Spaces:
Running
on
Zero
Running
on
Zero
# Copyright 2024 The HuggingFace Team. All rights reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
import math | |
from typing import Tuple, Union | |
import torch | |
import torch.fft as fft | |
from ..utils.torch_utils import randn_tensor | |
class FreeInitMixin: | |
r"""Mixin class for FreeInit.""" | |
def enable_free_init( | |
self, | |
num_iters: int = 3, | |
use_fast_sampling: bool = False, | |
method: str = "butterworth", | |
order: int = 4, | |
spatial_stop_frequency: float = 0.25, | |
temporal_stop_frequency: float = 0.25, | |
): | |
"""Enables the FreeInit mechanism as in https://arxiv.org/abs/2312.07537. | |
This implementation has been adapted from the [official repository](https://github.com/TianxingWu/FreeInit). | |
Args: | |
num_iters (`int`, *optional*, defaults to `3`): | |
Number of FreeInit noise re-initialization iterations. | |
use_fast_sampling (`bool`, *optional*, defaults to `False`): | |
Whether or not to speedup sampling procedure at the cost of probably lower quality results. Enables the | |
"Coarse-to-Fine Sampling" strategy, as mentioned in the paper, if set to `True`. | |
method (`str`, *optional*, defaults to `butterworth`): | |
Must be one of `butterworth`, `ideal` or `gaussian` to use as the filtering method for the FreeInit low | |
pass filter. | |
order (`int`, *optional*, defaults to `4`): | |
Order of the filter used in `butterworth` method. Larger values lead to `ideal` method behaviour | |
whereas lower values lead to `gaussian` method behaviour. | |
spatial_stop_frequency (`float`, *optional*, defaults to `0.25`): | |
Normalized stop frequency for spatial dimensions. Must be between 0 to 1. Referred to as `d_s` in the | |
original implementation. | |
temporal_stop_frequency (`float`, *optional*, defaults to `0.25`): | |
Normalized stop frequency for temporal dimensions. Must be between 0 to 1. Referred to as `d_t` in the | |
original implementation. | |
""" | |
self._free_init_num_iters = num_iters | |
self._free_init_use_fast_sampling = use_fast_sampling | |
self._free_init_method = method | |
self._free_init_order = order | |
self._free_init_spatial_stop_frequency = spatial_stop_frequency | |
self._free_init_temporal_stop_frequency = temporal_stop_frequency | |
def disable_free_init(self): | |
"""Disables the FreeInit mechanism if enabled.""" | |
self._free_init_num_iters = None | |
def free_init_enabled(self): | |
return hasattr(self, "_free_init_num_iters") and self._free_init_num_iters is not None | |
def _get_free_init_freq_filter( | |
self, | |
shape: Tuple[int, ...], | |
device: Union[str, torch.dtype], | |
filter_type: str, | |
order: float, | |
spatial_stop_frequency: float, | |
temporal_stop_frequency: float, | |
) -> torch.Tensor: | |
r"""Returns the FreeInit filter based on filter type and other input conditions.""" | |
time, height, width = shape[-3], shape[-2], shape[-1] | |
mask = torch.zeros(shape) | |
if spatial_stop_frequency == 0 or temporal_stop_frequency == 0: | |
return mask | |
if filter_type == "butterworth": | |
def retrieve_mask(x): | |
return 1 / (1 + (x / spatial_stop_frequency**2) ** order) | |
elif filter_type == "gaussian": | |
def retrieve_mask(x): | |
return math.exp(-1 / (2 * spatial_stop_frequency**2) * x) | |
elif filter_type == "ideal": | |
def retrieve_mask(x): | |
return 1 if x <= spatial_stop_frequency * 2 else 0 | |
else: | |
raise NotImplementedError("`filter_type` must be one of gaussian, butterworth or ideal") | |
for t in range(time): | |
for h in range(height): | |
for w in range(width): | |
d_square = ( | |
((spatial_stop_frequency / temporal_stop_frequency) * (2 * t / time - 1)) ** 2 | |
+ (2 * h / height - 1) ** 2 | |
+ (2 * w / width - 1) ** 2 | |
) | |
mask[..., t, h, w] = retrieve_mask(d_square) | |
return mask.to(device) | |
def _apply_freq_filter(self, x: torch.Tensor, noise: torch.Tensor, low_pass_filter: torch.Tensor) -> torch.Tensor: | |
r"""Noise reinitialization.""" | |
# FFT | |
x_freq = fft.fftn(x, dim=(-3, -2, -1)) | |
x_freq = fft.fftshift(x_freq, dim=(-3, -2, -1)) | |
noise_freq = fft.fftn(noise, dim=(-3, -2, -1)) | |
noise_freq = fft.fftshift(noise_freq, dim=(-3, -2, -1)) | |
# frequency mix | |
high_pass_filter = 1 - low_pass_filter | |
x_freq_low = x_freq * low_pass_filter | |
noise_freq_high = noise_freq * high_pass_filter | |
x_freq_mixed = x_freq_low + noise_freq_high # mix in freq domain | |
# IFFT | |
x_freq_mixed = fft.ifftshift(x_freq_mixed, dim=(-3, -2, -1)) | |
x_mixed = fft.ifftn(x_freq_mixed, dim=(-3, -2, -1)).real | |
return x_mixed | |
def _apply_free_init( | |
self, | |
latents: torch.Tensor, | |
free_init_iteration: int, | |
num_inference_steps: int, | |
device: torch.device, | |
dtype: torch.dtype, | |
generator: torch.Generator, | |
): | |
if free_init_iteration == 0: | |
self._free_init_initial_noise = latents.detach().clone() | |
else: | |
latent_shape = latents.shape | |
free_init_filter_shape = (1, *latent_shape[1:]) | |
free_init_freq_filter = self._get_free_init_freq_filter( | |
shape=free_init_filter_shape, | |
device=device, | |
filter_type=self._free_init_method, | |
order=self._free_init_order, | |
spatial_stop_frequency=self._free_init_spatial_stop_frequency, | |
temporal_stop_frequency=self._free_init_temporal_stop_frequency, | |
) | |
current_diffuse_timestep = self.scheduler.config.num_train_timesteps - 1 | |
diffuse_timesteps = torch.full((latent_shape[0],), current_diffuse_timestep).long() | |
z_t = self.scheduler.add_noise( | |
original_samples=latents, noise=self._free_init_initial_noise, timesteps=diffuse_timesteps.to(device) | |
).to(dtype=torch.float32) | |
z_rand = randn_tensor( | |
shape=latent_shape, | |
generator=generator, | |
device=device, | |
dtype=torch.float32, | |
) | |
latents = self._apply_freq_filter(z_t, z_rand, low_pass_filter=free_init_freq_filter) | |
latents = latents.to(dtype) | |
# Coarse-to-Fine Sampling for faster inference (can lead to lower quality) | |
if self._free_init_use_fast_sampling: | |
num_inference_steps = max( | |
1, int(num_inference_steps / self._free_init_num_iters * (free_init_iteration + 1)) | |
) | |
self.scheduler.set_timesteps(num_inference_steps, device=device) | |
return latents, self.scheduler.timesteps | |