Spaces:
Running
on
Zero
Running
on
Zero
# Copyright 2024 The HuggingFace Team. All rights reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
from copy import deepcopy | |
from typing import Callable, Dict, List, Optional, Union | |
import numpy as np | |
import PIL.Image | |
import torch | |
import torch.nn.functional as F | |
from packaging import version | |
from PIL import Image | |
from ... import __version__ | |
from ...models import UNet2DConditionModel, VQModel | |
from ...schedulers import DDPMScheduler | |
from ...utils import deprecate, logging | |
from ...utils.torch_utils import randn_tensor | |
from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput | |
logger = logging.get_logger(__name__) # pylint: disable=invalid-name | |
EXAMPLE_DOC_STRING = """ | |
Examples: | |
```py | |
>>> from diffusers import KandinskyV22InpaintPipeline, KandinskyV22PriorPipeline | |
>>> from diffusers.utils import load_image | |
>>> import torch | |
>>> import numpy as np | |
>>> pipe_prior = KandinskyV22PriorPipeline.from_pretrained( | |
... "kandinsky-community/kandinsky-2-2-prior", torch_dtype=torch.float16 | |
... ) | |
>>> pipe_prior.to("cuda") | |
>>> prompt = "a hat" | |
>>> image_emb, zero_image_emb = pipe_prior(prompt, return_dict=False) | |
>>> pipe = KandinskyV22InpaintPipeline.from_pretrained( | |
... "kandinsky-community/kandinsky-2-2-decoder-inpaint", torch_dtype=torch.float16 | |
... ) | |
>>> pipe.to("cuda") | |
>>> init_image = load_image( | |
... "https://huggingface.co./datasets/hf-internal-testing/diffusers-images/resolve/main" | |
... "/kandinsky/cat.png" | |
... ) | |
>>> mask = np.zeros((768, 768), dtype=np.float32) | |
>>> mask[:250, 250:-250] = 1 | |
>>> out = pipe( | |
... image=init_image, | |
... mask_image=mask, | |
... image_embeds=image_emb, | |
... negative_image_embeds=zero_image_emb, | |
... height=768, | |
... width=768, | |
... num_inference_steps=50, | |
... ) | |
>>> image = out.images[0] | |
>>> image.save("cat_with_hat.png") | |
``` | |
""" | |
# Copied from diffusers.pipelines.kandinsky2_2.pipeline_kandinsky2_2.downscale_height_and_width | |
def downscale_height_and_width(height, width, scale_factor=8): | |
new_height = height // scale_factor**2 | |
if height % scale_factor**2 != 0: | |
new_height += 1 | |
new_width = width // scale_factor**2 | |
if width % scale_factor**2 != 0: | |
new_width += 1 | |
return new_height * scale_factor, new_width * scale_factor | |
# Copied from diffusers.pipelines.kandinsky.pipeline_kandinsky_inpaint.prepare_mask | |
def prepare_mask(masks): | |
prepared_masks = [] | |
for mask in masks: | |
old_mask = deepcopy(mask) | |
for i in range(mask.shape[1]): | |
for j in range(mask.shape[2]): | |
if old_mask[0][i][j] == 1: | |
continue | |
if i != 0: | |
mask[:, i - 1, j] = 0 | |
if j != 0: | |
mask[:, i, j - 1] = 0 | |
if i != 0 and j != 0: | |
mask[:, i - 1, j - 1] = 0 | |
if i != mask.shape[1] - 1: | |
mask[:, i + 1, j] = 0 | |
if j != mask.shape[2] - 1: | |
mask[:, i, j + 1] = 0 | |
if i != mask.shape[1] - 1 and j != mask.shape[2] - 1: | |
mask[:, i + 1, j + 1] = 0 | |
prepared_masks.append(mask) | |
return torch.stack(prepared_masks, dim=0) | |
# Copied from diffusers.pipelines.kandinsky.pipeline_kandinsky_inpaint.prepare_mask_and_masked_image | |
def prepare_mask_and_masked_image(image, mask, height, width): | |
r""" | |
Prepares a pair (mask, image) to be consumed by the Kandinsky inpaint pipeline. This means that those inputs will | |
