Spaces:
Running
on
Zero
Running
on
Zero
# Copyright 2023 The HuggingFace Team. All rights reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
from typing import Dict, Optional, Tuple, Union | |
import torch | |
import torch.nn as nn | |
from diffusers.configuration_utils import ConfigMixin, register_to_config | |
from diffusers.loaders import FromOriginalVAEMixin | |
from diffusers.utils.accelerate_utils import apply_forward_hook | |
from diffusers.models.attention_processor import ( | |
ADDED_KV_ATTENTION_PROCESSORS, | |
CROSS_ATTENTION_PROCESSORS, | |
Attention, | |
AttentionProcessor, | |
AttnAddedKVProcessor, | |
AttnProcessor, | |
) | |
from diffusers.models.modeling_outputs import AutoencoderKLOutput | |
from diffusers.models.modeling_utils import ModelMixin | |
from .vae import Decoder, DecoderOutput, DiagonalGaussianDistribution, Encoder | |
class AutoencoderKL(ModelMixin, ConfigMixin, FromOriginalVAEMixin): | |
r""" | |
A VAE model with KL loss for encoding images into latents and decoding latent representations into images. | |
This model inherits from [`ModelMixin`]. Check the superclass documentation for it's generic methods implemented | |
for all models (such as downloading or saving). | |
Parameters: | |
in_channels (int, *optional*, defaults to 3): Number of channels in the input image. | |
out_channels (int, *optional*, defaults to 3): Number of channels in the output. | |
down_block_types (`Tuple[str]`, *optional*, defaults to `("DownEncoderBlock2D",)`): | |
Tuple of downsample block types. | |
up_block_types (`Tuple[str]`, *optional*, defaults to `("UpDecoderBlock2D",)`): | |
Tuple of upsample block types. | |
block_out_channels (`Tuple[int]`, *optional*, defaults to `(64,)`): | |
Tuple of block output channels. | |
act_fn (`str`, *optional*, defaults to `"silu"`): The activation function to use. | |
latent_channels (`int`, *optional*, defaults to 4): Number of channels in the latent space. | |
sample_size (`int`, *optional*, defaults to `32`): Sample input size. | |
scaling_factor (`float`, *optional*, defaults to 0.18215): | |
The component-wise standard deviation of the trained latent space computed using the first batch of the | |
training set. This is used to scale the latent space to have unit variance when training the diffusion | |
model. The latents are scaled with the formula `z = z * scaling_factor` before being passed to the | |
diffusion model. When decoding, the latents are scaled back to the original scale with the formula: `z = 1 | |
/ scaling_factor * z`. For more details, refer to sections 4.3.2 and D.1 of the [High-Resolution Image | |
Synthesis with Latent Diffusion Models](https://arxiv.org/abs/2112.10752) paper. | |
force_upcast (`bool`, *optional*, default to `True`): | |
If enabled it will force the VAE to run in float32 for high image resolution pipelines, such as SD-XL. VAE | |
can be fine-tuned / trained to a lower range without loosing too much precision in which case | |
`force_upcast` can be set to `False` - see: https://huggingface.co./madebyollin/sdxl-vae-fp16-fix | |
""" | |
_supports_gradient_checkpointing = True | |
def __init__( | |
self, | |
in_channels: int = 3, | |
out_channels: int = 3, | |
down_block_types: Tuple[str] = ("DownEncoderBlock2D",), | |
up_block_types: Tuple[str] = ("UpDecoderBlock2D",), | |
block_out_channels: Tuple[int] = (64,), | |
layers_per_block: int = 1, | |
act_fn: str = "silu", | |
latent_channels: int = 4, | |
norm_num_groups: int = 32, | |
sample_size: int = 32, | |
scaling_factor: float = 0.18215, | |
force_upcast: float = True, | |
): | |
super().__init__() | |
# pass init params to Encoder | |
self.encoder = Encoder( | |
in_channels=in_channels, | |
out_channels=latent_channels, | |
