretrained_model_name_or_path": "diffusers/stable-cascade-configs", "subfolder": "prior_lite"}, | |
"stage_b": {"pretrained_model_name_or_path": "diffusers/stable-cascade-configs", "subfolder": "decoder"}, | |
"stage_b_lite": {"pretrained_model_name_or_path": "diffusers/stable-cascade-configs", "subfolder": "decoder_lite"}, | |
} | |
def convert_stable_cascade_unet_single_file_to_diffusers(original_state_dict): | |
is_stage_c = "clip_txt_mapper.weight" in original_state_dict | |
if is_stage_c: | |
state_dict = {} | |
for key in original_state_dict.keys(): | |
if key.endswith("in_proj_weight"): | |
weights = original_state_dict[key].chunk(3, 0) | |
state_dict[key.replace("attn.in_proj_weight", "to_q.weight")] = weights[0] | |
state_dict[key.replace("attn.in_proj_weight", "to_k.weight")] = weights[1] | |
state_dict[key.replace("attn.in_proj_weight", "to_v.weight")] = weights[2] | |
elif key.endswith("in_proj_bias"): | |
weights = original_state_dict[key].chunk(3, 0) | |
state_dict[key.replace("attn.in_proj_bias", "to_q.bias")] = weights[0] | |
state_dict[key.replace("attn.in_proj_bias", "to_k.bias")] = weights[1] | |
state_dict[key.replace("attn.in_proj_bias", "to_v.bias")] = weights[2] | |
elif key.endswith("out_proj.weight"): | |
weights = original_state_dict[key] | |
state_dict[key.replace("attn.out_proj.weight", "to_out.0.weight")] = weights | |
elif key.endswith("out_proj.bias"): | |
weights = original_state_dict[key] | |
state_dict[key.replace("attn.out_proj.bias", "to_out.0.bias")] = weights | |
else: | |
state_dict[key] = original_state_dict[key] | |
else: | |
state_dict = {} | |
for key in original_state_dict.keys(): | |
if key.endswith("in_proj_weight"): | |
weights = original_state_dict[key].chunk(3, 0) | |
state_dict[key.replace("attn.in_proj_weight", "to_q.weight")] = weights[0] | |
state_dict[key.replace("attn.in_proj_weight", "to_k.weight")] = weights[1] | |
state_dict[key.replace("attn.in_proj_weight", "to_v.weight")] = weights[2] | |
elif key.endswith("in_proj_bias"): | |
weights = original_state_dict[key].chunk(3, 0) | |
state_dict[key.replace("attn.in_proj_bias", "to_q.bias")] = weights[0] | |
state_dict[key.replace("attn.in_proj_bias", "to_k.bias")] = weights[1] | |
state_dict[key.replace("attn.in_proj_bias", "to_v.bias")] = weights[2] | |
elif key.endswith("out_proj.weight"): | |
weights = original_state_dict[key] | |
state_dict[key.replace("attn.out_proj.weight", "to_out.0.weight")] = weights | |
elif key.endswith("out_proj.bias"): | |
weights = original_state_dict[key] | |
state_dict[key.replace("attn.out_proj.bias", "to_out.0.bias")] = weights | |
# rename clip_mapper to clip_txt_pooled_mapper | |
elif key.endswith("clip_mapper.weight"): | |
weights = original_state_dict[key] | |
state_dict[key.replace("clip_mapper.weight", "clip_txt_pooled_mapper.weight")] = weights | |
elif key.endswith("clip_mapper.bias"): | |
weights = original_state_dict[key] | |
state_dict[key.replace("clip_mapper.bias", "clip_txt_pooled_mapper.bias")] = weights | |
else: | |
state_dict[key] = original_state_dict[key] | |
return state_dict | |
def infer_stable_cascade_single_file_config(checkpoint): | |
is_stage_c = "clip_txt_mapper.weight" in checkpoint | |
is_stage_b = "down_blocks.1.0.channelwise.0.weight" in checkpoint | |
if is_stage_c and (checkpoint["clip_txt_mapper.weight"].shape[0] == 1536): | |
config_type = "stage_c_lite" | |
elif is_stage_c and (checkpoint["clip_txt_mapper.weight"].shape[0] == 2048): | |
config_type = "stage_c" | |
elif is_stage_b and checkpoint["down_blocks.1.0.channelwise.0.weight"].shape[-1] == 576: | |
config_type = "stage_b_lite" | |
elif is_stage_b and checkpoint["down_blocks.1.0.channelwise.0.weight"].shape[-1] == 640: | |
config_type = "stage_b" | |
return STABLE_CASCADE_DEFAULT_CONFIGS[config_type] | |
DIFFUSERS_TO_LDM_MAPPING = { | |
"unet": { | |
"layers": { | |
"time_embedding.linear_1.weight": "time_embed.0.weight", | |
"time_embedding.linear_1.bias": "time_embed.0.bias", | |
"time_embedding.linear_2.weight": "time_embed.2.weight", | |
"time_embedding.linear_2.bias": "time_embed.2.bias", | |
"conv_in.weight": "input_blocks.0.0.weight", | |
"conv_in.bias": "input_blocks.0.0.bias", | |
"conv_norm_out.weight": "out.0.weight", | |
"conv_norm_out.bias": "out.0.bias", | |
"conv_out.weight": "out.2.weight", | |
"conv_out.bias": "out.2.bias", | |
}, | |
"class_embed_type": { | |
"class_embedding.linear_1.weight": "label_emb.0.0.weight", | |
"class_embedding.linear_1.bias": "label_emb.0.0.bias", | |
"class_embedding.linear_2.weight": "label_emb.0.2.weight", | |
"class_embedding.linear_2.bias": "label_emb.0.2.bias", | |
}, | |
"addition_embed_type": { | |
"add_embedding.linear_1.weight": "label_emb.0.0.weight", | |
"add_embedding.linear_1.bias": "label_emb.0.0.bias", | |
"add_embedding.linear_2.weight": "label_emb.0.2.weight", | |
"add_embedding.linear_2.bias": "label_emb.0.2.bias", | |
}, | |
}, | |
"controlnet": { | |
"layers": { | |
"time_embedding.linear_1.weight": "time_embed.0.weight", | |
"time_embedding.linear_1.bias": "time_embed.0.bias", | |
"time_embedding.linear_2.weight": "time_embed.2.weight", | |
"time_embedding.linear_2.bias": "time_embed.2.bias", | |
"conv_in.weight": "input_blocks.0.0.weight", | |
"conv_in.bias": "input_blocks.0.0.bias", | |
"controlnet_cond_embedding.conv_in.weight": "input_hint_block.0.weight", | |
"controlnet_cond_embedding.conv_in.bias": "input_hint_block.0.bias", | |
"controlnet_cond_embedding.conv_out.weight": "input_hint_block.14.weight", | |
"controlnet_cond_embedding.conv_out.bias": "input_hint_block.14.bias", | |
}, | |
"class_embed_type": { | |
"class_embedding.linear_1.weight": "label_emb.0.0.weight", | |
"class_embedding.linear_1.bias": "label_emb.0.0.bias", | |
"class_embedding.linear_2.weight": "label_emb.0.2.weight", | |
"class_embedding.linear_2.bias": "label_emb.0.2.bias", | |
}, | |
"addition_embed_type": { | |
"add_embedding.linear_1.weight": "label_emb.0.0.weight", | |
"add_embedding.linear_1.bias": "label_emb.0.0.bias", | |
"add_embedding.linear_2.weight": "label_emb.0.2.weight", | |
"add_embedding.linear_2.bias": "label_emb.0.2.bias", | |
}, | |
}, | |
"vae": { | |
"encoder.conv_in.weight": "encoder.conv_in.weight", | |
"encoder.conv_in.bias": "encoder.conv_in.bias", | |
"encoder.conv_out.weight": "encoder.conv_out.weight", | |
"encoder.conv_out.bias": "encoder.conv_out.bias", | |
"encoder.conv_norm_out.weight": "encoder.norm_out.weight", | |
"encoder.conv_norm_out.bias": "encoder.norm_out.bias", | |
"decoder.conv_in.weight": "decoder.conv_in.weight", | |
"decoder.conv_in.bias": "decoder.conv_in.bias", | |
"decoder.conv_out.weight": "decoder.conv_out.weight", | |
"decoder.conv_out.bias": "decoder.conv_out.bias", | |
"decoder.conv_norm_out.weight": "decoder.norm_out.weight", | |
"decoder.conv_norm_out.bias": "decoder.norm_out.bias", | |
"quant_conv.weight": "quant_conv.weight", | |
"quant_conv.bias": "quant_conv.bias", | |
"post_quant_conv.weight": "post_quant_conv.weight", | |
"post_quant_conv.bias": "post_quant_conv.bias", | |
}, | |
"openclip": { | |
"layers": { | |
"text_model.embeddings.position_embedding.weight": "positional_embedding", | |
"text_model.embeddings.token_embedding.weight": "token_embedding.weight", | |
"text_model.final_layer_norm.weight": "ln_final.weight", | |