be converted to ``torch.Tensor`` with shapes ``batch x channels x height x width`` where ``channels`` is ``3`` for | |
the ``image`` and ``1`` for the ``mask``. | |
The ``image`` will be converted to ``torch.float32`` and normalized to be in ``[-1, 1]``. The ``mask`` will be | |
binarized (``mask > 0.5``) and cast to ``torch.float32`` too. | |
Args: | |
image (Union[np.array, PIL.Image, torch.Tensor]): The image to inpaint. | |
It can be a ``PIL.Image``, or a ``height x width x 3`` ``np.array`` or a ``channels x height x width`` | |
``torch.Tensor`` or a ``batch x channels x height x width`` ``torch.Tensor``. | |
mask (_type_): The mask to apply to the image, i.e. regions to inpaint. | |
It can be a ``PIL.Image``, or a ``height x width`` ``np.array`` or a ``1 x height x width`` | |
``torch.Tensor`` or a ``batch x 1 x height x width`` ``torch.Tensor``. | |
height (`int`, *optional*, defaults to 512): | |
The height in pixels of the generated image. | |
width (`int`, *optional*, defaults to 512): | |
The width in pixels of the generated image. | |
Raises: | |
ValueError: ``torch.Tensor`` images should be in the ``[-1, 1]`` range. ValueError: ``torch.Tensor`` mask | |
should be in the ``[0, 1]`` range. ValueError: ``mask`` and ``image`` should have the same spatial dimensions. | |
TypeError: ``mask`` is a ``torch.Tensor`` but ``image`` is not | |
(ot the other way around). | |
Returns: | |
tuple[torch.Tensor]: The pair (mask, image) as ``torch.Tensor`` with 4 | |
dimensions: ``batch x channels x height x width``. | |
""" | |
if image is None: | |
raise ValueError("`image` input cannot be undefined.") | |
if mask is None: | |
raise ValueError("`mask_image` input cannot be undefined.") | |
if isinstance(image, torch.Tensor): | |
if not isinstance(mask, torch.Tensor): | |
raise TypeError(f"`image` is a torch.Tensor but `mask` (type: {type(mask)} is not") | |
# Batch single image | |
if image.ndim == 3: | |
assert image.shape[0] == 3, "Image outside a batch should be of shape (3, H, W)" | |
image = image.unsqueeze(0) | |
# Batch and add channel dim for single mask | |
if mask.ndim == 2: | |
mask = mask.unsqueeze(0).unsqueeze(0) | |
# Batch single mask or add channel dim | |
if mask.ndim == 3: | |
# Single batched mask, no channel dim or single mask not batched but channel dim | |
if mask.shape[0] == 1: | |
mask = mask.unsqueeze(0) | |
# Batched masks no channel dim | |
else: | |
mask = mask.unsqueeze(1) | |
assert image.ndim == 4 and mask.ndim == 4, "Image and Mask must have 4 dimensions" | |
assert image.shape[-2:] == mask.shape[-2:], "Image and Mask must have the same spatial dimensions" | |
assert image.shape[0] == mask.shape[0], "Image and Mask must have the same batch size" | |
# Check image is in [-1, 1] | |
if image.min() < -1 or image.max() > 1: | |
raise ValueError("Image should be in [-1, 1] range") | |
# Check mask is in [0, 1] | |
if mask.min() < 0 or mask.max() > 1: | |
raise ValueError("Mask should be in [0, 1] range") | |
# Binarize mask | |
mask[mask < 0.5] = 0 | |
mask[mask >= 0.5] = 1 | |
# Image as float32 | |
image = image.to(dtype=torch.float32) | |
elif isinstance(mask, torch.Tensor): | |
raise TypeError(f"`mask` is a torch.Tensor but `image` (type: {type(image)} is not") | |
else: | |
# preprocess image | |
if isinstance(image, (PIL.Image.Image, np.ndarray)): | |
image = [image] | |
if isinstance(image, list) and isinstance(image[0], PIL.Image.Image): | |
# resize all images w.r.t passed height an width | |
image = [i.resize((width, height), resample=Image.BICUBIC, reducing_gap=1) for i in image] | |