down_block_types=down_block_types, | |
block_out_channels=block_out_channels, | |
layers_per_block=layers_per_block, | |
act_fn=act_fn, | |
norm_num_groups=norm_num_groups, | |
double_z=True, | |
) | |
# pass init params to Decoder | |
self.decoder = Decoder( | |
in_channels=latent_channels, | |
out_channels=out_channels, | |
up_block_types=up_block_types, | |
block_out_channels=block_out_channels, | |
layers_per_block=layers_per_block, | |
norm_num_groups=norm_num_groups, | |
act_fn=act_fn, | |
) | |
self.quant_conv = nn.Conv2d(2 * latent_channels, 2 * latent_channels, 1) | |
self.post_quant_conv = nn.Conv2d(latent_channels, latent_channels, 1) | |
self.use_slicing = False | |
self.use_tiling = False | |
# only relevant if vae tiling is enabled | |
self.tile_sample_min_size = self.config.sample_size | |
sample_size = ( | |
self.config.sample_size[0] | |
if isinstance(self.config.sample_size, (list, tuple)) | |
else self.config.sample_size | |
) | |
self.tile_latent_min_size = int(sample_size / (2 ** (len(self.config.block_out_channels) - 1))) | |
self.tile_overlap_factor = 0.25 | |
def _set_gradient_checkpointing(self, module, value=False): | |
if isinstance(module, (Encoder, Decoder)): | |
module.gradient_checkpointing = value | |
def enable_tiling(self, use_tiling: bool = True): | |
r""" | |
Enable tiled VAE decoding. When this option is enabled, the VAE will split the input tensor into tiles to | |
compute decoding and encoding in several steps. This is useful for saving a large amount of memory and to allow | |
processing larger images. | |
""" | |
self.use_tiling = use_tiling | |
def disable_tiling(self): | |
r""" | |
Disable tiled VAE decoding. If `enable_tiling` was previously enabled, this method will go back to computing | |
decoding in one step. | |
""" | |
self.enable_tiling(False) | |
def enable_slicing(self): | |
r""" | |
Enable sliced VAE decoding. When this option is enabled, the VAE will split the input tensor in slices to | |
compute decoding in several steps. This is useful to save some memory and allow larger batch sizes. | |
""" | |
self.use_slicing = True | |
def disable_slicing(self): | |
r""" | |
Disable sliced VAE decoding. If `enable_slicing` was previously enabled, this method will go back to computing | |
decoding in one step. | |
""" | |
self.use_slicing = False | |
# Copied from diffusers.models.unet_2d_condition.UNet2DConditionModel.attn_processors | |
def attn_processors(self) -> Dict[str, AttentionProcessor]: | |
r""" | |
Returns: | |
`dict` of attention processors: A dictionary containing all attention processors used in the model with | |
indexed by its weight name. | |
""" | |
# set recursively | |
processors = {} | |
def fn_recursive_add_processors(name: str, module: torch.nn.Module, processors: Dict[str, AttentionProcessor]): | |
if hasattr(module, "get_processor"): | |
processors[f"{name}.processor"] = module.get_processor(return_deprecated_lora=True) | |
for sub_name, child in module.named_children(): | |
fn_recursive_add_processors(f"{name}.{sub_name}", child, processors) | |
return processors | |
for name, module in self.named_children(): | |
fn_recursive_add_processors(name, module, processors) | |
return processors | |
# Copied from diffusers.models.unet_2d_condition.UNet2DConditionModel.set_attn_processor | |
def set_attn_processor( | |
self, processor: Union[AttentionProcessor, Dict[str, AttentionProcessor]], _remove_lora=False | |
): | |
r""" | |
Sets the attention processor to use to compute attention. | |
Parameters: | |
processor (`dict` of `AttentionProcessor` or only `AttentionProcessor`): | |
The instantiated processor class or a dictionary of processor classes that will be set as the processor | |