"text_model.final_layer_norm.bias": "ln_final.bias", | |
"text_projection.weight": "text_projection", | |
}, | |
"transformer": { | |
"text_model.encoder.layers.": "resblocks.", | |
"layer_norm1": "ln_1", | |
"layer_norm2": "ln_2", | |
".fc1.": ".c_fc.", | |
".fc2.": ".c_proj.", | |
".self_attn": ".attn", | |
"transformer.text_model.final_layer_norm.": "ln_final.", | |
"transformer.text_model.embeddings.token_embedding.weight": "token_embedding.weight", | |
"transformer.text_model.embeddings.position_embedding.weight": "positional_embedding", | |
}, | |
}, | |
} | |
LDM_VAE_KEY = "first_stage_model." | |
LDM_VAE_DEFAULT_SCALING_FACTOR = 0.18215 | |
PLAYGROUND_VAE_SCALING_FACTOR = 0.5 | |
LDM_UNET_KEY = "model.diffusion_model." | |
LDM_CONTROLNET_KEY = "control_model." | |
LDM_CLIP_PREFIX_TO_REMOVE = ["cond_stage_model.transformer.", "conditioner.embedders.0.transformer."] | |
LDM_OPEN_CLIP_TEXT_PROJECTION_DIM = 1024 | |
SD_2_TEXT_ENCODER_KEYS_TO_IGNORE = [ | |
"cond_stage_model.model.transformer.resblocks.23.attn.in_proj_bias", | |
"cond_stage_model.model.transformer.resblocks.23.attn.in_proj_weight", | |
"cond_stage_model.model.transformer.resblocks.23.attn.out_proj.bias", | |
"cond_stage_model.model.transformer.resblocks.23.attn.out_proj.weight", | |
"cond_stage_model.model.transformer.resblocks.23.ln_1.bias", | |
"cond_stage_model.model.transformer.resblocks.23.ln_1.weight", | |
"cond_stage_model.model.transformer.resblocks.23.ln_2.bias", | |
"cond_stage_model.model.transformer.resblocks.23.ln_2.weight", | |
"cond_stage_model.model.transformer.resblocks.23.mlp.c_fc.bias", | |
"cond_stage_model.model.transformer.resblocks.23.mlp.c_fc.weight", | |
"cond_stage_model.model.transformer.resblocks.23.mlp.c_proj.bias", | |
"cond_stage_model.model.transformer.resblocks.23.mlp.c_proj.weight", | |
"cond_stage_model.model.text_projection", | |
] | |
VALID_URL_PREFIXES = ["https://huggingface.co./", "huggingface.co/", "hf.co/", "https://hf.co/"] | |
def _extract_repo_id_and_weights_name(pretrained_model_name_or_path): | |
pattern = r"([^/]+)/([^/]+)/(?:blob/main/)?(.+)" | |
weights_name = None | |
repo_id = (None,) | |
for prefix in VALID_URL_PREFIXES: | |
pretrained_model_name_or_path = pretrained_model_name_or_path.replace(prefix, "") | |
match = re.match(pattern, pretrained_model_name_or_path) | |
if not match: | |
return repo_id, weights_name | |
repo_id = f"{match.group(1)}/{match.group(2)}" | |
weights_name = match.group(3) | |
return repo_id, weights_name | |
def fetch_ldm_config_and_checkpoint( | |
pretrained_model_link_or_path, | |
class_name, | |
original_config_file=None, | |
resume_download=None, | |
force_download=False, | |
proxies=None, | |
token=None, | |
cache_dir=None, | |
local_files_only=None, | |
revision=None, | |
): | |
checkpoint = load_single_file_model_checkpoint( | |
pretrained_model_link_or_path, | |
resume_download=resume_download, | |
force_download=force_download, | |
proxies=proxies, | |
token=token, | |
cache_dir=cache_dir, | |
local_files_only=local_files_only, | |
revision=revision, | |
) | |
original_config = fetch_original_config(class_name, checkpoint, original_config_file) | |
return original_config, checkpoint | |
def load_single_file_model_checkpoint( | |
pretrained_model_link_or_path, | |
resume_download=False, | |
force_download=False, | |
proxies=None, | |
token=None, | |
cache_dir=None, | |
local_files_only=None, | |
revision=None, | |
): | |
if os.path.isfile(pretrained_model_link_or_path): | |
checkpoint = load_state_dict(pretrained_model_link_or_path) | |
else: | |
repo_id, weights_name = _extract_repo_id_and_weights_name(pretrained_model_link_or_path) | |
checkpoint_path = _get_model_file( | |
repo_id, | |
weights_name=weights_name, | |
force_download=force_download, | |
cache_dir=cache_dir, | |
resume_download=resume_download, | |
proxies=proxies, | |
local_files_only=local_files_only, | |
token=token, | |
revision=revision, | |
) | |
checkpoint = load_state_dict(checkpoint_path) | |
# some checkpoints contain the model state dict under a "state_dict" key | |
while "state_dict" in checkpoint: | |
checkpoint = checkpoint["state_dict"] | |
return checkpoint | |
def infer_original_config_file(class_name, checkpoint): | |
if CHECKPOINT_KEY_NAMES["v2"] in checkpoint and checkpoint[CHECKPOINT_KEY_NAMES["v2"]].shape[-1] == 1024: | |
config_url = CONFIG_URLS["v2"] | |
elif CHECKPOINT_KEY_NAMES["xl_base"] in checkpoint: | |
config_url = CONFIG_URLS["xl"] | |
elif CHECKPOINT_KEY_NAMES["xl_refiner"] in checkpoint: | |
config_url = CONFIG_URLS["xl_refiner"] | |
elif class_name == "StableDiffusionUpscalePipeline": | |
config_url = CONFIG_URLS["upscale"] | |
elif class_name == "ControlNetModel": | |
config_url = CONFIG_URLS["controlnet"] | |
else: | |
config_url = CONFIG_URLS["v1"] | |
original_config_file = BytesIO(requests.get(config_url).content) | |
return original_config_file | |
def fetch_original_config(pipeline_class_name, checkpoint, original_config_file=None): | |
def is_valid_url(url): | |
result = urlparse(url) | |
if result.scheme and result.netloc: | |
return True | |
return False | |
if original_config_file is None: | |
original_config_file = infer_original_config_file(pipeline_class_name, checkpoint) | |
elif os.path.isfile(original_config_file): | |
with open(original_config_file, "r") as fp: | |
original_config_file = fp.read() | |
elif is_valid_url(original_config_file): | |
original_config_file = BytesIO(requests.get(original_config_file).content) | |
else: | |
raise ValueError("Invalid `original_config_file` provided. Please set it to a valid file path or URL.") | |
original_config = yaml.safe_load(original_config_file) | |
return original_config | |
def infer_model_type(original_config, checkpoint, model_type=None): | |
if model_type is not None: | |
return model_type | |
has_cond_stage_config = ( | |
"cond_stage_config" in original_config["model"]["params"] | |
and original_config["model"]["params"]["cond_stage_config"] is not None | |
) | |
has_network_config = ( | |
"network_config" in original_config["model"]["params"] | |
and original_config["model"]["params"]["network_config"] is not None | |
) | |
if has_cond_stage_config: | |
model_type = original_config["model"]["params"]["cond_stage_config"]["target"].split(".")[-1] | |
elif has_network_config: | |
context_dim = original_config["model"]["params"]["network_config"]["params"]["context_dim"] | |
if "edm_mean" in checkpoint and "edm_std" in checkpoint: | |
model_type = "Playground" | |
elif context_dim == 2048: | |
model_type = "SDXL" | |
else: | |
model_type = "SDXL-Refiner" | |
else: | |
raise ValueError("Unable to infer model type from config") | |
logger.debug(f"No `model_type` given, `model_type` inferred as: {model_type}") | |
return model_type | |
def get_default_scheduler_config(): | |
return SCHEDULER_DEFAULT_CONFIG | |
def set_image_size(pipeline_class_name, original_config, checkpoint, image_size=None, model_type=None): | |
if image_size: | |
return image_size | |
global_step = checkpoint["global_step"] if "global_step" in checkpoint else None | |
model_type = infer_model_type(original_config, checkpoint, model_type) | |
if pipeline_class_name == "StableDiffusionUpscalePipeline": | |
image_size = original_config["model"]["params"]["unet_config"]["params"]["image_size"] | |