image = [np.array(i.convert("RGB"))[None, :] for i in image] | |
image = np.concatenate(image, axis=0) | |
elif isinstance(image, list) and isinstance(image[0], np.ndarray): | |
image = np.concatenate([i[None, :] for i in image], axis=0) | |
image = image.transpose(0, 3, 1, 2) | |
image = torch.from_numpy(image).to(dtype=torch.float32) / 127.5 - 1.0 | |
# preprocess mask | |
if isinstance(mask, (PIL.Image.Image, np.ndarray)): | |
mask = [mask] | |
if isinstance(mask, list) and isinstance(mask[0], PIL.Image.Image): | |
mask = [i.resize((width, height), resample=PIL.Image.LANCZOS) for i in mask] | |
mask = np.concatenate([np.array(m.convert("L"))[None, None, :] for m in mask], axis=0) | |
mask = mask.astype(np.float32) / 255.0 | |
elif isinstance(mask, list) and isinstance(mask[0], np.ndarray): | |
mask = np.concatenate([m[None, None, :] for m in mask], axis=0) | |
mask[mask < 0.5] = 0 | |
mask[mask >= 0.5] = 1 | |
mask = torch.from_numpy(mask) | |
mask = 1 - mask | |
return mask, image | |
class KandinskyV22InpaintPipeline(DiffusionPipeline): | |
""" | |
Pipeline for text-guided image inpainting using Kandinsky2.1 | |
This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods the | |
library implements for all the pipelines (such as downloading or saving, running on a particular device, etc.) | |
Args: | |
scheduler ([`DDIMScheduler`]): | |
A scheduler to be used in combination with `unet` to generate image latents. | |
unet ([`UNet2DConditionModel`]): | |
Conditional U-Net architecture to denoise the image embedding. | |
movq ([`VQModel`]): | |
MoVQ Decoder to generate the image from the latents. | |
""" | |
model_cpu_offload_seq = "unet->movq" | |
_callback_tensor_inputs = ["latents", "image_embeds", "negative_image_embeds", "masked_image", "mask_image"] | |
def __init__( | |
self, | |
unet: UNet2DConditionModel, | |
scheduler: DDPMScheduler, | |
movq: VQModel, | |
): | |
super().__init__() | |
self.register_modules( | |
unet=unet, | |
scheduler=scheduler, | |
movq=movq, | |
) | |
self.movq_scale_factor = 2 ** (len(self.movq.config.block_out_channels) - 1) | |
self._warn_has_been_called = False | |
# Copied from diffusers.pipelines.unclip.pipeline_unclip.UnCLIPPipeline.prepare_latents | |
def prepare_latents(self, shape, dtype, device, generator, latents, scheduler): | |
if latents is None: | |
latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype) | |
else: | |
if latents.shape != shape: | |
raise ValueError(f"Unexpected latents shape, got {latents.shape}, expected {shape}") | |
latents = latents.to(device) | |
latents = latents * scheduler.init_noise_sigma | |
return latents | |
def guidance_scale(self): | |
return self._guidance_scale | |
def do_classifier_free_guidance(self): | |
return self._guidance_scale > 1 | |
def num_timesteps(self): | |
return self._num_timesteps | |
def __call__( | |
self, | |
image_embeds: Union[torch.FloatTensor, List[torch.FloatTensor]], | |
image: Union[torch.FloatTensor, PIL.Image.Image], | |
mask_image: Union[torch.FloatTensor, PIL.Image.Image, np.ndarray], | |
negative_image_embeds: Union[torch.FloatTensor, List[torch.FloatTensor]], | |
height: int = 512, | |
width: int = 512, | |
num_inference_steps: int = 100, | |
guidance_scale: float = 4.0, | |
num_images_per_prompt: int = 1, | |
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None, | |
latents: Optional[torch.FloatTensor] = None, | |
output_type: Optional[str] = "pil", | |
return_dict: bool = True, | |
callback_on_step_end: Optional[Callable[[int, int, Dict], None]] = None, | |