for **all** `Attention` layers. | |
If `processor` is a dict, the key needs to define the path to the corresponding cross attention | |
processor. This is strongly recommended when setting trainable attention processors. | |
""" | |
count = len(self.attn_processors.keys()) | |
if isinstance(processor, dict) and len(processor) != count: | |
raise ValueError( | |
f"A dict of processors was passed, but the number of processors {len(processor)} does not match the" | |
f" number of attention layers: {count}. Please make sure to pass {count} processor classes." | |
) | |
def fn_recursive_attn_processor(name: str, module: torch.nn.Module, processor): | |
if hasattr(module, "set_processor"): | |
if not isinstance(processor, dict): | |
module.set_processor(processor, _remove_lora=_remove_lora) | |
else: | |
module.set_processor(processor.pop(f"{name}.processor"), _remove_lora=_remove_lora) | |
for sub_name, child in module.named_children(): | |
fn_recursive_attn_processor(f"{name}.{sub_name}", child, processor) | |
for name, module in self.named_children(): | |
fn_recursive_attn_processor(name, module, processor) | |
# Copied from diffusers.models.unet_2d_condition.UNet2DConditionModel.set_default_attn_processor | |
def set_default_attn_processor(self): | |
""" | |
Disables custom attention processors and sets the default attention implementation. | |
""" | |
if all(proc.__class__ in ADDED_KV_ATTENTION_PROCESSORS for proc in self.attn_processors.values()): | |
processor = AttnAddedKVProcessor() | |
elif all(proc.__class__ in CROSS_ATTENTION_PROCESSORS for proc in self.attn_processors.values()): | |
processor = AttnProcessor() | |
else: | |
raise ValueError( | |
f"Cannot call `set_default_attn_processor` when attention processors are of type {next(iter(self.attn_processors.values()))}" | |
) | |
self.set_attn_processor(processor, _remove_lora=True) | |
def encode( | |
self, x: torch.FloatTensor, return_dict: bool = True | |
) -> Union[AutoencoderKLOutput, Tuple[DiagonalGaussianDistribution]]: | |
""" | |
Encode a batch of images into latents. | |
Args: | |
x (`torch.FloatTensor`): Input batch of images. | |
return_dict (`bool`, *optional*, defaults to `True`): | |
Whether to return a [`~models.autoencoder_kl.AutoencoderKLOutput`] instead of a plain tuple. | |
Returns: | |
The latent representations of the encoded images. If `return_dict` is True, a | |
[`~models.autoencoder_kl.AutoencoderKLOutput`] is returned, otherwise a plain `tuple` is returned. | |
""" | |
if self.use_tiling and (x.shape[-1] > self.tile_sample_min_size or x.shape[-2] > self.tile_sample_min_size): | |
return self.tiled_encode(x, return_dict=return_dict) | |
if self.use_slicing and x.shape[0] > 1: | |
encoded_slices = [self.encoder(x_slice) for x_slice in x.split(1)] | |
h = torch.cat(encoded_slices) | |
else: | |
h = self.encoder(x) | |
moments = self.quant_conv(h) | |
posterior = DiagonalGaussianDistribution(moments) | |
if not return_dict: | |
return (posterior,) | |
return AutoencoderKLOutput(latent_dist=posterior) | |
def _decode(self, z: torch.FloatTensor, return_dict: bool = True) -> Union[DecoderOutput, torch.FloatTensor]: | |
if self.use_tiling and (z.shape[-1] > self.tile_latent_min_size or z.shape[-2] > self.tile_latent_min_size): | |
return self.tiled_decode(z, return_dict=return_dict) | |
z = self.post_quant_conv(z) | |
dec = self.decoder(z) | |
if not return_dict: | |
return (dec,) | |
return DecoderOutput(sample=dec) | |
def decode( | |
self, z: torch.FloatTensor, return_dict: bool = True, generator=None | |
) -> Union[DecoderOutput, torch.FloatTensor]: | |
""" | |
Decode a batch of images. | |
Args: | |
z (`torch.FloatTensor`): Input batch of latent vectors. | |
return_dict (`bool`, *optional*, defaults to `True`): | |