return image_size | |
elif model_type in ["SDXL", "SDXL-Refiner", "Playground"]: | |
image_size = 1024 | |
return image_size | |
elif ( | |
"parameterization" in original_config["model"]["params"] | |
and original_config["model"]["params"]["parameterization"] == "v" | |
): | |
# NOTE: For stable diffusion 2 base one has to pass `image_size==512` | |
# as it relies on a brittle global step parameter here | |
image_size = 512 if global_step == 875000 else 768 | |
return image_size | |
else: | |
image_size = 512 | |
return image_size | |
# Copied from diffusers.pipelines.stable_diffusion.convert_from_ckpt.conv_attn_to_linear | |
def conv_attn_to_linear(checkpoint): | |
keys = list(checkpoint.keys()) | |
attn_keys = ["query.weight", "key.weight", "value.weight"] | |
for key in keys: | |
if ".".join(key.split(".")[-2:]) in attn_keys: | |
if checkpoint[key].ndim > 2: | |
checkpoint[key] = checkpoint[key][:, :, 0, 0] | |
elif "proj_attn.weight" in key: | |
if checkpoint[key].ndim > 2: | |
checkpoint[key] = checkpoint[key][:, :, 0] | |
def create_unet_diffusers_config(original_config, image_size: int): | |
""" | |
Creates a config for the diffusers based on the config of the LDM model. | |
""" | |
if ( | |
"unet_config" in original_config["model"]["params"] | |
and original_config["model"]["params"]["unet_config"] is not None | |
): | |
unet_params = original_config["model"]["params"]["unet_config"]["params"] | |
else: | |
unet_params = original_config["model"]["params"]["network_config"]["params"] | |
vae_params = original_config["model"]["params"]["first_stage_config"]["params"]["ddconfig"] | |
block_out_channels = [unet_params["model_channels"] * mult for mult in unet_params["channel_mult"]] | |
down_block_types = [] | |
resolution = 1 | |
for i in range(len(block_out_channels)): | |
block_type = "CrossAttnDownBlock2D" if resolution in unet_params["attention_resolutions"] else "DownBlock2D" | |
down_block_types.append(block_type) | |
if i != len(block_out_channels) - 1: | |
resolution *= 2 | |
up_block_types = [] | |
for i in range(len(block_out_channels)): | |
block_type = "CrossAttnUpBlock2D" if resolution in unet_params["attention_resolutions"] else "UpBlock2D" | |
up_block_types.append(block_type) | |
resolution //= 2 | |
if unet_params["transformer_depth"] is not None: | |
transformer_layers_per_block = ( | |
unet_params["transformer_depth"] | |
if isinstance(unet_params["transformer_depth"], int) | |
else list(unet_params["transformer_depth"]) | |
) | |
else: | |
transformer_layers_per_block = 1 | |
vae_scale_factor = 2 ** (len(vae_params["ch_mult"]) - 1) | |
head_dim = unet_params["num_heads"] if "num_heads" in unet_params else None | |
use_linear_projection = ( | |
unet_params["use_linear_in_transformer"] if "use_linear_in_transformer" in unet_params else False | |
) | |
if use_linear_projection: | |
# stable diffusion 2-base-512 and 2-768 | |
if head_dim is None: | |
head_dim_mult = unet_params["model_channels"] // unet_params["num_head_channels"] | |
head_dim = [head_dim_mult * c for c in list(unet_params["channel_mult"])] | |
class_embed_type = None | |
addition_embed_type = None | |
addition_time_embed_dim = None | |
projection_class_embeddings_input_dim = None | |
context_dim = None | |
if unet_params["context_dim"] is not None: | |
context_dim = ( | |
unet_params["context_dim"] | |
if isinstance(unet_params["context_dim"], int) | |
else unet_params["context_dim"][0] | |
) | |
if "num_classes" in unet_params: | |
if unet_params["num_classes"] == "sequential": | |
if context_dim in [2048, 1280]: | |
# SDXL | |
addition_embed_type = "text_time" | |
addition_time_embed_dim = 256 | |
else: | |
class_embed_type = "projection" | |
assert "adm_in_channels" in unet_params | |
projection_class_embeddings_input_dim = unet_params["adm_in_channels"] | |
config = { | |
"sample_size": image_size // vae_scale_factor, | |
"in_channels": unet_params["in_channels"], | |
"down_block_types": down_block_types, | |
"block_out_channels": block_out_channels, | |
"layers_per_block": unet_params["num_res_blocks"], | |
"cross_attention_dim": context_dim, | |
"attention_head_dim": head_dim, | |
"use_linear_projection": use_linear_projection, | |
"class_embed_type": class_embed_type, | |
"addition_embed_type": addition_embed_type, | |
"addition_time_embed_dim": addition_time_embed_dim, | |
"projection_class_embeddings_input_dim": projection_class_embeddings_input_dim, | |
"transformer_layers_per_block": transformer_layers_per_block, | |
} | |
if "disable_self_attentions" in unet_params: | |
config["only_cross_attention"] = unet_params["disable_self_attentions"] | |
if "num_classes" in unet_params and isinstance(unet_params["num_classes"], int): | |
config["num_class_embeds"] = unet_params["num_classes"] | |
config["out_channels"] = unet_params["out_channels"] | |
config["up_block_types"] = up_block_types | |
return config | |
def create_controlnet_diffusers_config(original_config, image_size: int): | |
unet_params = original_config["model"]["params"]["control_stage_config"]["params"] | |
diffusers_unet_config = create_unet_diffusers_config(original_config, image_size=image_size) | |
controlnet_config = { | |
"conditioning_channels": unet_params["hint_channels"], | |
"in_channels": diffusers_unet_config["in_channels"], | |
"down_block_types": diffusers_unet_config["down_block_types"], | |
"block_out_channels": diffusers_unet_config["block_out_channels"], | |
"layers_per_block": diffusers_unet_config["layers_per_block"], | |
"cross_attention_dim": diffusers_unet_config["cross_attention_dim"], | |
"attention_head_dim": diffusers_unet_config["attention_head_dim"], | |
"use_linear_projection": diffusers_unet_config["use_linear_projection"], | |
"class_embed_type": diffusers_unet_config["class_embed_type"], | |
"addition_embed_type": diffusers_unet_config["addition_embed_type"], | |
"addition_time_embed_dim": diffusers_unet_config["addition_time_embed_dim"], | |
"projection_class_embeddings_input_dim": diffusers_unet_config["projection_class_embeddings_input_dim"], | |
"transformer_layers_per_block": diffusers_unet_config["transformer_layers_per_block"], | |
} | |
return controlnet_config | |
def create_vae_diffusers_config(original_config, image_size, scaling_factor=None, latents_mean=None, latents_std=None): | |
""" | |
Creates a config for the diffusers based on the config of the LDM model. | |
""" | |
vae_params = original_config["model"]["params"]["first_stage_config"]["params"]["ddconfig"] | |
if (scaling_factor is None) and (latents_mean is not None) and (latents_std is not None): | |
scaling_factor = PLAYGROUND_VAE_SCALING_FACTOR | |
elif (scaling_factor is None) and ("scale_factor" in original_config["model"]["params"]): | |
scaling_factor = original_config["model"]["params"]["scale_factor"] | |
elif scaling_factor is None: | |
scaling_factor = LDM_VAE_DEFAULT_SCALING_FACTOR | |
block_out_channels = [vae_params["ch"] * mult for mult in vae_params["ch_mult"]] | |
down_block_types = ["DownEncoderBlock2D"] * len(block_out_channels) | |
up_block_types = ["UpDecoderBlock2D"] * len(block_out_channels) | |
config = { | |
"sample_size": image_size, | |
"in_channels": vae_params["in_channels"], | |
"out_channels": vae_params["out_ch"], | |