callback_on_step_end_tensor_inputs: List[str] = ["latents"], | |
**kwargs, | |
): | |
""" | |
Function invoked when calling the pipeline for generation. | |
Args: | |
image_embeds (`torch.FloatTensor` or `List[torch.FloatTensor]`): | |
The clip image embeddings for text prompt, that will be used to condition the image generation. | |
image (`PIL.Image.Image`): | |
`Image`, or tensor representing an image batch which will be inpainted, *i.e.* parts of the image will | |
be masked out with `mask_image` and repainted according to `prompt`. | |
mask_image (`np.array`): | |
Tensor representing an image batch, to mask `image`. White pixels in the mask will be repainted, while | |
black pixels will be preserved. If `mask_image` is a PIL image, it will be converted to a single | |
channel (luminance) before use. If it's a tensor, it should contain one color channel (L) instead of 3, | |
so the expected shape would be `(B, H, W, 1)`. | |
negative_image_embeds (`torch.FloatTensor` or `List[torch.FloatTensor]`): | |
The clip image embeddings for negative text prompt, will be used to condition the image generation. | |
height (`int`, *optional*, defaults to 512): | |
The height in pixels of the generated image. | |
width (`int`, *optional*, defaults to 512): | |
The width in pixels of the generated image. | |
num_inference_steps (`int`, *optional*, defaults to 100): | |
The number of denoising steps. More denoising steps usually lead to a higher quality image at the | |
expense of slower inference. | |
guidance_scale (`float`, *optional*, defaults to 4.0): | |
Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598). | |
`guidance_scale` is defined as `w` of equation 2. of [Imagen | |
Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale > | |
1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`, | |
usually at the expense of lower image quality. | |
num_images_per_prompt (`int`, *optional*, defaults to 1): | |
The number of images to generate per prompt. | |
generator (`torch.Generator` or `List[torch.Generator]`, *optional*): | |
One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html) | |
to make generation deterministic. | |
latents (`torch.FloatTensor`, *optional*): | |
Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image | |
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents | |
tensor will ge generated by sampling using the supplied random `generator`. | |
output_type (`str`, *optional*, defaults to `"pil"`): | |
The output format of the generate image. Choose between: `"pil"` (`PIL.Image.Image`), `"np"` | |
(`np.array`) or `"pt"` (`torch.Tensor`). | |
return_dict (`bool`, *optional*, defaults to `True`): | |
Whether or not to return a [`~pipelines.ImagePipelineOutput`] instead of a plain tuple. | |
callback_on_step_end (`Callable`, *optional*): | |
A function that calls at the end of each denoising steps during the inference. The function is called | |
with the following arguments: `callback_on_step_end(self: DiffusionPipeline, step: int, timestep: int, | |
callback_kwargs: Dict)`. `callback_kwargs` will include a list of all tensors as specified by | |
`callback_on_step_end_tensor_inputs`. | |
callback_on_step_end_tensor_inputs (`List`, *optional*): | |
The list of tensor inputs for the `callback_on_step_end` function. The tensors specified in the list | |
will be passed as `callback_kwargs` argument. You will only be able to include variables listed in the | |
`._callback_tensor_inputs` attribute of your pipeline class. | |