Whether to return a [`~models.vae.DecoderOutput`] instead of a plain tuple. | |
Returns: | |
[`~models.vae.DecoderOutput`] or `tuple`: | |
If return_dict is True, a [`~models.vae.DecoderOutput`] is returned, otherwise a plain `tuple` is | |
returned. | |
""" | |
if self.use_slicing and z.shape[0] > 1: | |
decoded_slices = [self._decode(z_slice).sample for z_slice in z.split(1)] | |
decoded = torch.cat(decoded_slices) | |
else: | |
decoded = self._decode(z).sample | |
if not return_dict: | |
return (decoded,) | |
return DecoderOutput(sample=decoded) | |
def blend_v(self, a: torch.Tensor, b: torch.Tensor, blend_extent: int) -> torch.Tensor: | |
blend_extent = min(a.shape[2], b.shape[2], blend_extent) | |
for y in range(blend_extent): | |
b[:, :, y, :] = a[:, :, -blend_extent + y, :] * (1 - y / blend_extent) + b[:, :, y, :] * (y / blend_extent) | |
return b | |
def blend_h(self, a: torch.Tensor, b: torch.Tensor, blend_extent: int) -> torch.Tensor: | |
blend_extent = min(a.shape[3], b.shape[3], blend_extent) | |
for x in range(blend_extent): | |
b[:, :, :, x] = a[:, :, :, -blend_extent + x] * (1 - x / blend_extent) + b[:, :, :, x] * (x / blend_extent) | |
return b | |
def tiled_encode(self, x: torch.FloatTensor, return_dict: bool = True) -> AutoencoderKLOutput: | |
r"""Encode a batch of images using a tiled encoder. | |
When this option is enabled, the VAE will split the input tensor into tiles to compute encoding in several | |
steps. This is useful to keep memory use constant regardless of image size. The end result of tiled encoding is | |
different from non-tiled encoding because each tile uses a different encoder. To avoid tiling artifacts, the | |
tiles overlap and are blended together to form a smooth output. You may still see tile-sized changes in the | |
output, but they should be much less noticeable. | |
Args: | |
x (`torch.FloatTensor`): Input batch of images. | |
return_dict (`bool`, *optional*, defaults to `True`): | |
Whether or not to return a [`~models.autoencoder_kl.AutoencoderKLOutput`] instead of a plain tuple. | |
Returns: | |
[`~models.autoencoder_kl.AutoencoderKLOutput`] or `tuple`: | |
If return_dict is True, a [`~models.autoencoder_kl.AutoencoderKLOutput`] is returned, otherwise a plain | |
`tuple` is returned. | |
""" | |
overlap_size = int(self.tile_sample_min_size * (1 - self.tile_overlap_factor)) | |
blend_extent = int(self.tile_latent_min_size * self.tile_overlap_factor) | |
row_limit = self.tile_latent_min_size - blend_extent | |
# Split the image into 512x512 tiles and encode them separately. | |
rows = [] | |
for i in range(0, x.shape[2], overlap_size): | |
row = [] | |
for j in range(0, x.shape[3], overlap_size): | |
tile = x[:, :, i : i + self.tile_sample_min_size, j : j + self.tile_sample_min_size] | |
tile = self.encoder(tile) | |
tile = self.quant_conv(tile) | |
row.append(tile) | |
rows.append(row) | |
result_rows = [] | |
for i, row in enumerate(rows): | |
result_row = [] | |
for j, tile in enumerate(row): | |
# blend the above tile and the left tile | |
# to the current tile and add the current tile to the result row | |
if i > 0: | |
tile = self.blend_v(rows[i - 1][j], tile, blend_extent) | |
if j > 0: | |
tile = self.blend_h(row[j - 1], tile, blend_extent) | |
result_row.append(tile[:, :, :row_limit, :row_limit]) | |
result_rows.append(torch.cat(result_row, dim=3)) | |
moments = torch.cat(result_rows, dim=2) | |
posterior = DiagonalGaussianDistribution(moments) | |
if not return_dict: | |
return (posterior,) | |
return AutoencoderKLOutput(latent_dist=posterior) | |
def tiled_decode(self, z: torch.FloatTensor, return_dict: bool = True) -> Union[DecoderOutput, torch.FloatTensor]: | |
r""" | |