"down_block_types": down_block_types, | |
"up_block_types": up_block_types, | |
"block_out_channels": block_out_channels, | |
"latent_channels": vae_params["z_channels"], | |
"layers_per_block": vae_params["num_res_blocks"], | |
"scaling_factor": scaling_factor, | |
} | |
if latents_mean is not None and latents_std is not None: | |
config.update({"latents_mean": latents_mean, "latents_std": latents_std}) | |
return config | |
def update_unet_resnet_ldm_to_diffusers(ldm_keys, new_checkpoint, checkpoint, mapping=None): | |
for ldm_key in ldm_keys: | |
diffusers_key = ( | |
ldm_key.replace("in_layers.0", "norm1") | |
.replace("in_layers.2", "conv1") | |
.replace("out_layers.0", "norm2") | |
.replace("out_layers.3", "conv2") | |
.replace("emb_layers.1", "time_emb_proj") | |
.replace("skip_connection", "conv_shortcut") | |
) | |
if mapping: | |
diffusers_key = diffusers_key.replace(mapping["old"], mapping["new"]) | |
new_checkpoint[diffusers_key] = checkpoint.pop(ldm_key) | |
def update_unet_attention_ldm_to_diffusers(ldm_keys, new_checkpoint, checkpoint, mapping): | |
for ldm_key in ldm_keys: | |
diffusers_key = ldm_key.replace(mapping["old"], mapping["new"]) | |
new_checkpoint[diffusers_key] = checkpoint.pop(ldm_key) | |
def convert_ldm_unet_checkpoint(checkpoint, config, extract_ema=False): | |
""" | |
Takes a state dict and a config, and returns a converted checkpoint. | |
""" | |
# extract state_dict for UNet | |
unet_state_dict = {} | |
keys = list(checkpoint.keys()) | |
unet_key = LDM_UNET_KEY | |
# at least a 100 parameters have to start with `model_ema` in order for the checkpoint to be EMA | |
if sum(k.startswith("model_ema") for k in keys) > 100 and extract_ema: | |
logger.warning("Checkpoint has both EMA and non-EMA weights.") | |
logger.warning( | |
"In this conversion only the EMA weights are extracted. If you want to instead extract the non-EMA" | |
" weights (useful to continue fine-tuning), please make sure to remove the `--extract_ema` flag." | |
) | |
for key in keys: | |
if key.startswith("model.diffusion_model"): | |
flat_ema_key = "model_ema." + "".join(key.split(".")[1:]) | |
unet_state_dict[key.replace(unet_key, "")] = checkpoint.pop(flat_ema_key) | |
else: | |
if sum(k.startswith("model_ema") for k in keys) > 100: | |
logger.warning( | |
"In this conversion only the non-EMA weights are extracted. If you want to instead extract the EMA" | |
" weights (usually better for inference), please make sure to add the `--extract_ema` flag." | |
) | |
for key in keys: | |
if key.startswith(unet_key): | |
unet_state_dict[key.replace(unet_key, "")] = checkpoint.pop(key) | |
new_checkpoint = {} | |
ldm_unet_keys = DIFFUSERS_TO_LDM_MAPPING["unet"]["layers"] | |
for diffusers_key, ldm_key in ldm_unet_keys.items(): | |
if ldm_key not in unet_state_dict: | |
continue | |
new_checkpoint[diffusers_key] = unet_state_dict[ldm_key] | |
if ("class_embed_type" in config) and (config["class_embed_type"] in ["timestep", "projection"]): | |
class_embed_keys = DIFFUSERS_TO_LDM_MAPPING["unet"]["class_embed_type"] | |
for diffusers_key, ldm_key in class_embed_keys.items(): | |
new_checkpoint[diffusers_key] = unet_state_dict[ldm_key] | |
if ("addition_embed_type" in config) and (config["addition_embed_type"] == "text_time"): | |
addition_embed_keys = DIFFUSERS_TO_LDM_MAPPING["unet"]["addition_embed_type"] | |
for diffusers_key, ldm_key in addition_embed_keys.items(): | |
new_checkpoint[diffusers_key] = unet_state_dict[ldm_key] | |
# Relevant to StableDiffusionUpscalePipeline | |
if "num_class_embeds" in config: | |
if (config["num_class_embeds"] is not None) and ("label_emb.weight" in unet_state_dict): | |
new_checkpoint["class_embedding.weight"] = unet_state_dict["label_emb.weight"] | |
# Retrieves the keys for the input blocks only | |
num_input_blocks = len({".".join(layer.split(".")[:2]) for layer in unet_state_dict if "input_blocks" in layer}) | |
input_blocks = { | |
layer_id: [key for key in unet_state_dict if f"input_blocks.{layer_id}" in key] | |
for layer_id in range(num_input_blocks) | |
} | |
# Retrieves the keys for the middle blocks only | |
num_middle_blocks = len({".".join(layer.split(".")[:2]) for layer in unet_state_dict if "middle_block" in layer}) | |
middle_blocks = { | |
layer_id: [key for key in unet_state_dict if f"middle_block.{layer_id}" in key] | |
for layer_id in range(num_middle_blocks) | |
} | |
# Retrieves the keys for the output blocks only | |
num_output_blocks = len({".".join(layer.split(".")[:2]) for layer in unet_state_dict if "output_blocks" in layer}) | |
output_blocks = { | |
layer_id: [key for key in unet_state_dict if f"output_blocks.{layer_id}" in key] | |
for layer_id in range(num_output_blocks) | |
} | |
# Down blocks | |
for i in range(1, num_input_blocks): | |
block_id = (i - 1) // (config["layers_per_block"] + 1) | |
layer_in_block_id = (i - 1) % (config["layers_per_block"] + 1) | |
resnets = [ | |
key for key in input_blocks[i] if f"input_blocks.{i}.0" in key and f"input_blocks.{i}.0.op" not in key | |
] | |
update_unet_resnet_ldm_to_diffusers( | |
resnets, | |
new_checkpoint, | |
unet_state_dict, | |
{"old": f"input_blocks.{i}.0", "new": f"down_blocks.{block_id}.resnets.{layer_in_block_id}"}, | |
) | |
if f"input_blocks.{i}.0.op.weight" in unet_state_dict: | |
new_checkpoint[f"down_blocks.{block_id}.downsamplers.0.conv.weight"] = unet_state_dict.pop( | |
f"input_blocks.{i}.0.op.weight" | |
) | |
new_checkpoint[f"down_blocks.{block_id}.downsamplers.0.conv.bias"] = unet_state_dict.pop( | |
f"input_blocks.{i}.0.op.bias" | |
) | |
attentions = [key for key in input_blocks[i] if f"input_blocks.{i}.1" in key] | |
if attentions: | |
update_unet_attention_ldm_to_diffusers( | |
attentions, | |
new_checkpoint, | |
unet_state_dict, | |
{"old": f"input_blocks.{i}.1", "new": f"down_blocks.{block_id}.attentions.{layer_in_block_id}"}, | |
) | |
# Mid blocks | |
resnet_0 = middle_blocks[0] | |
attentions = middle_blocks[1] | |
resnet_1 = middle_blocks[2] | |
update_unet_resnet_ldm_to_diffusers( | |
resnet_0, new_checkpoint, unet_state_dict, mapping={"old": "middle_block.0", "new": "mid_block.resnets.0"} | |
) | |
update_unet_resnet_ldm_to_diffusers( | |
resnet_1, new_checkpoint, unet_state_dict, mapping={"old": "middle_block.2", "new": "mid_block.resnets.1"} | |
) | |
update_unet_attention_ldm_to_diffusers( | |
attentions, new_checkpoint, unet_state_dict, mapping={"old": "middle_block.1", "new": "mid_block.attentions.0"} | |
) | |
# Up Blocks | |
for i in range(num_output_blocks): | |
block_id = i // (config["layers_per_block"] + 1) | |
layer_in_block_id = i % (config["layers_per_block"] + 1) | |
resnets = [ | |
key for key in output_blocks[i] if f"output_blocks.{i}.0" in key and f"output_blocks.{i}.0.op" not in key | |
] | |
update_unet_resnet_ldm_to_diffusers( | |
resnets, | |
new_checkpoint, | |
unet_state_dict, | |
{"old": f"output_blocks.{i}.0", "new": f"up_blocks.{block_id}.resnets.{layer_in_block_id}"}, | |
) | |
attentions = [ | |
key for key in output_blocks[i] if f"output_blocks.{i}.1" in key and f"output_blocks.{i}.1.conv" not in key | |
] | |
if attentions: | |
update_unet_attention_ldm_to_diffusers( | |
attentions, | |
new_checkpoint, | |
unet_state_dict, | |
{"old": f"output_blocks.{i}.1", "new": f"up_blocks.{block_id}.attentions.{layer_in_block_id}"}, | |