Examples: | |
Returns: | |
[`~pipelines.ImagePipelineOutput`] or `tuple` | |
""" | |
if not self._warn_has_been_called and version.parse(version.parse(__version__).base_version) < version.parse( | |
"0.23.0.dev0" | |
): | |
logger.warning( | |
"Please note that the expected format of `mask_image` has recently been changed. " | |
"Before diffusers == 0.19.0, Kandinsky Inpainting pipelines repainted black pixels and preserved black pixels. " | |
"As of diffusers==0.19.0 this behavior has been inverted. Now white pixels are repainted and black pixels are preserved. " | |
"This way, Kandinsky's masking behavior is aligned with Stable Diffusion. " | |
"THIS means that you HAVE to invert the input mask to have the same behavior as before as explained in https://github.com/huggingface/diffusers/pull/4207. " | |
"This warning will be surpressed after the first inference call and will be removed in diffusers>0.23.0" | |
) | |
self._warn_has_been_called = True | |
callback = kwargs.pop("callback", None) | |
callback_steps = kwargs.pop("callback_steps", None) | |
if callback is not None: | |
deprecate( | |
"callback", | |
"1.0.0", | |
"Passing `callback` as an input argument to `__call__` is deprecated, consider use `callback_on_step_end`", | |
) | |
if callback_steps is not None: | |
deprecate( | |
"callback_steps", | |
"1.0.0", | |
"Passing `callback_steps` as an input argument to `__call__` is deprecated, consider use `callback_on_step_end`", | |
) | |
if callback_on_step_end_tensor_inputs is not None and not all( | |
k in self._callback_tensor_inputs for k in callback_on_step_end_tensor_inputs | |
): | |
raise ValueError( | |
f"`callback_on_step_end_tensor_inputs` has to be in {self._callback_tensor_inputs}, but found {[k for k in callback_on_step_end_tensor_inputs if k not in self._callback_tensor_inputs]}" | |
) | |
self._guidance_scale = guidance_scale | |
device = self._execution_device | |
if isinstance(image_embeds, list): | |
image_embeds = torch.cat(image_embeds, dim=0) | |
batch_size = image_embeds.shape[0] * num_images_per_prompt | |
if isinstance(negative_image_embeds, list): | |
negative_image_embeds = torch.cat(negative_image_embeds, dim=0) | |
if self.do_classifier_free_guidance: | |
image_embeds = image_embeds.repeat_interleave(num_images_per_prompt, dim=0) | |
negative_image_embeds = negative_image_embeds.repeat_interleave(num_images_per_prompt, dim=0) | |
image_embeds = torch.cat([negative_image_embeds, image_embeds], dim=0).to( | |
dtype=self.unet.dtype, device=device | |
) | |
self.scheduler.set_timesteps(num_inference_steps, device=device) | |
timesteps = self.scheduler.timesteps | |
# preprocess image and mask | |
mask_image, image = prepare_mask_and_masked_image(image, mask_image, height, width) | |
image = image.to(dtype=image_embeds.dtype, device=device) | |
image = self.movq.encode(image)["latents"] | |
mask_image = mask_image.to(dtype=image_embeds.dtype, device=device) | |
image_shape = tuple(image.shape[-2:]) | |
mask_image = F.interpolate( | |
mask_image, | |
image_shape, | |
mode="nearest", | |
) | |
mask_image = prepare_mask(mask_image) | |
masked_image = image * mask_image | |
mask_image = mask_image.repeat_interleave(num_images_per_prompt, dim=0) | |
masked_image = masked_image.repeat_interleave(num_images_per_prompt, dim=0) | |
if self.do_classifier_free_guidance: | |
mask_image = mask_image.repeat(2, 1, 1, 1) | |
masked_image = masked_image.repeat(2, 1, 1, 1) | |
num_channels_latents = self.movq.config.latent_channels | |
