Spaces:
Running
on
Zero
Running
on
Zero
File size: 1,650 Bytes
f369784 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 |
from typing import TYPE_CHECKING
from ....utils import (
DIFFUSERS_SLOW_IMPORT,
OptionalDependencyNotAvailable,
_LazyModule,
is_torch_available,
is_transformers_available,
)
_dummy_objects = {}
_import_structure = {}
try:
if not (is_transformers_available() and is_torch_available()):
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
from ....utils.dummy_torch_and_transformers_objects import (
LearnedClassifierFreeSamplingEmbeddings,
VQDiffusionPipeline,
)
_dummy_objects.update(
{
"LearnedClassifierFreeSamplingEmbeddings": LearnedClassifierFreeSamplingEmbeddings,
"VQDiffusionPipeline": VQDiffusionPipeline,
}
)
else:
_import_structure["pipeline_vq_diffusion"] = ["LearnedClassifierFreeSamplingEmbeddings", "VQDiffusionPipeline"]
if TYPE_CHECKING or DIFFUSERS_SLOW_IMPORT:
try:
if not (is_transformers_available() and is_torch_available()):
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
from ....utils.dummy_torch_and_transformers_objects import (
LearnedClassifierFreeSamplingEmbeddings,
VQDiffusionPipeline,
)
else:
from .pipeline_vq_diffusion import LearnedClassifierFreeSamplingEmbeddings, VQDiffusionPipeline
else:
import sys
sys.modules[__name__] = _LazyModule(
__name__,
globals()["__file__"],
_import_structure,
module_spec=__spec__,
)
for name, value in _dummy_objects.items():
setattr(sys.modules[__name__], name, value)
|