) | |
if f"output_blocks.{i}.1.conv.weight" in unet_state_dict: | |
new_checkpoint[f"up_blocks.{block_id}.upsamplers.0.conv.weight"] = unet_state_dict[ | |
f"output_blocks.{i}.1.conv.weight" | |
] | |
new_checkpoint[f"up_blocks.{block_id}.upsamplers.0.conv.bias"] = unet_state_dict[ | |
f"output_blocks.{i}.1.conv.bias" | |
] | |
if f"output_blocks.{i}.2.conv.weight" in unet_state_dict: | |
new_checkpoint[f"up_blocks.{block_id}.upsamplers.0.conv.weight"] = unet_state_dict[ | |
f"output_blocks.{i}.2.conv.weight" | |
] | |
new_checkpoint[f"up_blocks.{block_id}.upsamplers.0.conv.bias"] = unet_state_dict[ | |
f"output_blocks.{i}.2.conv.bias" | |
] | |
return new_checkpoint | |
def convert_controlnet_checkpoint( | |
checkpoint, | |
config, | |
): | |
# Some controlnet ckpt files are distributed independently from the rest of the | |
# model components i.e. https://huggingface.co./thibaud/controlnet-sd21/ | |
if "time_embed.0.weight" in checkpoint: | |
controlnet_state_dict = checkpoint | |
else: | |
controlnet_state_dict = {} | |
keys = list(checkpoint.keys()) | |
controlnet_key = LDM_CONTROLNET_KEY | |
for key in keys: | |
if key.startswith(controlnet_key): | |
controlnet_state_dict[key.replace(controlnet_key, "")] = checkpoint.pop(key) | |
new_checkpoint = {} | |
ldm_controlnet_keys = DIFFUSERS_TO_LDM_MAPPING["controlnet"]["layers"] | |
for diffusers_key, ldm_key in ldm_controlnet_keys.items(): | |
if ldm_key not in controlnet_state_dict: | |
continue | |
new_checkpoint[diffusers_key] = controlnet_state_dict[ldm_key] | |
# Retrieves the keys for the input blocks only | |
num_input_blocks = len( | |
{".".join(layer.split(".")[:2]) for layer in controlnet_state_dict if "input_blocks" in layer} | |
) | |
input_blocks = { | |
layer_id: [key for key in controlnet_state_dict if f"input_blocks.{layer_id}" in key] | |
for layer_id in range(num_input_blocks) | |
} | |
# Down blocks | |
for i in range(1, num_input_blocks): | |
block_id = (i - 1) // (config["layers_per_block"] + 1) | |
layer_in_block_id = (i - 1) % (config["layers_per_block"] + 1) | |
resnets = [ | |
key for key in input_blocks[i] if f"input_blocks.{i}.0" in key and f"input_blocks.{i}.0.op" not in key | |
] | |
update_unet_resnet_ldm_to_diffusers( | |
resnets, | |
new_checkpoint, | |
controlnet_state_dict, | |
{"old": f"input_blocks.{i}.0", "new": f"down_blocks.{block_id}.resnets.{layer_in_block_id}"}, | |
) | |
if f"input_blocks.{i}.0.op.weight" in controlnet_state_dict: | |
new_checkpoint[f"down_blocks.{block_id}.downsamplers.0.conv.weight"] = controlnet_state_dict.pop( | |
f"input_blocks.{i}.0.op.weight" | |
) | |
new_checkpoint[f"down_blocks.{block_id}.downsamplers.0.conv.bias"] = controlnet_state_dict.pop( | |
f"input_blocks.{i}.0.op.bias" | |
) | |
attentions = [key for key in input_blocks[i] if f"input_blocks.{i}.1" in key] | |
if attentions: | |
update_unet_attention_ldm_to_diffusers( | |
attentions, | |
new_checkpoint, | |
controlnet_state_dict, | |
{"old": f"input_blocks.{i}.1", "new": f"down_blocks.{block_id}.attentions.{layer_in_block_id}"}, | |
) | |
# controlnet down blocks | |
for i in range(num_input_blocks): | |
new_checkpoint[f"controlnet_down_blocks.{i}.weight"] = controlnet_state_dict.pop(f"zero_convs.{i}.0.weight") | |
new_checkpoint[f"controlnet_down_blocks.{i}.bias"] = controlnet_state_dict.pop(f"zero_convs.{i}.0.bias") | |
# Retrieves the keys for the middle blocks only | |
num_middle_blocks = len( | |
{".".join(layer.split(".")[:2]) for layer in controlnet_state_dict if "middle_block" in layer} | |
) | |
middle_blocks = { | |
layer_id: [key for key in controlnet_state_dict if f"middle_block.{layer_id}" in key] | |
for layer_id in range(num_middle_blocks) | |
} | |
if middle_blocks: | |
resnet_0 = middle_blocks[0] | |
attentions = middle_blocks[1] | |
resnet_1 = middle_blocks[2] | |
update_unet_resnet_ldm_to_diffusers( | |
resnet_0, | |
new_checkpoint, | |
controlnet_state_dict, | |
mapping={"old": "middle_block.0", "new": "mid_block.resnets.0"}, | |
) | |
update_unet_resnet_ldm_to_diffusers( | |
resnet_1, | |
new_checkpoint, | |
controlnet_state_dict, | |
mapping={"old": "middle_block.2", "new": "mid_block.resnets.1"}, | |
) | |
update_unet_attention_ldm_to_diffusers( | |
attentions, | |
new_checkpoint, | |
controlnet_state_dict, | |
mapping={"old": "middle_block.1", "new": "mid_block.attentions.0"}, | |
) | |
# mid block | |
new_checkpoint["controlnet_mid_block.weight"] = controlnet_state_dict.pop("middle_block_out.0.weight") | |
new_checkpoint["controlnet_mid_block.bias"] = controlnet_state_dict.pop("middle_block_out.0.bias") | |
# controlnet cond embedding blocks | |
cond_embedding_blocks = { | |
".".join(layer.split(".")[:2]) | |
for layer in controlnet_state_dict | |
if "input_hint_block" in layer and ("input_hint_block.0" not in layer) and ("input_hint_block.14" not in layer) | |
} | |
num_cond_embedding_blocks = len(cond_embedding_blocks) | |
for idx in range(1, num_cond_embedding_blocks + 1): | |
diffusers_idx = idx - 1 | |
cond_block_id = 2 * idx | |
new_checkpoint[f"controlnet_cond_embedding.blocks.{diffusers_idx}.weight"] = controlnet_state_dict.pop( | |
f"input_hint_block.{cond_block_id}.weight" | |
) | |
new_checkpoint[f"controlnet_cond_embedding.blocks.{diffusers_idx}.bias"] = controlnet_state_dict.pop( | |
f"input_hint_block.{cond_block_id}.bias" | |
) | |
return new_checkpoint | |
def create_diffusers_controlnet_model_from_ldm( | |
pipeline_class_name, original_config, checkpoint, upcast_attention=False, image_size=None, torch_dtype=None | |
): | |
# import here to avoid circular imports | |
from ..models import ControlNetModel | |
image_size = set_image_size(pipeline_class_name, original_config, checkpoint, image_size=image_size) | |
diffusers_config = create_controlnet_diffusers_config(original_config, image_size=image_size) | |
diffusers_config["upcast_attention"] = upcast_attention | |
diffusers_format_controlnet_checkpoint = convert_controlnet_checkpoint(checkpoint, diffusers_config) | |
ctx = init_empty_weights if is_accelerate_available() else nullcontext | |
with ctx(): | |
controlnet = ControlNetModel(**diffusers_config) | |
if is_accelerate_available(): | |
unexpected_keys = load_model_dict_into_meta( | |
controlnet, diffusers_format_controlnet_checkpoint, dtype=torch_dtype | |
) | |
if controlnet._keys_to_ignore_on_load_unexpected is not None: | |
for pat in controlnet._keys_to_ignore_on_load_unexpected: | |
unexpected_keys = [k for k in unexpected_keys if re.search(pat, k) is None] | |
if len(unexpected_keys) > 0: | |
logger.warning( | |
f"Some weights of the model checkpoint were not used when initializing {controlnet.__name__}: \n {[', '.join(unexpected_keys)]}" | |
) | |
else: | |
controlnet.load_state_dict(diffusers_format_controlnet_checkpoint) | |
if torch_dtype is not None: | |
controlnet = controlnet.to(torch_dtype) | |
return {"controlnet": controlnet} | |
def update_vae_resnet_ldm_to_diffusers(keys, new_checkpoint, checkpoint, mapping): | |
for ldm_key in keys: | |
diffusers_key = ldm_key.replace(mapping["old"], mapping["new"]).replace("nin_shortcut", "conv_shortcut") | |
new_checkpoint[diffusers_key] = checkpoint.pop(ldm_key) | |
def update_vae_attentions_ldm_to_diffusers(keys, new_checkpoint, checkpoint, mapping): | |