height, width = downscale_height_and_width(height, width, self.movq_scale_factor) | |
# create initial latent | |
latents = self.prepare_latents( | |
(batch_size, num_channels_latents, height, width), | |
image_embeds.dtype, | |
device, | |
generator, | |
latents, | |
self.scheduler, | |
) | |
noise = torch.clone(latents) | |
self._num_timesteps = len(timesteps) | |
for i, t in enumerate(self.progress_bar(timesteps)): | |
# expand the latents if we are doing classifier free guidance | |
latent_model_input = torch.cat([latents] * 2) if self.do_classifier_free_guidance else latents | |
latent_model_input = torch.cat([latent_model_input, masked_image, mask_image], dim=1) | |
added_cond_kwargs = {"image_embeds": image_embeds} | |
noise_pred = self.unet( | |
sample=latent_model_input, | |
timestep=t, | |
encoder_hidden_states=None, | |
added_cond_kwargs=added_cond_kwargs, | |
return_dict=False, | |
)[0] | |
if self.do_classifier_free_guidance: | |
noise_pred, variance_pred = noise_pred.split(latents.shape[1], dim=1) | |
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2) | |
_, variance_pred_text = variance_pred.chunk(2) | |
noise_pred = noise_pred_uncond + self.guidance_scale * (noise_pred_text - noise_pred_uncond) | |
noise_pred = torch.cat([noise_pred, variance_pred_text], dim=1) | |
if not ( | |
hasattr(self.scheduler.config, "variance_type") | |
and self.scheduler.config.variance_type in ["learned", "learned_range"] | |
): | |
noise_pred, _ = noise_pred.split(latents.shape[1], dim=1) | |
# compute the previous noisy sample x_t -> x_t-1 | |
latents = self.scheduler.step( | |
noise_pred, | |
t, | |
latents, | |
generator=generator, | |
)[0] | |
init_latents_proper = image[:1] | |
init_mask = mask_image[:1] | |
if i < len(timesteps) - 1: | |
noise_timestep = timesteps[i + 1] | |
init_latents_proper = self.scheduler.add_noise( | |
init_latents_proper, noise, torch.tensor([noise_timestep]) | |
) | |
latents = init_mask * init_latents_proper + (1 - init_mask) * latents | |
if callback_on_step_end is not None: | |
callback_kwargs = {} | |
for k in callback_on_step_end_tensor_inputs: | |
callback_kwargs[k] = locals()[k] | |
callback_outputs = callback_on_step_end(self, i, t, callback_kwargs) | |
latents = callback_outputs.pop("latents", latents) | |
image_embeds = callback_outputs.pop("image_embeds", image_embeds) | |
negative_image_embeds = callback_outputs.pop("negative_image_embeds", negative_image_embeds) | |
masked_image = callback_outputs.pop("masked_image", masked_image) | |
mask_image = callback_outputs.pop("mask_image", mask_image) | |
if callback is not None and i % callback_steps == 0: | |
step_idx = i // getattr(self.scheduler, "order", 1) | |
callback(step_idx, t, latents) | |
# post-processing | |
latents = mask_image[:1] * image[:1] + (1 - mask_image[:1]) * latents | |
if output_type not in ["pt", "np", "pil", "latent"]: | |
raise ValueError( | |
f"Only the output types `pt`, `pil`, `np` and `latent` are supported not output_type={output_type}" | |
) | |
if not output_type == "latent": | |
image = self.movq.decode(latents, force_not_quantize=True)["sample"] | |
if output_type in ["np", "pil"]: | |
image = image * 0.5 + 0.5 | |
image = image.clamp(0, 1) | |
image = image.cpu().permute(0, 2, 3, 1).float().numpy() | |
if output_type == "pil": | |
image = self.numpy_to_pil(image) | |
else: | |
image = latents | |
# Offload all models | |
self.maybe_free_model_hooks() | |
if not return_dict: | |
return (image,) | |
return ImagePipelineOutput(images=image) | |