Decode a batch of images using a tiled decoder. | |
Args: | |
z (`torch.FloatTensor`): Input batch of latent vectors. | |
return_dict (`bool`, *optional*, defaults to `True`): | |
Whether or not to return a [`~models.vae.DecoderOutput`] instead of a plain tuple. | |
Returns: | |
[`~models.vae.DecoderOutput`] or `tuple`: | |
If return_dict is True, a [`~models.vae.DecoderOutput`] is returned, otherwise a plain `tuple` is | |
returned. | |
""" | |
overlap_size = int(self.tile_latent_min_size * (1 - self.tile_overlap_factor)) | |
blend_extent = int(self.tile_sample_min_size * self.tile_overlap_factor) | |
row_limit = self.tile_sample_min_size - blend_extent | |
# Split z into overlapping 64x64 tiles and decode them separately. | |
# The tiles have an overlap to avoid seams between tiles. | |
rows = [] | |
for i in range(0, z.shape[2], overlap_size): | |
row = [] | |
for j in range(0, z.shape[3], overlap_size): | |
tile = z[:, :, i : i + self.tile_latent_min_size, j : j + self.tile_latent_min_size] | |
tile = self.post_quant_conv(tile) | |
decoded = self.decoder(tile) | |
row.append(decoded) | |
rows.append(row) | |
result_rows = [] | |
for i, row in enumerate(rows): | |
result_row = [] | |
for j, tile in enumerate(row): | |
# blend the above tile and the left tile | |
# to the current tile and add the current tile to the result row | |
if i > 0: | |
tile = self.blend_v(rows[i - 1][j], tile, blend_extent) | |
if j > 0: | |
tile = self.blend_h(row[j - 1], tile, blend_extent) | |
result_row.append(tile[:, :, :row_limit, :row_limit]) | |
result_rows.append(torch.cat(result_row, dim=3)) | |
dec = torch.cat(result_rows, dim=2) | |
if not return_dict: | |
return (dec,) | |
return DecoderOutput(sample=dec) | |
def forward( | |
self, | |
sample: torch.FloatTensor, | |
sample_posterior: bool = False, | |
return_dict: bool = True, | |
generator: Optional[torch.Generator] = None, | |
) -> Union[DecoderOutput, torch.FloatTensor]: | |
r""" | |
Args: | |
sample (`torch.FloatTensor`): Input sample. | |
sample_posterior (`bool`, *optional*, defaults to `False`): | |
Whether to sample from the posterior. | |
return_dict (`bool`, *optional*, defaults to `True`): | |
Whether or not to return a [`DecoderOutput`] instead of a plain tuple. | |
""" | |
x = sample | |
posterior = self.encode(x).latent_dist | |
if sample_posterior: | |
z = posterior.sample(generator=generator) | |
else: | |
z = posterior.mode() | |
dec = self.decode(z).sample | |
if not return_dict: | |
return (dec,) | |
return DecoderOutput(sample=dec) | |
# Copied from diffusers.models.unet_2d_condition.UNet2DConditionModel.fuse_qkv_projections | |
def fuse_qkv_projections(self): | |
""" | |
Enables fused QKV projections. For self-attention modules, all projection matrices (i.e., query, | |
key, value) are fused. For cross-attention modules, key and value projection matrices are fused. | |
<Tip warning={true}> | |
This API is 🧪 experimental. | |
</Tip> | |
""" | |
self.original_attn_processors = None | |
for _, attn_processor in self.attn_processors.items(): | |
if "Added" in str(attn_processor.__class__.__name__): | |
raise ValueError("`fuse_qkv_projections()` is not supported for models having added KV projections.") | |
self.original_attn_processors = self.attn_processors | |
for module in self.modules(): | |
if isinstance(module, Attention): | |
module.fuse_projections(fuse=True) | |
# Copied from diffusers.models.unet_2d_condition.UNet2DConditionModel.unfuse_qkv_projections | |
def unfuse_qkv_projections(self): | |
"""Disables the fused QKV projection if enabled. | |
<Tip warning={true}> | |
This API is 🧪 experimental. | |
</Tip> | |
""" | |
if self.original_attn_processors is not None: | |
self.set_attn_processor(self.original_attn_processors) |