for ldm_key in keys: | |
diffusers_key = ( | |
ldm_key.replace(mapping["old"], mapping["new"]) | |
.replace("norm.weight", "group_norm.weight") | |
.replace("norm.bias", "group_norm.bias") | |
.replace("q.weight", "to_q.weight") | |
.replace("q.bias", "to_q.bias") | |
.replace("k.weight", "to_k.weight") | |
.replace("k.bias", "to_k.bias") | |
.replace("v.weight", "to_v.weight") | |
.replace("v.bias", "to_v.bias") | |
.replace("proj_out.weight", "to_out.0.weight") | |
.replace("proj_out.bias", "to_out.0.bias") | |
) | |
new_checkpoint[diffusers_key] = checkpoint.pop(ldm_key) | |
# proj_attn.weight has to be converted from conv 1D to linear | |
shape = new_checkpoint[diffusers_key].shape | |
if len(shape) == 3: | |
new_checkpoint[diffusers_key] = new_checkpoint[diffusers_key][:, :, 0] | |
elif len(shape) == 4: | |
new_checkpoint[diffusers_key] = new_checkpoint[diffusers_key][:, :, 0, 0] | |
def convert_ldm_vae_checkpoint(checkpoint, config): | |
# extract state dict for VAE | |
# remove the LDM_VAE_KEY prefix from the ldm checkpoint keys so that it is easier to map them to diffusers keys | |
vae_state_dict = {} | |
keys = list(checkpoint.keys()) | |
vae_key = LDM_VAE_KEY if any(k.startswith(LDM_VAE_KEY) for k in keys) else "" | |
for key in keys: | |
if key.startswith(vae_key): | |
vae_state_dict[key.replace(vae_key, "")] = checkpoint.get(key) | |
new_checkpoint = {} | |
vae_diffusers_ldm_map = DIFFUSERS_TO_LDM_MAPPING["vae"] | |
for diffusers_key, ldm_key in vae_diffusers_ldm_map.items(): | |
if ldm_key not in vae_state_dict: | |
continue | |
new_checkpoint[diffusers_key] = vae_state_dict[ldm_key] | |
# Retrieves the keys for the encoder down blocks only | |
num_down_blocks = len(config["down_block_types"]) | |
down_blocks = { | |
layer_id: [key for key in vae_state_dict if f"down.{layer_id}" in key] for layer_id in range(num_down_blocks) | |
} | |
for i in range(num_down_blocks): | |
resnets = [key for key in down_blocks[i] if f"down.{i}" in key and f"down.{i}.downsample" not in key] | |
update_vae_resnet_ldm_to_diffusers( | |
resnets, | |
new_checkpoint, | |
vae_state_dict, | |
mapping={"old": f"down.{i}.block", "new": f"down_blocks.{i}.resnets"}, | |
) | |
if f"encoder.down.{i}.downsample.conv.weight" in vae_state_dict: | |
new_checkpoint[f"encoder.down_blocks.{i}.downsamplers.0.conv.weight"] = vae_state_dict.pop( | |
f"encoder.down.{i}.downsample.conv.weight" | |
) | |
new_checkpoint[f"encoder.down_blocks.{i}.downsamplers.0.conv.bias"] = vae_state_dict.pop( | |
f"encoder.down.{i}.downsample.conv.bias" | |
) | |
mid_resnets = [key for key in vae_state_dict if "encoder.mid.block" in key] | |
num_mid_res_blocks = 2 | |
for i in range(1, num_mid_res_blocks + 1): | |
resnets = [key for key in mid_resnets if f"encoder.mid.block_{i}" in key] | |
update_vae_resnet_ldm_to_diffusers( | |
resnets, | |
new_checkpoint, | |
vae_state_dict, | |
mapping={"old": f"mid.block_{i}", "new": f"mid_block.resnets.{i - 1}"}, | |
) | |
mid_attentions = [key for key in vae_state_dict if "encoder.mid.attn" in key] | |
update_vae_attentions_ldm_to_diffusers( | |
mid_attentions, new_checkpoint, vae_state_dict, mapping={"old": "mid.attn_1", "new": "mid_block.attentions.0"} | |
) | |
# Retrieves the keys for the decoder up blocks only | |
num_up_blocks = len(config["up_block_types"]) | |
up_blocks = { | |
layer_id: [key for key in vae_state_dict if f"up.{layer_id}" in key] for layer_id in range(num_up_blocks) | |
} | |
for i in range(num_up_blocks): | |
block_id = num_up_blocks - 1 - i | |
resnets = [ | |
key for key in up_blocks[block_id] if f"up.{block_id}" in key and f"up.{block_id}.upsample" not in key | |
] | |
update_vae_resnet_ldm_to_diffusers( | |
resnets, | |
new_checkpoint, | |
vae_state_dict, | |
mapping={"old": f"up.{block_id}.block", "new": f"up_blocks.{i}.resnets"}, | |
) | |
if f"decoder.up.{block_id}.upsample.conv.weight" in vae_state_dict: | |
new_checkpoint[f"decoder.up_blocks.{i}.upsamplers.0.conv.weight"] = vae_state_dict[ | |
f"decoder.up.{block_id}.upsample.conv.weight" | |
] | |
new_checkpoint[f"decoder.up_blocks.{i}.upsamplers.0.conv.bias"] = vae_state_dict[ | |
f"decoder.up.{block_id}.upsample.conv.bias" | |
] | |
mid_resnets = [key for key in vae_state_dict if "decoder.mid.block" in key] | |
num_mid_res_blocks = 2 | |
for i in range(1, num_mid_res_blocks + 1): | |
resnets = [key for key in mid_resnets if f"decoder.mid.block_{i}" in key] | |
update_vae_resnet_ldm_to_diffusers( | |
resnets, | |
new_checkpoint, | |
vae_state_dict, | |
mapping={"old": f"mid.block_{i}", "new": f"mid_block.resnets.{i - 1}"}, | |
) | |
mid_attentions = [key for key in vae_state_dict if "decoder.mid.attn" in key] | |
update_vae_attentions_ldm_to_diffusers( | |
mid_attentions, new_checkpoint, vae_state_dict, mapping={"old": "mid.attn_1", "new": "mid_block.attentions.0"} | |
) | |
conv_attn_to_linear(new_checkpoint) | |
return new_checkpoint | |
def create_text_encoder_from_ldm_clip_checkpoint(config_name, checkpoint, local_files_only=False, torch_dtype=None): | |
try: | |
config = CLIPTextConfig.from_pretrained(config_name, local_files_only=local_files_only) | |
except Exception: | |
raise ValueError( | |
f"With local_files_only set to {local_files_only}, you must first locally save the configuration in the following path: 'openai/clip-vit-large-patch14'." | |
) | |
ctx = init_empty_weights if is_accelerate_available() else nullcontext | |
with ctx(): | |
text_model = CLIPTextModel(config) | |
keys = list(checkpoint.keys()) | |
text_model_dict = {} | |
remove_prefixes = LDM_CLIP_PREFIX_TO_REMOVE | |
for key in keys: | |
for prefix in remove_prefixes: | |
if key.startswith(prefix): | |
diffusers_key = key.replace(prefix, "") | |
text_model_dict[diffusers_key] = checkpoint[key] | |
if is_accelerate_available(): | |
unexpected_keys = load_model_dict_into_meta(text_model, text_model_dict, dtype=torch_dtype) | |
if text_model._keys_to_ignore_on_load_unexpected is not None: | |
for pat in text_model._keys_to_ignore_on_load_unexpected: | |
unexpected_keys = [k for k in unexpected_keys if re.search(pat, k) is None] | |
if len(unexpected_keys) > 0: | |
logger.warning( | |
f"Some weights of the model checkpoint were not used when initializing {text_model.__class__.__name__}: \n {[', '.join(unexpected_keys)]}" | |
) | |
else: | |
if not (hasattr(text_model, "embeddings") and hasattr(text_model.embeddings.position_ids)): | |
text_model_dict.pop("text_model.embeddings.position_ids", None) | |
text_model.load_state_dict(text_model_dict) | |
if torch_dtype is not None: | |
text_model = text_model.to(torch_dtype) | |
return text_model | |
def create_text_encoder_from_open_clip_checkpoint( | |
config_name, | |
checkpoint, | |
prefix="cond_stage_model.model.", | |
has_projection=False, | |
local_files_only=False, | |
torch_dtype=None, | |
**config_kwargs, | |
): | |
try: | |
config = CLIPTextConfig.from_pretrained(config_name, **config_kwargs, local_files_only=local_files_only) | |
except Exception: | |
raise ValueError( | |
f"With local_files_only set to {local_files_only}, you must first locally save the configuration in the following path: '{config_name}'." | |
) | |
ctx = init_empty_weights if is_accelerate_available() else nullcontext | |
with ctx(): | |
text_model = CLIPTextModelWithProjection(config) if has_projection else CLIPTextModel(config) | |
text_model_dict = {} | |
text_proj_key = prefix + "text_projection" | |
text_proj_dim = ( | |
int(checkpoint[text_proj_key].shape[0]) if text_proj_key in checkpoint else LDM_OPEN_CLIP_TEXT_PROJECTION_DIM | |
) | |
text_model_dict["text_model.embeddings.position_ids"] = text_model.text_model.embeddings.get_buffer("position_ids") | |
keys = list(checkpoint.keys()) | |
keys_to_ignore = SD_2_TEXT_ENCODER_KEYS_TO_IGNORE | |
openclip_diffusers_ldm_map = DIFFUSERS_TO_LDM_MAPPING["openclip"]["layers"] | |
for diffusers_key, ldm_key in openclip_diffusers_ldm_map.items(): | |
ldm_key = prefix + ldm_key | |
if ldm_key not in checkpoint: | |
continue | |
if ldm_key in keys_to_ignore: | |
continue | |
if ldm_key.endswith("text_projection"): | |
text_model_dict[diffusers_key] = checkpoint[ldm_key].T.contiguous() | |
else: | |
text_model_dict[diffusers_key] = checkpoint[ldm_key] | |
for key in keys: | |
if key in keys_to_ignore: | |
continue | |
if not key.startswith(prefix + "transformer."): | |
continue | |
diffusers_key = key.replace(prefix + "transformer.", "") | |
transformer_diffusers_to_ldm_map = DIFFUSERS_TO_LDM_MAPPING["openclip"]["transformer"] | |
for new_key, old_key in transformer_diffusers_to_ldm_map.items(): | |
diffusers_key = ( | |
diffusers_key.replace(old_key, new_key).replace(".in_proj_weight", "").replace(".in_proj_bias", "") | |
) | |
if key.endswith(".in_proj_weight"): | |
weight_value = checkpoint[key] | |
text_model_dict[diffusers_key + ".q_proj.weight"] = weight_value[:text_proj_dim, :] | |
text_model_dict[diffusers_key + ".k_proj.weight"] = weight_value[text_proj_dim : text_proj_dim * 2, :] | |
text_model_dict[diffusers_key + ".v_proj.weight"] = weight_value[text_proj_dim * 2 :, :] | |
elif key.endswith(".in_proj_bias"): | |
weight_value = checkpoint[key] | |
text_model_dict[diffusers_key + ".q_proj.bias"] = weight_value[:text_proj_dim] | |
text_model_dict[diffusers_key + ".k_proj.bias"] = weight_value[text_proj_dim : text_proj_dim * 2] | |
text_model_dict[diffusers_key + ".v_proj.bias"] = weight_value[text_proj_dim * 2 :] | |
else: | |
text_model_dict[diffusers_key] = checkpoint[key] | |
if is_accelerate_available(): | |
unexpected_keys = load_model_dict_into_meta(text_model, text_model_dict, dtype=torch_dtype) | |
if text_model._keys_to_ignore_on_load_unexpected is not None: | |
for pat in text_model._keys_to_ignore_on_load_unexpected: | |
unexpected_keys = [k for k in unexpected_keys if re.search(pat, k) is None] | |
if len(unexpected_keys) > 0: | |
logger.warning( | |
f"Some weights of the model checkpoint were not used when initializing {text_model.__class__.__name__}: \n {[', '.join(unexpected_keys)]}" | |
) | |
else: | |
if not (hasattr(text_model, "embeddings") and hasattr(text_model.embeddings.position_ids)): | |
text_model_dict.pop("text_model.embeddings.position_ids", None) | |
text_model.load_state_dict(text_model_dict) | |
if torch_dtype is not None: | |
text_model = text_model.to(torch_dtype) | |
return text_model | |
def create_diffusers_unet_model_from_ldm( | |
pipeline_class_name, | |
original_config, | |
checkpoint, | |
num_in_channels=None, | |
upcast_attention=None, | |
extract_ema=False, | |
image_size=None, | |
torch_dtype=None, | |
model_type=None, | |
): | |
from ..models import UNet2DConditionModel | |
if num_in_channels is None: | |
if pipeline_class_name in [ | |
"StableDiffusionInpaintPipeline", | |
"StableDiffusionControlNetInpaintPipeline", | |
"StableDiffusionXLInpaintPipeline", | |
"StableDiffusionXLControlNetInpaintPipeline", | |
]: | |
num_in_channels = 9 | |
elif pipeline_class_name == "StableDiffusionUpscalePipeline": | |
num_in_channels = 7 | |
else: | |
num_in_channels = 4 | |
image_size = set_image_size( | |
pipeline_class_name, original_config, checkpoint, image_size=image_size, model_type=model_type | |
) | |
unet_config = create_unet_diffusers_config(original_config, image_size=image_size) | |
unet_config["in_channels"] = num_in_channels | |
if upcast_attention is not None: | |
unet_config["upcast_attention"] = upcast_attention | |
diffusers_format_unet_checkpoint = convert_ldm_unet_checkpoint(checkpoint, unet_config, extract_ema=extract_ema) | |
ctx = init_empty_weights if is_accelerate_available() else nullcontext | |
with ctx(): | |
unet = UNet2DConditionModel(**unet_config) | |
if is_accelerate_available(): | |
unexpected_keys = load_model_dict_into_meta(unet, diffusers_format_unet_checkpoint, dtype=torch_dtype) | |
if unet._keys_to_ignore_on_load_unexpected is not None: | |
for pat in unet._keys_to_ignore_on_load_unexpected: | |
unexpected_keys = [k for k in unexpected_keys if re.search(pat, k) is None] | |
if len(unexpected_keys) > 0: | |
logger.warning( | |
f"Some weights of the model checkpoint were not used when initializing {unet.__name__}: \n {[', '.join(unexpected_keys)]}" | |
) | |
else: | |
unet.load_state_dict(diffusers_format_unet_checkpoint) | |
if torch_dtype is not None: | |
unet = unet.to(torch_dtype) | |
return {"unet": unet} | |
def create_diffusers_vae_model_from_ldm( | |
pipeline_class_name, | |
original_config, | |
checkpoint, | |
image_size=None, | |
scaling_factor=None, | |
torch_dtype=None, | |
model_type=None, | |
): | |
# import here to avoid circular imports | |
from ..models import AutoencoderKL | |
image_size = set_image_size( | |
pipeline_class_name, original_config, checkpoint, image_size=image_size, model_type=model_type | |
) | |
model_type = infer_model_type(original_config, checkpoint, model_type) | |
if model_type == "Playground": | |
edm_mean = ( | |
checkpoint["edm_mean"].to(dtype=torch_dtype).tolist() if torch_dtype else checkpoint["edm_mean"].tolist() | |
) | |
edm_std = ( | |
checkpoint["edm_std"].to(dtype=torch_dtype).tolist() if torch_dtype else checkpoint["edm_std"].tolist() | |
) | |
else: | |
edm_mean = None | |
edm_std = None | |
vae_config = create_vae_diffusers_config( | |
original_config, | |
image_size=image_size, | |
scaling_factor=scaling_factor, | |
latents_mean=edm_mean, | |
latents_std=edm_std, | |
) | |
diffusers_format_vae_checkpoint = convert_ldm_vae_checkpoint(checkpoint, vae_config) | |
ctx = init_empty_weights if is_accelerate_available() else nullcontext | |
with ctx(): | |
vae = AutoencoderKL(**vae_config) | |
if is_accelerate_available(): | |
unexpected_keys = load_model_dict_into_meta(vae, diffusers_format_vae_checkpoint, dtype=torch_dtype) | |
if vae._keys_to_ignore_on_load_unexpected is not None: | |
for pat in vae._keys_to_ignore_on_load_unexpected: | |
unexpected_keys = [k for k in unexpected_keys if re.search(pat, k) is None] | |
if len(unexpected_keys) > 0: | |
logger.warning( | |
f"Some weights of the model checkpoint were not used when initializing {vae.__name__}: \n {[', '.join(unexpected_keys)]}" | |
) | |
else: | |
vae.load_state_dict(diffusers_format_vae_checkpoint) | |
if torch_dtype is not None: | |
vae = vae.to(torch_dtype) | |
return {"vae": vae} | |
def create_text_encoders_and_tokenizers_from_ldm( | |
original_config, | |
checkpoint, | |
model_type=None, | |
local_files_only=False, | |
torch_dtype=None, | |
): | |
model_type = infer_model_type(original_config, checkpoint=checkpoint, model_type=model_type) | |
if model_type == "FrozenOpenCLIPEmbedder": | |
config_name = "stabilityai/stable-diffusion-2" | |
config_kwargs = {"subfolder": "text_encoder"} | |
try: | |
text_encoder = create_text_encoder_from_open_clip_checkpoint( | |
config_name, checkpoint, local_files_only=local_files_only, torch_dtype=torch_dtype, **config_kwargs | |
) | |
tokenizer = CLIPTokenizer.from_pretrained( | |
config_name, subfolder="tokenizer", local_files_only=local_files_only | |
) | |
except Exception: | |
raise ValueError( | |
f"With local_files_only set to {local_files_only}, you must first locally save the text_encoder in the following path: '{config_name}'." | |
) | |
else: | |
return {"text_encoder": text_encoder, "tokenizer": tokenizer} | |
elif model_type == "FrozenCLIPEmbedder": | |
try: | |
config_name = "openai/clip-vit-large-patch14" | |
text_encoder = create_text_encoder_from_ldm_clip_checkpoint( | |
config_name, | |
checkpoint, | |
local_files_only=local_files_only, | |
torch_dtype=torch_dtype, | |
) | |
tokenizer = CLIPTokenizer.from_pretrained(config_name, local_files_only=local_files_only) | |
except Exception: | |
raise ValueError( | |
f"With local_files_only set to {local_files_only}, you must first locally save the tokenizer in the following path: '{config_name}'." | |
) | |
else: | |
return {"text_encoder": text_encoder, "tokenizer": tokenizer} | |
elif model_type == "SDXL-Refiner": | |
config_name = "laion/CLIP-ViT-bigG-14-laion2B-39B-b160k" | |
config_kwargs = {"projection_dim": 1280} | |
prefix = "conditioner.embedders.0.model." | |
try: | |
tokenizer_2 = CLIPTokenizer.from_pretrained(config_name, pad_token="!", local_files_only=local_files_only) | |
text_encoder_2 = create_text_encoder_from_open_clip_checkpoint( | |
config_name, | |
checkpoint, | |
prefix=prefix, | |
has_projection=True, | |
local_files_only=local_files_only, | |
torch_dtype=torch_dtype, | |
**config_kwargs, | |
) | |
except Exception: | |
raise ValueError( | |
f"With local_files_only set to {local_files_only}, you must first locally save the text_encoder_2 and tokenizer_2 in the following path: {config_name} with `pad_token` set to '!'." | |
) | |
else: | |
return { | |
"text_encoder": None, | |
"tokenizer": None, | |
"tokenizer_2": tokenizer_2, | |
"text_encoder_2": text_encoder_2, | |
} | |
elif model_type in ["SDXL", "Playground"]: | |
try: | |
config_name = "openai/clip-vit-large-patch14" | |
tokenizer = CLIPTokenizer.from_pretrained(config_name, local_files_only=local_files_only) | |
text_encoder = create_text_encoder_from_ldm_clip_checkpoint( | |
config_name, checkpoint, local_files_only=local_files_only, torch_dtype=torch_dtype | |
) | |
except Exception: | |
raise ValueError( | |
f"With local_files_only set to {local_files_only}, you must first locally save the text_encoder and tokenizer in the following path: 'openai/clip-vit-large-patch14'." | |
) | |
try: | |
config_name = "laion/CLIP-ViT-bigG-14-laion2B-39B-b160k" | |
config_kwargs = {"projection_dim": 1280} | |
prefix = "conditioner.embedders.1.model." | |
tokenizer_2 = CLIPTokenizer.from_pretrained(config_name, pad_token="!", local_files_only=local_files_only) | |
text_encoder_2 = create_text_encoder_from_open_clip_checkpoint( | |
config_name, | |
checkpoint, | |
prefix=prefix, | |
has_projection=True, | |
local_files_only=local_files_only, | |
torch_dtype=torch_dtype, | |
**config_kwargs, | |
) | |
except Exception: | |
raise ValueError( | |
f"With local_files_only set to {local_files_only}, you must first locally save the text_encoder_2 and tokenizer_2 in the following path: {config_name} with `pad_token` set to '!'." | |
) | |
return { | |
"tokenizer": tokenizer, | |
"text_encoder": text_encoder, | |
"tokenizer_2": tokenizer_2, | |
"text_encoder_2": text_encoder_2, | |
} | |
return | |
def create_scheduler_from_ldm( | |
pipeline_class_name, | |
original_config, | |
checkpoint, | |
prediction_type=None, | |
scheduler_type="ddim", | |
model_type=None, | |
): | |
scheduler_config = get_default_scheduler_config() | |
model_type = infer_model_type(original_config, checkpoint=checkpoint, model_type=model_type) | |
global_step = checkpoint["global_step"] if "global_step" in checkpoint else None | |
num_train_timesteps = getattr(original_config["model"]["params"], "timesteps", None) or 1000 | |
scheduler_config["num_train_timesteps"] = num_train_timesteps | |
if ( | |
"parameterization" in original_config["model"]["params"] | |
and original_config["model"]["params"]["parameterization"] == "v" | |
): | |
if prediction_type is None: | |
# NOTE: For stable diffusion 2 base it is recommended to pass `prediction_type=="epsilon"` | |
# as it relies on a brittle global step parameter here | |
prediction_type = "epsilon" if global_step == 875000 else "v_prediction" | |
else: | |
prediction_type = prediction_type or "epsilon" | |
scheduler_config["prediction_type"] = prediction_type | |
if model_type in ["SDXL", "SDXL-Refiner"]: | |
scheduler_type = "euler" | |
elif model_type == "Playground": | |
scheduler_type = "edm_dpm_solver_multistep" | |
else: | |
beta_start = original_config["model"]["params"].get("linear_start", 0.02) | |
beta_end = original_config["model"]["params"].get("linear_end", 0.085) | |
scheduler_config["beta_start"] = beta_start | |
scheduler_config["beta_end"] = beta_end | |
scheduler_config["beta_schedule"] = "scaled_linear" | |
scheduler_config["clip_sample"] = False | |
scheduler_config["set_alpha_to_one"] = False | |
if scheduler_type == "pndm": | |
scheduler_config["skip_prk_steps"] = True | |
scheduler = PNDMScheduler.from_config(scheduler_config) | |
elif scheduler_type == "lms": | |
scheduler = LMSDiscreteScheduler.from_config(scheduler_config) | |
elif scheduler_type == "heun": | |
scheduler = HeunDiscreteScheduler.from_config(scheduler_config) | |
elif scheduler_type == "euler": | |
scheduler = EulerDiscreteScheduler.from_config(scheduler_config) | |
elif scheduler_type == "euler-ancestral": | |
scheduler = EulerAncestralDiscreteScheduler.from_config(scheduler_config) | |
elif scheduler_type == "dpm": | |
scheduler = DPMSolverMultistepScheduler.from_config(scheduler_config) | |
elif scheduler_type == "ddim": | |
scheduler = DDIMScheduler.from_config(scheduler_config) | |
elif scheduler_type == "edm_dpm_solver_multistep": | |
scheduler_config = { | |
"algorithm_type": "dpmsolver++", | |
"dynamic_thresholding_ratio": 0.995, | |
"euler_at_final": False, | |
"final_sigmas_type": "zero", | |
"lower_order_final": True, | |
"num_train_timesteps": 1000, | |
"prediction_type": "epsilon", | |
"rho": 7.0, | |
"sample_max_value": 1.0, | |
"sigma_data": 0.5, | |
"sigma_max": 80.0, | |
"sigma_min": 0.002, | |
"solver_order": 2, | |
"solver_type": "midpoint", | |
"thresholding": False, | |
} | |
scheduler = EDMDPMSolverMultistepScheduler(**scheduler_config) | |
else: | |
raise ValueError(f"Scheduler of type {scheduler_type} doesn't exist!") | |
if pipeline_class_name == "StableDiffusionUpscalePipeline": | |
scheduler = DDIMScheduler.from_pretrained("stabilityai/stable-diffusion-x4-upscaler", subfolder="scheduler") | |
low_res_scheduler = DDPMScheduler.from_pretrained( | |
"stabilityai/stable-diffusion-x4-upscaler", subfolder="low_res_scheduler" | |
) | |
return { | |
"scheduler": scheduler, | |
"low_res_scheduler": low_res_scheduler, | |
} | |
return {"scheduler": scheduler} | |